函数与导数解答题训练

函数与导数解答题训练
函数与导数解答题训练

函数与导数解答题训练2

1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间;

(2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数.

2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈.

(1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程;

(2)当0t ≠时,求()f x 的单调区间;

(3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.

3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =.

(1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.

4.已知函数321()3

f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.

5.已知函数32()f x x ax bx c =+++在23

x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间;

(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围.

6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2.

(1)求,a b 的值; (2)证明:()2 2.f x x ≤-

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

函数与导数经典例题(含答案)(训练习题)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ??-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ??? ,2t ?? +∞ ??? ()f x ' + - + ()f x

2020高考文科数学:函数与导数主观题专项练习

函数与导数主观题专项练习 1.[2018·北京卷]设函数f (x )=[ax 2 -(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解析:(1)因为f (x )=[ax 2 -(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2 -(2a +1)x +2]e x . 所以f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1. (2)由(1)得f ′(x )=[ax 2 -(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈? ????1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤1 2x -1<0, 所以f ′(x )>0. 所以2不是f (x )的极小值点. 综上可知,a 的取值范围是? ?? ??12,+∞. 2.[2019·安徽省安庆市高三模拟]已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性; (2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 解析:解法一 (1)f ′(x )=e x -a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增. ②若a >0,则当00; 当x >e a 时,f ′(x )<0. 所以f (x )在? ?? ??0,e a 上单调递增,

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()3 2 f x x =+,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)2 4 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6 f n h n h h h n -+++≥. 3. 设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自 然对数的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

函数与导数解答题训练

函数与导数解答题训练2 1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间; (2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数. 2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间; (3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =. (1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.

4.已知函数321()3 f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值. 5.已知函数32()f x x ax bx c =+++在23 x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间; (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2. (1)求,a b 的值; (2)证明:()2 2.f x x ≤-

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

函数与导数大题训练试题+答案

函数与导数大题训练 1已知函数.2 3)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值; (II )若对任意0]3)(ln[|ln |],3 1,61[>+'+-∈x x f x a x 不等式成立,求实数a 的 取值范围; (III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的 取值范围. 2. 设.2)(ln )()(2)(--==-- =e p qe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数) (Ⅰ)求p 与q 的关系; (Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f ②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n n n Λ 3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+ ∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.

答案 1解:(I )2 3)13)(1(33323)(+-+-=-+= 'x x x x x x f , 令13 10)(-==='x x x f 或得(舍去) )(,0)(,3 10x f x f x >'<≤∴时当单调递增; 当)(,0)(,13 1x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分 (II )由0]3)(ln[|ln |>+'+-x x f x a 得 x x a x x a 323ln ln 323ln ln ++<+->或, …………① ……………………5分 设3 32ln 323ln ln )(2 x x x x x h +=+-=, x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立, 0)32(2) 32(33)32(3332)(2>+=+?-+?+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+?+= 'x x x x x x x h ,………………………………6分 ]3 1,61[)()(都在与x h x g ∴上单增,要使不等式①成立, 当且仅当.5 1ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分 (III )由.0223)32ln(2)(2=-+-+?+-=b x x x b x x f 令x x x x x b x x x x 329723323)(,223)32ln()(2 2+-=+-+='-+-+=??则, 当]3 7,0[)(,0)(,]37,0[在于是时x x x ??>'∈上递增;

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

函数与导数解答题答案文科

函数与导数解答题答案(文科) 1. (2017省一统21)解:(I)当 f‘(x)令f‘ (x)=0计算得出当时,f' (x)函数(II )对 令时f (x), 此时函数 ,此时函数单调递减.时, 单调递减区间为, 恒成立 ? 单调递增; 当, 时, 函数, 的单调递增区间为: , 恒成立?, 则g‘ (x),① 此时函数 时,g‘(x)在R上单调递增 ,,恒成立,满足条件.②时,令g‘ (x)=0计算得出,则时,g‘ (x),此时函数在R上单调递增;时,g‘ (x),此时函数在R上单调递减.当时,函数取得极小值即最小值,则, 计算得出③ 则 时,令

g‘(x)=0计算得出时,g‘ (x) 时,g‘(x),此时函数, 此时函数,在R上单调递增;在R上单调递减.当时,函数取得极小值即最小值, 则综上可得:a 的求值范围是, 计算得出 2.(2017 省二统21)解:(1)根据题意可以知道函数的定义域为 当时,, ①当②当综上 , 或时 5 的单调递增区间为时, 5 ,单调递减. ,单调递增. ,单调递减区间为 (2)由,得, 整理得, , 令,则 令,, 在上递增

得,, 存在唯一的零点 当 在 当时 ,上递减; 时 ,, 在上递增. , 要使对任意恒成立,只需 又 3.解 :(1),且时 ,,的最大值为3. 5 '(x),‘(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,‘(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, 5 (3) 的取值范围为 5 '(x),①当时,在上单调递减,, 计算得出(舍去); ②当且时,即,在上单调递减,在 上单调递增,,计算得出,满足条件;③当,且时,即,在上单调

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

2021年高考数学二轮复习专项训练:函数与导数

一、选择题 1.函数的界说域为() A.B.C.D. 2.下列函数中,既是奇函数,又在区间上递加的是()A.B. C.D. 3.函数y=x2﹣2x﹣1在闭区间[0,3]上的最大值与最小值的和是() A.﹣1B.0C.1D.2 4.界说在上的函数满意,,恣意的,函数在区间上存在极值点,则实数m的取值规模为() A.B.C.D. 5.已知,,,则的巨细联系是() A.B.C.D. 6.已知函数的图象如图所示,则函数的单调递加区间为() A.,B.,

C.,D., 7.界说在上的偶函数满意,且当时,,函数是界说在上的奇函数,当时,,则函数的零点的的个数是() A.9B.10C.11D.12 8.已知函数,若关于,,使得,则的最大值为()A.eB.1-eC.1D. 9.已知为界说在上的奇函数,当时,有,且当时,,下列出题正确的是() A.B.函数在界说域上是周期为的函数 C.直线与函数的图象有个交点D.函数的值域为 10.曲线在点处的切线方程为() A.B. C.D. 11.已知函数的导函数,且满意,则=() A.B.C.1D. 12.已知,直线与函数的图象在处相切,设,若在区间[1,2]上,不等式恒建立.则实数m()

A.有最大值B.有最大值e C.有最小值e D.有最小值 二、填空题 13.函数的界说域为 14.已知函数的导函数是,设、是方程的两根.若,, 则的取值规模为 . 15.若函数在区间两个不同的零点,则的取值规模是_____ 16.已知界说域为的函数,若关于恣意,存在正数,都有建立,那么称函数是上的“倍束缚函数”,已知下列函数:①; ②;③;④, 其间是“倍束缚函数”的是_____________.(将你以为 正确的函数序号都填上) 17.关于三次函数有如下界说:设是函数的导函数,是 函数的导函数,若方程有实数解,则称点为函数的“拐点”.若点是函数的“拐点”,也是函数图画上的点,则当时,函数的函数值是__________. 参考答案 1.B

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

相关文档
最新文档