看得懂的电磁场理论

看得懂的电磁场理论

看得懂的电磁场理论

从初中甚至更小,我们就接触到了电路,把电压比作水源的高度,电流比做水流,表征电压与电流关系的电阻就是水管的大小。从初中到大学毕业工作(排除专门学过电磁场,并且深入理解了的),我们一直这幺理解的。因为电路、电压、电流、电阻的概念就是对照现实中看得到的水路、水压、水流和水阻而来的,非常直观、形象,并且长期以来感觉没什幺问题,所以非常的深入人心。

?

?电路理论的困境

?

?电路理论首先碰到的问题是两根紧挨着的信号线,会相互干扰,这个引入了磁场理论比较好的解释了:存在交变的电流,就激励出交变的磁场变化,部分磁力线相互围绕了傍边的信号线,根据安培定律,互感相互影响,这个采用磁场理论可以说完美的解释了。当然靠近的两根信号线不仅仅只有磁场的影响,电场也有影响,这个取决于电压与电流的比例关系。

?

?电路理论碰到的第二个问题,当一个回路的导线无规则,比较乱,信号源信号无法完美的传递到终端上,高频失真,信号完整性受损,限制了高速信号传输。而这个,电路理论解释不了,磁场理论也解释不了,需要第三种理论。

?

?电路理论碰到第三个问题,无法解释天线?怎幺断路不相连的一段导线,可以辐射能量出去,而电路理论必须要有回路的,完全不可理解。

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么就是等值面?什么就是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么就是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则就是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向与传播方向。 3.什么就是电偶极子?电偶极矩矢量就是如何定义的?电偶极子的电磁场分布就是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量与间距的乘积,方向由负电荷指向正电荷。

4、麦克斯韦积分与微分方程组的瞬时形式与复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5、结构方程

6、什么就是电磁场边界条件?它们就是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件就是在无限大平面的情况得到的,但就是它们适用于曲率半径足够大的光滑曲面。 7、不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量与磁感应强度的法向分量永远就是连续的 (2)理想导体表面的边界条件 ★理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流与面电荷。

电磁场理论复习题

1. 两导体间的电容与_A__有关 A. 导体间的位置 B. 导体上的电量 C. 导体间的电压 D. 导体间的电场强度 2. 下面关于静电场中的导体的描述不正确的是:____C__ A. 导体处于非平衡状态。 B. 导体内部电场处处为零。 C. 电荷分布在导体内部。 D. 导体表面的电场垂直于导体表面 3. 在不同介质的分界面上,电位是__B_。 A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 4. 静电场的源是A A. 静止的电荷 B. 电流 C. 时变的电荷 D. 磁荷 5. 静电场的旋度等于__D_。 A. 电荷密度 B. 电荷密度与介电常数之比 C. 电位 D. 零 6. 在理想导体表面上电场强度的切向分量D A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 7. 静电场中的电场储能密度为B A. B. C. D. 8. 自由空间中静电场通过任一闭合曲面的总通量,等于B A. 整个空间的总电荷量与自由空间介电常数之比 B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。 C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。 D. 该闭合曲面内所包围的总电荷量。 9. 虚位移法求解静电力的原理依据是G A. 高斯定律 B. 库仑定律 C. 能量守恒定律 D. 静电场的边界条件 10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化? A. 变大 B. 变小 C. 不变 D. 不确定 11. 恒定电场中,电流密度的散度在源外区域中等于B____ A. 电荷密度 B. 零 C. 电荷密度与介电常数之比 D. 电位 12. 恒定电场中的电流连续性方程反映了___A_ A. 电荷守恒定律 B. 欧姆定律 C. 基尔霍夫电压定律 D. 焦耳定律 13. 恒定电场的源是___B_ A. 静止的电荷 B. 恒定电流 C. 时变的电荷 D. 时变电流 14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的D A. 电量 B. 电位差 C. 电感 D. 电容 15. 恒定电场中,流入或流出闭合面的总电流等于__C___ A. 闭合面包围的总电荷量 B. 闭合面包围的总电荷量与介电常数之比 C. 零 D. 总电荷量随时间的变化率 16. 恒定电场是D A. 有旋度 B. 时变场 C. 非保守场 D. 无旋场 17. 在恒定电场中,分界面两边电流密度矢量的法向方向是B A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 18. 导电媒质中的功率损耗反映了电路中的_D____

高等电磁场理论

高等电磁场理论 教学目的:光学、电子科学与技术和信息与通讯工程等专业研究生的理论基础课。内容提要: 第一章电磁场理论基本方程 第一节麦克斯韦方程 第二节物质的电磁特性 第三节边界条件与辐射条件 第四节波动方程 第五节辅助位函数极其方程 第六节赫兹矢量 第七节电磁能量和能流 第二章基本原理和定理 第一节亥姆霍兹定理 第二节唯一性定理 第三节镜像原理 第四节等效原理 第五节感应原理 第六节巴比涅原理 第七节互易原理 第三章基本波函数 第一节标量波函数 第二节平面波、柱面波和球面波用标量基本波函数展开 第三节理想导电圆柱对平面波的散射 第四节理想导电圆柱对柱面波的散射 第五节理想导电劈对柱面波的散射 第六节理想导电圆筒上的孔隙辐射 第七节理想导电圆球对平面波的散射 第八节理想导电圆球对柱面波的散射 第九节分层介质中的波 第十节矢量波函数

第四章波动方程的积分解 第一节非齐次标量亥姆霍兹方程的积分解第二节非齐次矢量亥姆霍兹方程的积分解第三节辐射场与辐射矢量 第四节口径辐射场 第五节电场与磁场积分方程 第五章格林函数 第一节标量格林函数 第二节用镜像法标量格林函数 第三节标量格林函数的本征函数展开法 第四节标量格林函数的傅里叶变换解法 第五节并矢与并矢函数 第六节自由空间的并矢格林函数 第七节有界空间的并矢格林函数 第八节用镜像法建立半空间的并矢格林函数第九节并矢格林函数的本征函数展开 第六章导行电磁波 第一节规则波导中的场和参量 第二节模式的正交性 第三节规则波导中的能量和功率 第四节常用规则波导举例 第五节规则波导的一般分析 第六节波导的损耗 第七节波导的激励 第八节纵截面电模和磁模 第九节部分介质填充的矩形波导 第十节微带传输线 第十一节耦合微带线 第十二节介质波导 第十三节波导和微带不连续性的近似分析第十四节其它微波毫米波传输线简介

2009级电磁场理论期末试题-1(A)-题目和答案--房丽丽

课程编号:INF05005 北京理工大学2011-2012学年第一学期 2009级电子类电磁场理论基础期末试题A 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(共12分)(2题) 1.请写出无源、线性各向同性、均匀的一般导电(0<σ<∞)媒质中,复麦克斯韦方程组的限定微分形式。 2.请写出谐振腔以TE mnp 模振荡时的谐振条件。并说明m ,n ,p 的物理意义。 二、选择题(每空2分,共20分)(4题)(最好是1题中各选项为同样类型) 1. 在通电流导体(0<σ<∞)内部,静电场( A ),静磁场(B ),恒定电流场(B ),时变电磁场( C )。 A. 恒为零; B. 恒不为零; C.可以为零,也可以不为零; 2. 以下关于全反射和全折射论述不正确的是:( B ) A.理想介质分界面上,平面波由光密介质入射到光疏介质,当入射角大于某一临界角时会发生全反射现象; B.非磁性理想介质分界面上,垂直极化波以某一角度入射时会发生全折射现象; C.在理想介质与理想导体分界面,平面波以任意角度入射均可发生全反射现象; D.理想介质分界面上发生全反射时,在两种介质中电磁场均不为零。 3. 置于空气中半径为a 的导体球附近M 处有一点电荷q ,它与导体球心O 的距离为d(d>a),当导体球接地时,导体球上的感应电荷可用球内区域设置的(D )的镜像电荷代替;当导体球不接地且不带电荷时,导体球上的感应电荷可用(B )的镜像电荷代替; A. 电量为/q qd a '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; B. 电量为/q qa d '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; C. 电量为/q qd a '=-,距球心2/d a d '=; D. 电量为/q qa d '=-,距球心2/d a d '=; 4.时变电磁场满足如下边界条件:两种理想介质分界面上,( C );两种一般导电介质(0<σ<∞)分界面上,(A );理想介质与理想导体分界面上,( D )。 A. 存在s ρ,不存在s J ; B. 不存在s ρ,存在s J ; C. 不存在s ρ和s J ; D. 存在s ρ和s J ; 三、(12分)如图所示,一个平行板电容 器,极板沿x 方向长度为L ,沿y 方向宽 度为W ,板间距离为z 0。板间部分填充 一段长度为d 的介电常数为ε1的电介质,如两极板间电位差为U ,求:(1)两极板 间的电场强度;(2)电容器储能;(3)电 介质所受到的静电力。

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将

电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、选择题(每小题2分,共20分) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 ( D ) (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C )任意矢量场可以由其旋度和边界条件唯一地确定; (D )任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场”这一物理思想的两个方程是 ( B ) (A )ε ρ= ??=??E H ??,0 (B )H j E E j J H ρ? ρ??ωμωε-=??+=??, (C )0,=??=??E J H ? ??(D )ε ρ = ??=??E H ??,0 3.一圆极化电磁波从媒质参数为13==r r με的介质斜入射到空气中,要使电场的平行极化分量不产生反射,入射角应为 ( B ) (A )15° (B )30° (C )45° (D )60°

4. 在电磁场与电磁波的理论中分析中,常引入矢量位函数A ?,并令A B ?? ??=,其依据是 ( C ) (A )0=??B ? ; (B )J B ??μ=??; (C )0=??B ? ; (D )J B ??μ=??。 5 关于高斯定理的理解有下面几种说法,其中正确的是 ( C ) (A) 如果高斯面内无电荷,则高斯面上E ? 处处为零; (B) 如果高斯面上E ? 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上E ? 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量x y D xe ye =+,则该区域的电荷体密度为 ( B ) ( A) 2ρε=- (B )2ρ= (C )2ρε= (D )2ρ=- 7.两个载流线圈之间存在互感,对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 .以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C )电场和磁场无关 (D )磁场是有源场

2011级电磁场理论期末试题带详细答案

课程编号:INF05005 北京理工大学2013-2014学年第一学期 2011级电子类电磁场理论基础期末试题B 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(12分) 1.请写出无源媒质中瞬时麦克斯韦方程组积分形式的限定形式。(4分) 答:媒质中无源,则0su J =,0ρ= ()l s E H dl E ds t ?εσ??? ?=+??????? ?? ()l s H E dl ds t ?μ??=-?? ? =0s E ds ε?? =0s H ds μ?? (评分标准:每式各1分) 2.请写出理想导体表面外侧时变电磁场的边界条件。(4分) 答:? ??==?00?t E E n , ?? ?==?s n s D D n ρρ ?, ???==?00 ?n B B n , ? ? ?==?s t s J H J H n ? 3.请利用动态矢量磁位A 和动态电位U 分别表示磁感应强度B 和电场E ;并简要叙述引入A 和U 的依据条件。(4分) 答:B A =??,A E U t ?=-?- ?; 引入A 的依据为:0B ??=,也就是对无散场可以引入上述磁矢位;引入U 的依 据为:0A E t ?? ???+= ????,也就是对无旋场,可以引入势函数。 二、选择题(共20分)(4题) 1. 以?z 为正方向传播的电磁波为例,将其电场分解为x ,y 两个方向的分量:(,)cos()x xm x E z t E t kz ωφ=-+和(,)sin()y ym y E z t E t kz ωφ=-+。判断以下各项中电 磁波的极化形式:线极化波为( B );右旋圆极化波为( C )。(4分)

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

麦克斯韦电磁场理论的建立及意义

麦克斯韦电磁场理论的建立及意义 班级:物理系09本三班姓名:范日耀 摘要:文章通过对法拉第力线思想和W.汤姆孙的类比研究的阐述来引出麦克斯韦的电磁场理论。麦克斯韦经过三个艰难的过程建立了电磁场理论,为壮伟的物理大厦添砖加瓦,做出了巨大贡献。 关键字:法拉第力线思想W.汤姆孙类比研究麦克斯韦电磁场理论 一、引言 二、内容 1、前人的研究 (1)法拉第的力线思想 法拉第从广泛的实验研究中构想出描绘电磁作用的“力线”图像。他认为电荷和磁极周围的空间充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。力线就像是从电荷(或磁极)发出、又落到电荷(或磁极)的一根根皮筋一样,具有在长度方向力图收缩,在侧向力图扩张的趋势。他以丰富的想象力阐述电磁作用的本质。 法拉第研究了电介质对电力作用的影响,认识到这一影响表明电力不可能是超距作用,而是通过电介质状态的变化;即使没有电介质,空间也会产生某种变化,布满了力线。后来,法拉第又进一步研究了磁介质,解释了顺磁性和反磁性。电磁感应现象则解释为磁铁周围存在某种“电应力状态”,当导线在其附近运动时,收到应力作用而有电荷做定向运动;回路中产生电动势则是由于穿过回路的磁力线数目发生了变化。 法拉第的力线思想实际上就是场的观念,这是近距理论的核心内容。 (2)W.汤姆孙的类比研究 在法拉第力线思想的激励下,W.汤姆孙对电磁作用的规律也进行过有益的研究。他从法国科学家傅里叶的热传导理论得到启示。傅里叶在1824年发表《热的分析理论》一书,详细的研究了在介质中热流的传播问题,建立了热传导方程。这本书W.汤姆孙对有很深的影响。 1842年,W.汤姆孙发表了第一篇关于热和电的数学论文,题为:《论热在均匀固体中的均匀运动及其与电的数学理论的联系》,他论述了热在均匀固体中的传导和法拉第电应力在均匀介质中传递这两种现象之间的相似性。他指出电的等势面对应于热的等温面,而电荷对应与热源。利用傅里叶的热分析法,他把法拉第的力线思想和拉普拉斯、泊松等人已经建立的完整的静电理论结合在一起,初步形成了电磁作用的统一理论。 1847年,W.汤姆孙进一步研究了电磁现象与弹性现象的相似性,在题为《论电力、磁力和伽伐尼力的力学表征》一文中,以不可压缩流体的流线连续性为基础,论述了电磁现象和流体力学现象的共性。1851年,他给除了磁场的定义,1856年,根据磁致旋光效应提出了磁具有旋转的特性,这样就为进一步借用流体力学中关于涡旋运动的理论,做好了准备。 W.汤姆孙运用类比方法,把法拉第的力线思想转变为定量的表述,为麦克斯韦的工作提供了十分有益的经验。 2、麦克斯韦建立电磁场理论 (1)电磁场理论建立的第一步 麦克斯韦在电磁理论方面的工作可以和牛顿在力学理论方面的工作相媲美。他和牛顿一样,是“站在巨人的肩上”,看得更深更远,作出了伟大的历史综合;他和牛顿一样,其丰硕的成果是一步一步提炼出来的。

电磁场与电磁波理论 概念归纳.(DOC)

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场理论复习题(题库+答案)

第1~2章 矢量分析 宏观电磁现象的基本规律 1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A ,则 A = ,=??A 0 。 2. 已知矢量场 xz e xy e z y e A z y x ?4?)(?2+++= ,则在M (1,1,1) 处=??A 9 。 3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A ),则必 须同时给定该场矢量的 旋度 及 散度 。 4. 写出线性和各项同性介质中场量D 、E 、B 、H 、J 所满足的方程 (结构方程): 。 5. 电流连续性方程的微分和积分形式分别为 和 。 6. 设理想导体的表面A 的电场强度为E 、磁场强度为B ,则 (a )E 、B 皆与A 垂直。 (b )E 与A 垂直,B 与A 平行。 (c )E 与A 平行,B 与A 垂直。 (d )E 、B 皆与A 平行。 答案:b 7. 设自由真空区域电场强度(V/m) )sin(?0βz ωt E e E y -= ,其中0E 、ω、β 为常数。则空间位移电流密度d J (A/m 2)为: (a ) )cos(?0βz ωt E e y - (b ) )cos(?0βz ωt ωE e y - (c ) )cos(?00βz ωt E ωe y -ε (d ) )cos(?0βz ωt βE e y -- 答案:c 8. 已知无限大空间的相对介电常数为4=εr ,电场强度 )(?)(?)(?y x e z x e z y e z y x +++++A ??A ??E J H B E D σ=μ=ε= , ,t q S d J S ??-=?? t J ?ρ?-=??

电磁场理论练习题

第一章 矢量分析 1.1 3?2??z y x e e e A -+= ,z y e e B ?4?+-= ,2?5?y x e e C -= 求(1)?A e ;(2)矢量A 的方向余弦;(3)B A ?;(4)B A ?; (5)验证()()()B A C A C B C B A ??=??=?? ; (6)验证()()()B A C C A B C B A ?-?=??。 1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢 量。设A 为已知矢量,X A B ?=和X A B ?=已知,求X 。 1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e e l ?2?2?-+= 方向上的方向导数。 1.4 计算矢量()() 3222224???z y x e xy e x e A z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ??对此立方体的体积分,以验证散度定理。 1.5 计算矢量z y e x e x e A z y x 22???-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ??对此回路所包围的表面积的积分,以验证斯托克斯定理。 1.6 f 为任意一个标量函数,求f ???。 1.7 A 为任意一个矢量函数,求()A ????。 1.8 证明:A f A f A f ??+?=?)(。 1.9 证明:A f A f A f ??+??=??)()()(。 1.10 证明:)()()(B A A B B A ???-???=???。 1.11 证明:A A A 2)(?-???=????。 1.12 ?ρ?ρ?ρρsin cos ?),,(32z e e z A += ,试求A ??,A ??及A 2?。 1.13 θθθ?θ?θcos 1?sin 1?sin ?),,(2r e r e r e r A r ++= ,试求A ??,A ??及A 2?。 1.14 ?ρ?ρsin ),,(z z f =,试求f ?及f 2?。 1.15 2sin ),,(r r f θ?θ=,试求f ?及f 2?。 1.16 求??S r S e d )sin 3?(θ,S 为球心位于原点,半径为5的球面。 1.17 矢量??θ23cos 1?),,(r e r A r = ,21<

大连海事电磁场理论课后习题答案

电磁场理论习题解答 信息科学技术学院

第1章习题答案 1-1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。 解:在直角坐标系中矢量D 的散度运算如下: () z D y D x D D D D z y x z y x z y x ??+??+??=++???? ????+??+??=???k j i k j i D (1) 因此,高斯通量定理和磁通连续性原理分别是两个标量方程: 0 , =??+??+??=??+??+??z B y B x B z D y D x D z y x z y x ρ (2) 在直角坐标系中矢量E 的旋度运算如下: ??? ? ????-??+???? ????-??+???? ????-??=??????=??y E x E x E z E z E y E E E E z y x x y z x y z z y x k j i k j i E (3) 法拉第电磁感应定律可以写成3个标量方程: t B y E x E t B x E z E t B z E y E z x y y z x x y z ??-=??-????-=??-????-=??-?? ,, (4) 全电流定律也可以写成3个标量方程: t H J y H x H t D J x H z H t D J z H y H z z x y y y z x x x y z ??+=??-????+=??-????+=??-?? ,, (5) 共8个标量方程。 1-2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即 ? ? (? ? E ) = 0 (1) 证明:设A 为任意矢量场函数,由题1-1式(3)可知,在直角坐标系中,它的旋度为 ??? ? ????-??+???? ????-??+ ??? ? ????-??=??y E x E x E z E z E y E x y z x y z k j i E (2) 再对上式进行散度运算 0)(222222=???-???+???-???+???-???=???? ????-????+???? ????-????+???? ????-????=????z y E x z E y x E z y E x z E y x E y E x E z x E z E y z E y E x x y z x y z x y z x y z E (3) 得证。 1-3 试由微分形式麦克斯韦方程组,导出电流连续性方程 t ??-=??ρJ (1) 解:麦克斯韦方程组中微分形式的全电流定律为 t ??+=??D J H (2) 对上式等号两边进行散度运算,由题1-2知,等号左边的散度为零,等号右边的散度亦应为零,即

吉大物理电磁场理论基础答案.

3. 两根无限长平行直导线载有大小相等方向相反电流I, I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图,则 A.线圈中无感应电流; B B.线圈中感应电流为顺时针方向; C C.线圈中感应电流为逆时针方向; D D.线圈中感应电流方向不确定。 4. 在通有电流I 无限长直导线所在平面内,有一半经r、电阻R 导线环,环中心 距导线a,且a >> r。当导线电流切断后,导线环流过电量为 5.对位移电流,有下述四种说法,请指出哪一种说法是正确的 A A.位移电流是由变化电场产生的

B B.位移电流是由变化磁场产生的 C C.位移电流的热效应服从焦耳-楞次定律 D D.位移电流的磁效应不服从安培环路定理 6.在感应电场中电磁感应定律可写成 式中E K为感应电场的电场强度,此式表明 A. 闭合曲线C 上E K处处相等 B. 感应电场是保守力场 C.感应电场的电场线不是闭合曲线 D.感应电场不能像静电场那样引入电势概念

1. 长直导线通有电流I ,与长直导线共面、垂直于导线细金属棒AB ,以速度V 平行于导线作匀速运动,问 (1金属棒两端电势U A 和U B 哪个较高?(2若电流I 反向,U A 和U B 哪个较高?(3金属棒与导线平行,结果又如何?二、填空题 U A =U B U A U B

;

三、计算题 1.如图,匀强磁场B 与矩形导线回路法线 n 成60°角 B = B = B = kt kt (k 为大于零的常数。长为L的导体杆AB以匀速 u 向右平动,求回路中 t 时刻感应电动势大小和方向(设t = 0 时,x = 0。解:S B m ρρ?=φLvt kt ?=21dt d m i φε=2 21kLvt =kLvt =方向a →b ,顺时针。 ο 60cos SB =用法拉第电磁感应定律计算电动势,不必 再求动生电动势

电磁场理论发展史(DOC 6页)

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,力线的密度表示电场力的大小”.他企图阐明电力线和电力线所在空间之间的几何关

电磁学在电力系统中的应用

电磁学在电力系统中的应用 任何一门科学的诞生和发展都离不开科学内部知识的继承和外部社会历史条件的制约,1 9世纪电磁学的崛起正是科学发展的内在逻辑与当时电力技术革命相互影响相互推动的结果。近年来,传统的电工理论、电磁场理论与电子科学、信息科学、控制科学、材料科学以及生命科学的交叉融合,产生了许多对社会经济发展和人类生活有重大影响的新兴学科,如生物电工学、生物电磁学、纳米磁学等。其中电磁兼容技术是一门迅速发展的交叉学科,涉及电子、计算机、通信、航空航天、铁路交通、电力、军事以至人民生活各个方面。另一方面,高频电磁场在电厂中的除垢技术也是当前重点研发的项目之一。本文将主要讨论电磁兼容技术和高频电磁场除垢技术在电力系统中的应用。 一、电磁兼容技术 电磁兼容( EMC)是指设备或系统在所处的电磁环境中能正常工作且不对该环境中任何其他事物构成不能承受的电磁骚扰的能力。在当今信息社会,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大大增加,而且电子设备的频带日益加宽,功率逐渐增大,灵敏度提高,联接各种设备的电缆网络也越来越复杂,因此,电磁兼容问题日显重要。 电力系统电磁兼容的主要内容包括:: (1)电磁环境评价。即通过实测或数字仿真等手段,对设备在运行时可能受到的电磁干扰水平(幅值、频率、波形等)进行估计。例如,利用可移动的电磁兼容测试车对高压输电线路或变电站产生的各种干扰进行实测,或通过电磁暂态计算程序对可能产生的瞬变电磁场进行数字仿真。电磁环境评价是电磁兼容技术的重要组成部分,是抗干扰设计的基础。 (2)电磁干扰耦合路径。弄清干扰源产生的电磁搔扰通过何种路径到达被干扰的对象。一般来说,干扰可分为传导型干扰和辐射型干扰两大类。传导干扰是指电磁搔扰通过电源线路,接地线和信号线传播到达对象所造成的干扰,例如,通过电源线传入的雷电冲击源产生的干扰;辐射干扰是指通过电磁源空间传播到达敏感设备的干扰。例如,输电线路电晕产生的无线电干扰或电视干扰即属于辐射型的干扰。研究干扰的耦合途径, 对制定抗干扰的措施, 消除或抑制干扰有重要的意义。 (3)电磁抗扰性评价。研究电力系统中各种敏感的设备仪表,如继电保护、自动

电磁场理论基础试题集上交

电磁场理论基础习题集 (说明:加重的符号和上标有箭头的符号都表示矢量) 一、填空题 1. 矢量场的散度定理为(1),斯托克斯定理为(2)。 【知识点】:1.2 【难易度】:C 【参考分】:3 【答案】:(1)()???=??S S d A d A ττ (2)() S d A l d A S C ???= ??? 2. 矢量场A 满足(1)时,可用一个标量场的梯度表示。 【知识点】:1.4 【难易度】:C 【参考分】:1.5 【答案】:(1) 0=??A 3. 真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。 【知识点】:3.2 【难易度】:B 【参考分】:6 【答案】:(1) 0=??c l d E (2) ∑?=?q S d D S 0

(3) 0=??E (4)()r D ρ=??0 4. 电位移矢量D 、极化强度P 和电场强度E 满足关系(1)。 【知识点】:3.6 【难易度】:B 【参考分】:1.5 【答案】:(1) P E P D D +=+=00ε 5. 有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。 【知识点】:3.8 【难易度】:B 【参考分】:3 【答案】:(1) ()021=-?B B n (2) ()s J H H n =-?21 6. 焦耳定律的微分形式为(1)。 【知识点】:3.8 【难易度】:B 【参考分】:1.5 【答案】:(1) 2E E J p γ=?= 7. 磁场能量密度=m w (1),区域V 中的总磁场能量为=m W (2)。 【知识点】:5.9 【难易度】:B 【参考分】:3

电磁场理论发展史

电磁场理论 在法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家--麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论的思路与方法大致如下. 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示"不能接受即时传播的思想",在法拉弟的物理思想影响下,他决心"为法拉弟的场概念提供数学方法的基础". 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:"借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念"他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了"建立力学模型--引出基本公式--进行数学引伸推导"的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:"我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来""力线的切线方向就是电场力的方向,力线的密度表示电场力的大小".他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似. 第二步,引出基本公式 早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流

相关文档
最新文档