传感器的位移测量实验

传感器的位移测量实验
传感器的位移测量实验

位移测量实验报告

专业班级姓名实验仪器编号实验日期

一、实验目得

掌握常用得位移传感器得测量原理、特点及使用,并进行静态标定。

二、实验仪器

CSY10B型传感器系统实验仪。

三、实验内容

(一)电涡流传感器测位移实验·

1、测量原理

扁平线圈中通以交变电流,与其平行得金属片中产生电涡流。电涡流得大小影响线圈得阻抗Z。Z = f(ρ,μ,ω,x)。

不同得金属材料有不同得ρ、μ,线圈接入相应得电路中,用铁、铝两种不同得金属材料片分别标定出测量电路得输出电压U与距离x得关系曲线。

2、测试系统组建

电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。

3、试验步骤

4、数据分析与讨论

画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(二)光纤传感器测位移实验

1、测量原理

反射式光纤传感器属于结构型, 工作原理如图。

反射式位移传感器原理

当发光二极管发射红外光线经光纤照射至反射体,被反射得光经接收光纤至光电元件。经光电元件转换为电信号。经相应得测量电路测出照射至光电元件得光强得变化。

2、组建测试系统

光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。

3、实验步骤

4、数据分析与讨论

画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(三)电容式传感器测位移实验

1、测量原理

电容式传感器就是将被测物理量转换成电容量得变化来实现测量得。本实验采用得电容式传感器为二组固定极片与一组动极片组成二个差动变化得变面积型平行极板电容式传感器。。

电容式位移传感器测量系统方框图:

2、组建测试系统

需用器件与单元:机头中得振动台、测微头、电容传感器;显示面板中得电压表;调理电路面板传感器输出单元中得电容;调理电路单元中得电容变换器(包括了振荡电路、测量电路与低通滤波电路在内)、差动放大器。

3、实验步骤

1)、接线。调节测微头得微分筒使测微头得测杆端部与振动台吸合,再逆时针调节测微头得微分筒(振动台带动电容传感器得动片阻上升),直到电容传感器得动片组与静片组上沿基本平齐为止(测微头得读数大约为20mm左右)作为位移得起始点。

2)、检查接线无误后,合上主、副电源开关,读取电压表显示值为起始点得电压,填入下表中。

3)、仔细、缓慢地顺时针调节测微头得微分筒一圈△X=0、5mm电压表上读出相应得电压值,填入下表中,以后,每调节测微头得微分筒一圈△X=0、5mm读出相应得输出电压直到电容传感器得动片X(mm)

U(V)

X(mm)

U(V)

4、数据分析与讨论

根据表得数据作出△X—U实验曲线,在实验曲线上截取线性比较好得线段作为测量范围并在测量范围内计算灵敏度S=△U/△X与线性度。实验完毕,关闭所有电源开关。

(四)霍尔片测位移实验(选做)

1、基本原理

如图,把一块宽为b,厚为d得P型半导体薄片垂直放在磁感应强度为B得磁场中,并纵向通以电流I ,此时在板得横向两侧面,之间就呈现出一定得电势差,这一现象称为霍尔效应。

所产生得电势差UH称霍尔电压。霍尔效应得数学表达式为:U H=K H IB 具有上述霍尔效应得元件称为霍尔元件。

当霍尔元件沿梯形磁场缝隙内有位移X时,由于B≠0,则有一电压U

H 输出,U

H

经差动放大器放大

输出为U。U与B、B与X有一一对应得线性关系。电路图中得电位器W

1

就是调节霍尔片得不定位电

势,所谓不定位电势:B=0时U

H

≠0。

(a)工作原理

(b)电路图

*注意:线性霍尔元件有四个引线端。涂黑二端1(Vs+)、3(Vs)就是电源输入激励端,另外二端2(V o+)、4(V o)就是输出端。接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件要损坏。

2、组建测试系统

按电路图连线,需用到机头中得振动台、测微头、霍尔位移传感器;电压表、±2V直流稳压电源;电桥、差动放大器。

3、实验步骤

1)、差动放大器调零:差动放大器同相输入端与反相输入端短接,电压表量程切换开关打到2V档,检查接线无误后合上主、副电源开关。将差动放大器得增益电位器顺时针方向缓慢转到底,再逆时针回转一点点(防电位器得可调触点在极限端点位置接触不良);调节差动放大器得调零电位器,使电压表显示为0。关闭主电源。

2)、在振动台与测微头吸合得情况下,调节测微头到10mm处使振动台上得霍尔片大约处在两块磁钢间得上、下中点位置(目测)。将±2V~±10V步进可调直流稳压电源切换到4V档,再按24—4示意图接线,将差动放大器得增益电位器逆时针方向缓慢转到底(增益最小)。检查接线无误后合上主电源开关,仔细调节电桥单元中得W1电位器,使电压表显示0V。

*注意:线性霍尔元件有四个引线端。涂黑二端1(V s+)、3(V s)就是电源输入激励端,另外二个2(V o+)、

4(V o)就是输出端。接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件要损坏。

3)、将测微头从10mm处调到15mm处作为位移起点并记录电压表读数。以后,反方向(顺时针方向)仔细调节测微头得微分筒(0、01mm/每小格)△X=0、1mm(实验总位移从15 mm~5mm)从电压表

4、数据分析与讨论

根据表中得实验数据作出U-X特性实验曲线,在实验曲线上截取线性较好得区域作

为传感器得位移量程。

传感器的位移测量实验

位移测量实验报告 专业班级姓名实验仪器编号实验日期 一、实验目得 掌握常用得位移传感器得测量原理、特点及使用,并进行静态标定。 二、实验仪器 CSY10B型传感器系统实验仪。 三、实验内容 (一)电涡流传感器测位移实验· 1、测量原理 扁平线圈中通以交变电流,与其平行得金属片中产生电涡流。电涡流得大小影响线圈得阻抗Z。Z = f(ρ,μ,ω,x)。 不同得金属材料有不同得ρ、μ,线圈接入相应得电路中,用铁、铝两种不同得金属材料片分别标定出测量电路得输出电压U与距离x得关系曲线。 2、测试系统组建 电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。 3、试验步骤 4、数据分析与讨论 画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(二)光纤传感器测位移实验 1、测量原理 反射式光纤传感器属于结构型, 工作原理如图。 反射式位移传感器原理 当发光二极管发射红外光线经光纤照射至反射体,被反射得光经接收光纤至光电元件。经光电元件转换为电信号。经相应得测量电路测出照射至光电元件得光强得变化。 2、组建测试系统 光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。 3、实验步骤 4、数据分析与讨论 画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。 (三)电容式传感器测位移实验 1、测量原理

电容式传感器就是将被测物理量转换成电容量得变化来实现测量得。本实验采用得电容式传感器为二组固定极片与一组动极片组成二个差动变化得变面积型平行极板电容式传感器。。 电容式位移传感器测量系统方框图: 2、组建测试系统 需用器件与单元:机头中得振动台、测微头、电容传感器;显示面板中得电压表;调理电路面板传感器输出单元中得电容;调理电路单元中得电容变换器(包括了振荡电路、测量电路与低通滤波电路在内)、差动放大器。 3、实验步骤 1)、接线。调节测微头得微分筒使测微头得测杆端部与振动台吸合,再逆时针调节测微头得微分筒(振动台带动电容传感器得动片阻上升),直到电容传感器得动片组与静片组上沿基本平齐为止(测微头得读数大约为20mm左右)作为位移得起始点。 2)、检查接线无误后,合上主、副电源开关,读取电压表显示值为起始点得电压,填入下表中。 3)、仔细、缓慢地顺时针调节测微头得微分筒一圈△X=0、5mm电压表上读出相应得电压值,填入下表中,以后,每调节测微头得微分筒一圈△X=0、5mm读出相应得输出电压直到电容传感器得动片X(mm) U(V) X(mm) U(V) 4、数据分析与讨论 根据表得数据作出△X—U实验曲线,在实验曲线上截取线性比较好得线段作为测量范围并在测量范围内计算灵敏度S=△U/△X与线性度。实验完毕,关闭所有电源开关。 (四)霍尔片测位移实验(选做) 1、基本原理 如图,把一块宽为b,厚为d得P型半导体薄片垂直放在磁感应强度为B得磁场中,并纵向通以电流I ,此时在板得横向两侧面,之间就呈现出一定得电势差,这一现象称为霍尔效应。

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

加速度传感器测振动位移

加速度传感器测振动速度与位移方案 1. 测量方法(基本原理) 设加速度传感器测量振动所得的加速度为:()a t (单位:m/s 2) 对加速度积分一次可得速率: 1 1()()[ ]2N i i i a a v t a t dt t -=+==?∑? (单位:m/s) 对速率信号积分一次可得位移:1 1 ()()[ ]2 N i i i v v s t v t dt t -=+==?∑? (单位:m) 其中: ()a t 为连续时域加速度波形 ()v t 为连续时域速率波形 ()s t 为连续位移波形 i a 为i 时刻的加速度采样值 i v 为i 时刻的速率值 0a =0;0v =0 t ?为两次采样之间的时间差 2. 主要误差分析 误差主要存在以下几个方面: 1)零点漂移所带来的积分误差 由于加速度传感器的输出存在固定的零点漂移。即当加速度为0g 时传感器输出并不一定为0,而是一个非零输出error A 。传感器的输出值为:()a t +error A 。对error A 二次积分会产生积分累计效应。 2)积分的初始值所带来的积分误差 0a 和0v 的值并不为零,同样会产生积分累计效应。 3)高频噪声信号所带来的误差 高频噪声信号会对瞬时位移值测量精度带来影响,但积分值能相互抵销而不会带来累计。 3. 解决办法 1)零点漂移和积分初始值不为零可以加高通滤波器的方法滤除。

2)高频噪声信号的影响并不大,为了达到更高的精度,可以加一个低通滤波器。 选择高通滤波器和低通滤波器合理的截至频率,可以得到较理想的结果。 (注:高通滤波即去除直流分量;低通滤波即平滑滤波算法)。 4. 仿真研究 4.1 问题的前提背景 1.本课题研究的对象是桥梁振动的加速度()a t ,速度()v t 和位移()s t ,可以认为桥梁的加速度,速度,位移的总和为0。 即:0()0a t dt ∞ =? 0()0v t dt ∞ =? ()0s t dt ∞ =? 其离散表达式为:00()N i i a N ===∞∑ 0()N i i v N ===∞∑ 0()N i i s N ===∞∑ 2.加速度传感器测量值存在误差,它主要是在零点漂移和测量噪声两个方面。 即测量值()()()measure error a t a t a t =+ 其中:()measure a t 为加速度传感器测量加速度值 ()a t 为桥梁振动的实际加速度值 ()error a t 为传感器测量误差 3.振动速度与振动位移取决于振动加速度与振动频率,可以证明,振动速度与振动加速度成正比,与振动频率成反比;振动位移与振动速度成正比,与振动频率成反比。 4.2 仿真 1.取一组仿真用振动加速度信号:()9.8sin(240)3measure a t t π=??+,如图1所示。 其中:()measure a t 代表加速度传感器测量值

直流激励时接触式霍尔位移传感器特性实验[精品文档]

实验三直流激励时接触式霍尔位移传感器特性实验 一、实验目的 了解霍尔位移传感器原理与应用。 二、基本原理 根据霍尔效应,霍尔电势U H=K H IB,保持K H、I不变,若霍尔元件在梯度磁场B中运动,且B是线性均匀变化的,则霍尔电势U H也将线性均匀变化,这样就可以进行位移测量。 三、需用器件与单元 霍尔传感器实验模板、线性霍尔位移传感器、直流电源±4V、电源±15V、测微头、数显单元。 四、实验步骤 1、将霍尔传感器按图8-1 安装。霍尔传感器与实验模板的连接按图8-2进行。①、③为电源±4V(或单元5V),②、④为输出,R1与④之间可暂时不接。 图8-1 霍尔传感器安装示意图 2、开启电源,接入±15V电源,将微测头旋至10mm处,左右移动微测头使霍尔片处在磁钢中间位置,即数显表电压指示最小,拧紧测量架顶部的固定螺钉,接入R1与④之间的连线,调节Rw2使数显表指示为零(数显表置2V档)。 图8-2 霍尔传感器与实验模板连线图

3、旋转微测头,每转动0.5mm 记下数字电压表读数,并将读数填入表8-1中,将测微 头回到10mm 处,反向旋转测微头,重复实验过程,填入表8-1中。 五、实验结果分析与处理 1、 记录数显表数值如下: 2、由数据绘出霍尔传感器位移量与输出电压特性曲线如下 图8-3 霍尔传感器位移量与输出电压特性曲线 3、(1)计算系统灵敏度: 在)10,0.7[∈X 区间, ΔV=(172-136)+(136-106)+???+(27-0)/6=172/6=28.67mV ΔX=0.5mm 灵敏度S=ΔV/ΔX=57.34mV/mm 在]0.13,0.10(∈X 区间, ΔV=(28-0)+(59-28)+。。。+(165-151)/6=/6=27.5mV ΔX=0.5mm 灵敏度S=ΔV/ΔX=55.0mV/mm

(五) 电涡流传感器位移实验

(五) 电涡流传感器位移实验 一、实验目的:了解电涡流传感器测量位移的工作原理和特性。 二、基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗 与导电体离线圈的距离有关,因此可以进行位移测量。 三、需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。 四、实验步骤: 1、根据图3-7安装电涡流传感器。 图3-7 电涡流传感器安装示意图 2、传感器结构,这是一个扁平绕线圈。 3、将电涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件(传感器屏蔽层接地)。 4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。 5、将实验模板输出端V 0与数显单元输入端Vi 相接。数显表量程切换开关选择电压20V 档。 6、用连接导线从主控台接入+15V 直流电源到模板上标有+15V 的插孔中。 7、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm 读一个数,直到输 出几乎不变为止。将结果列入表3-4。 表3-4电涡流传感器位移X 与输出电压数据 8、根据表4-4数据,画出V-X 曲线,根据曲线找出线性区域及进行正、负位移测量时的佳工作点,试计 算量程为 1mm 、3mm 及5mm 时的灵敏度和线性度(可以用端基法或其它拟合直线)。 axis([10.5 18.5 0.66 7.9]); coords=[10.5:1:18.5,19.5;0.66,2.01,3.35,4.55,5.55,6.32,6.90,7.34,7.67,7.9]; grid; hold; plot(coords(1,:),coords(2,:),'*'); x=coords(1,:) y=coords(2,:)' 图3-8 电涡流传感器位移实验接线图

位移测量传感器

西南科技大学城市学院 City College of Southwest University Of Science and Technology 目录

一.为什么选择这篇论文 二.单片机LVDT位移测量传感器摘要 1.总体方案设计 2.传感器的工作原理 3. 设计总结 4.位移传感器的优点 三.心得体会 四.该论文的优缺点 1.论文的优点 2.论文的缺点

一.为什么选择这篇论文 原本想找一篇关于纺织机(即电脑横机)上的传感器来写实训报告的,结果度娘告诉我纺织机上面的传感器太多了!!!!所以就选了个感兴趣的又不难的来完成实训任务。 选择‘位移测量传感器’来做我的实训报告是因为一方面上学期学过自动检测技术,对于传感器并不陌生。另一方面是因为位移传感器的应用范围很广,同时也适合于纺织机并且位移传感器在纺织机设备中起到非常重要的反馈作用,。 同时因为我自己本身平时也接触过纺织机,看见过这几代纺织机的变化,从原始的全手工,到半自动,直到现在实现真正的全自动。以前的手工纺织机差不多就和《花木兰》里面的“唧唧复唧唧,木兰当户织”一样传统的纺织机织出来的衣服慢,花样少,而且一人只能操作一台机器。半自动化的纺织机是加入了电动机由激光传感器来计算一件衣服所需要的转数,但是当一件有花样的衣服还是需要较多的手工操作,一个人最多可以看管四台纺织机。全自动的纺织机能够织出整件服装版型并且同时无需人员看管就能够自动完成花样。 那全自动纺织机和我的论文有什么关系呢? 答案是必然并且有非常重要的关系因为位移传感器,在全自动纺织机织花样(花样是指衣服上的各种图案,像小熊啊!花朵啊!还有树之类的图案!)时位移传感器能够使机头准确的停在我们所需花样的准确位置。能够使纺织机机头在配置的电脑上及时的报告他所处的位置。因为在在整台纺织机运行中,可以通过位移传感器进行反馈传回来的的数值进行调整变频电机的速度。进而调整整台纺织机相关运转。对控制电机的运转或停止有极大的帮助 并且位移传感器在纺织机上有非常广阔的应用前景近年来,随着技术进步和纺织行业客户的要求的提高,对纺织机械装备技术水平的要求也越来越高!纺织机械设备的产业升级也在不断进行中,所以传感器就在纺织机上应用的越来越频繁,从而提高了生产效率!所以综上选择这篇论文

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

传感器的位移测量实验

传感器的位移测量实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

位移测量实验报告 专业班级姓名实验仪器编号实验日期一、实验目的 掌握常用的位移传感器的测量原理、特点及使用,并进行静态标定。 二、实验仪器 CSY10B型传感器系统实验仪。 三、实验内容 (一)电涡流传感器测位移实验· 1、测量原理 扁平线圈中通以交变电流,与其平行的金属片中产生电涡流。电涡流的大小影响线圈的阻抗Z。 Z = f(ρ,μ,ω,x)。 不同的金属材料有不同的ρ、μ,线圈接入相应的电路中,用铁、铝两种不同的金属材料片分别标定出测量电路的输出电压U与距离x的关系曲线。 2、测试系统组建 电涡流线圈、电涡流变换器(包括振荡器、测量电路及低通滤波输出电路)、测微头、电压表、金属片。 3、试验步骤 ①安装传感器测微头;②连接电路;③依次用铁片、铝片进行位移测量。

4、数据分析与讨论 画出输入输出关系曲线,确定量程,非线性误差,在测量范围内计算灵敏度,进行误差分析。

(二)光纤传感器测位移实验 1、测量原理 反射式光纤传感器属于结构型, 工作原理如图。 反射式位移传感器原理 当发光二极管发射红外光线经光纤照射至反射体,被反射的光经接收光纤至光电元件。经光电元件转换为电信号。经相应的测量电路测出照射至光电元件的光强的变化。 2、组建测试系统 光纤、光电元件、发光二级管、光电变换测量电路、数字电压表、反射体(片)、测微头。 3、实验步骤 ①观察光纤结构;②安装光纤探头、反射片;③连接电路;④旋动测微仪测位移。 X(mm) U(V)`` X(mm) U(V)`` X(mm) U(V)`` X(mm) U(V)`` 4、数据分析与讨论

实验一(电容式传感器的位移特性实验)

电容式传感器的位移特性实验 一、实验目的: 了解电容式传感器结构及其特点。 二、基本原理: 利用平板电容C=εA/d和相应的结构及测量电路,在ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(变d)和测量液位(变A)等多种电容传感器。利用电容传感器的动态响应特性和可以非接触测量等特点,可进行动态位移测量。 电容传感器具有结构简单、灵敏度高、分辨力高(可达0.01mm甚至更高)、动态响应好、可进行非接触测量等特点,它可以测量线位移、角位移,高频振动振幅,与电感式比较,电感式是接触测量,只能测低频振幅,电容传感器在测量压力、差压、液位、料位成分含量(如油、粮食中的水份)、非金属涂层、油膜厚度等方面均有应用。目前半导体电容式压力传感器已在国内外研制成功,正在走向工业化应用。 三、需用器件与单元: 电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。 四、实验步骤:

1、按图2-1将电容传感器装于电容传感器实验模板上。 图2-1 电容传感器安装示意图 2、将电容传感器连线插入电容传感器实验模板,实验线路见图2-2。 图2-2 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。 4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔

0.2mm记下位移X与输出电压值,填入表2-1。 X(mm) V(mv) 5、根据表2-1数据计算电容传感器的系统灵敏度S和非线性误差δf。 五、思考题: 图2-3为同心圆筒式电容位移传感器结构图,D为屏蔽套筒。若外圆筒半径R=8mm,内圆柱半径r=7.25mm,外圆筒与内圆柱覆盖部分长度L=16mm。根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量。 图2-3 同心圆筒式电容位移传感器结构图 如有侵权请联系告知删除,感谢你们的配合!

各类传感器简介

1.BY-1型土压力传感器 钢弦式表面应变传感器主要用于量测混凝土、钢筋混凝土、钢结构、网状钢结构的表面应变;也可用于已产生微裂的混凝土、钢筋混凝土工程裂缝变化的观测;或用于混凝土应力解除和温度应力的测量。 2.JXW-1型位移传感器 主要用于测试隧道岩层之间、土层之间及其它工程地基基础等受压力后产生的位移量。 3.钢筋应力传感器 除用于量测钢筋混凝土结构中的钢筋应力外还可将其串接起来用于量测隧道及地下结构锚杆的应力分布。 4.孔隙水压力传感器 主要用于测试软基处理和病害水坝整治等工程中的岩石和土壤地下水的流动状态和水压力的大小,并把水压力从所量测的总土压力中分离出来;也可用孔隙水压力传感器量测孔隙水压力的大小和分布。 5.BY-1型土压力传感器 采用双油腔结构形式,它的最大特点是,当传感器受力时,传感器油腔中的液体可使力传递均匀,同时由于弹性敏感元件的变形比弹性传力元件的变形增大若干倍,提高了传感器 的灵敏度。该产品主要用于路基、挡土墙、坝体及隧道等地下结构工程,动静态的测试。 6.基泰VSL570系列振弦式静力水准沉降系统 广泛适用于测量土石坝、港口建设、公路、输(气)油管道、储油罐等基础填方结构的沉降(浮升)。本系统为解决一族多个高程相近监测点的垂直位移及相对沉降变化提供了技术先进的解决方案。数据采集可以用CTY-203型振弦读数仪人工读取,亦可接入其他振弦式自动化测量模块获取。

7.高智能型单点沉降计 属于岩土工程监测设备或岩土工程测试仪器,是位移传感器的一种;单点沉降计是由位移计、测杆、锚头、沉降板组成。钻孔后将单点沉降计埋入土体基础内部,测量锚头与沉降板之间的相对位移变化。单点沉降计主要应用于公路、铁路、水利大堤等各种基础沉降、边坡位移的变形测量。 8.分层沉降计 属于岩土工程监测设备或岩土工程测试仪器,是位移传感器的其中一种;分层沉降计是由多个位移计通过安装套件串联组成。钻孔后将分层沉降计埋设于软土路基,测量软基的分层沉降变形情况。 9.分层沉降仪(沉降磁环) 分层沉降仪是一种地基原位测试仪器。它适用于测量地基、路基、尾矿坝、基坑、堤防等地下各分层沉降量。根据测试数据的变化,可计算出沉降趋势,分析其稳定性,监控施工过程等。分层沉降仪与CX―I型高精度钻孔测斜仪配合使用,是地基原位监测较理想的设备。 工作原理及特点 分层沉降仪所用传感器是根据电磁感应原理设计,将磁感应沉降环预先通过钻孔方式埋入地下待测的各点位,当传感器通过磁感应环时,产生电磁感应信号送至地面仪表显示,同时发出声光报警。读取孔口标记点上对应钢尺的刻度数值,即为沉降环的深度。每次测量值与前次测值相减即为该测点的沉降量。 探头结构牢固,密封性好。钢尺电缆一体化,整机为便携式,重量轻,采用直流电源供电,适合各种野外环境。

利用位移传感器测定加速度

利用位移传感器测定加速度 摘要: 位移传感器有发射器和接收器组成,发射器内装有红外线和超声波发射器;接收器内装有红外线和超声波接收器。测量时,位移传感器的发射器与被测物体固定在一起,发射器按照一定的时间间隔发射超声波,同时发射相应的红外线信号。位移传感器的接受器接收到红外线信号时开始计时,接收到超声波信号时停止计时 关键字:位移传感器 发射器 数据采集器 计算机系统 一 实验目的和要求 1.加强对位移传感器的理解和掌握位移传感器的原理及用法。 2.学会用位移传感器测定斜面上下滑物体的加速度,加深对加速度的理解。 二实验仪器 DISL 实验室、位移传感器、数据采集器(一个)、数据线(若干)、计算机(硬件和软件)、电源、力学轨道、小车、支架等。 三 实验原理介绍 位移传感器有发 射器和接收器组成,发射器内装 有红外线和超声波发射器;接收 器内装有红外线和超声波接收 器。测量时,位移传感器的发射器 与被测物体固定在一起,发射器按照一定的时间间隔发射超声波,同时发射相应的红外线信号。位移传感器的接受器接收到红外线信号时开始计时,接收到超声波信号时停止计时。由于红外线的传播速度为光速,近距离内传播时传播时间可忽略不计,故可认为位移传感器收到的红外线的时间等同于发射器发射红外线的时间,把位移传感器把接收器记录的时间乘以声速就得到发射器和接收器之间的距离。 用位移传感器结合计算机获得v-t 图,通过图像求加速度。在v-t 图像上取相距较远的两点A (t 1,v 1)与B (t 2,v 2),求出它们所在直线的斜率,即可求得加速度:1 212t t v v a --=。 四 实验内容及步骤 1.将位移传感器的发射器固定到小车上,接收器固定在力学轨道的顶端(木板倾斜,使小车下滑作匀加速直线运动)。 调整接收器、发射器的位置,使其基本正对。将接收器 用DIS 测定加速度装置图

实验四电容式传感器测量位移实验

实验四电容式传感器测 量位移实验 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电容式传感器测量位移实验 一、实验目的 (1)了解电容式传感器结构及原理。 (2)熟悉数据采集系统的结构与应用。 二、基本原理 (一)电容式传感器及其测量电路 1、电容式传感器 本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图1所示:它是有二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2?x/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2?2?X/ ln(R/r),式中ε2?、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。 图1 实验电容式传感器结构示意图 2、测量电路 测量电路画在实验模板的面板上,其电路的核心部分是二极管充放电电路。 (二)数据采集系统 数据采集系统(数据采集卡)对实验数据(模拟量)进行采集并与计算机 (PC机)通讯,再用计算机对实验数据进行分析处理。其原理框图如图2所示。 图2数据采集系统实验原理框图 三、需用器件与单元 主机箱、电容传感器、电容传感器实验模板、测微头;数据采集通讯卡 (内置 式,已经装在主机箱内)、RS232连线、计算机。 附:测微头的组成与使用

测微头组成和读数如图3所示。 测微头读数图 图3测位头组成与读数 测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。 测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。 用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。 测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图3甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图3乙已过零则读2.514mm;如图3丙未过零,则不应读为2mm,读数应为1.980mm。 测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。 四、实验步骤: 1、按图4将电容传感器装于电容传感器实验模板上并按图示意接线(实验 模板±15V电源端口接主机箱±15V电源;实验模板的输出VO1接主机箱电压表的Vin)。

位移检测传感器应用

位移检测传感器的应用 实验课程: 实验名称: 姓名: 学号: 班级: 指导教师: 实验日期:

位移检测传感器应用 一、实验类型 综合性实验。 二、实验目的和要求 1.了解微位移、小位移、大位移的检测方法。 2.运用所学过的相关传感器设计三种位移检测系统。 3.对检测系统进行补偿和标定。 三、实验条件 本实验在没有加速度、振动、冲击(除非这些参数本身就是被测物理量) 及环境温度一般为室温(20±5℃)、相对湿度不大于85% ,大气压力为101±7kPa的情况下进行。 四、实验方案设计 为了满足实验要求,现使用电涡流,光纤,和差动三种传感器设计位移检测系统,电涡流取0.1mm为单位,光纤取0.5mm为单位,差动取0.2为单位。进行试验后,用MATLAB处理数据,分析结论。 (一):电涡流传感器测位移 电涡流式传感器是一种建立在涡流效应原理上的传感器。电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图所示。根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图中的等效电路。

电涡流传感器原理图电涡流传感器等效电路图 图1 (二):光纤传感器测位移 实验原理:反射式光纤传感器工作原理如下图所示,光纤采用Y型结构,两束多模光纤合并于一端组成光纤探头,一束作为接受,另一束为光源发射,近红外二极管发出的近红外光经光源光纤照射至被测物,由被测物反射的光信号经接受光纤传输至光电转换器转换为电信号,反射光的强弱与反射物与光纤探头的距离成一定的比例关系,通过对光强的检测就可得知位置量的变化。 图2 (三):差动电感式传感器测位移 实验原理:差动动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。下图为差动式位移检测传感器原理图。

实验 线性霍尔式传感器位移特性实验

实验 线性霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板 图28—1霍尔效应原理 的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数; K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。 具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1μm 左右。 霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。 本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,

电涡流传感器位移实验

实验二十电涡流传感器位移实验 一、实验目的 了解电涡流传感器测量位移的工作原理和特性。 二、实验内容 用铁圆片检测电涡流传感器的位移特性。 三、实验仪器 电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。 四、实验原理 电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。 五、实验注意事项 被测体与涡流传感器测试探头平面尽量平行,并将探头尽量对准被测体中间,以减少涡流损失。 六、实验步骤 1、根据图20-1安装电涡流传感器。 2、观察传感器结构,这是一个平绕线圈。 3、将涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。

图20-1 电涡流传感器安装示意图 图8-2 电涡流传感器位移实验接线图 4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。 5、将实验模板输出端Vo与数显单元输入端Vin相接。数显表量程切换到选择电压20V 档。 6、用连结导线从主控台接入15V直流电源接到模板上标有+15V的插孔中。 7、使测微头与传感器线圈端部接触,开启主控台电源开关,此时数显表读数为最小,然后每隔0.1mm读一个数,直到输出几乎不变为止。将结果列入下表。(实验结论:1、本实验每隔0.1mm是相对位置,起始值看做0.1mm即可,无需从测微头上读绝对位置。每旋转0.1mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点, 导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始

位移测量传感器简介

位移测量传感器简介 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。 1、电感式位移传感器 电感式位移传感器是一种属于金属感应的线性器件,将直线或角位移的变化转换为线圈电感量变化,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。 电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器的特点是:(1)无活动触点、可靠度高、寿命长;(2)分辨率和灵敏度高,能测出0.01微米的位移变化;(3)传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。(4)线性度高、重复性好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%~0.1%;(5)测量范围宽(测量范围大时分辨率低);(6)无输入时有零位输出电压,引起测量误差;(7)对激励电源的频率和幅值稳定性要求较高;(8)频率响应较低,不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。常用电感

实验十四--直流激励时霍尔式传感器位移特性实验

实验十四直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、±15V、测微头、数显单元、相敏检波、移相、滤波模板、双线示波器。 四、实验步骤: (一)直流激励时霍尔式传感器 1、将霍尔传感器按图5-1安装。霍尔传感器与实验模板的连接按图5-2进行。1、3为电源±4V, 2、4为输出。 图5-1 霍尔传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。

图5-2 霍尔传感器位移直流激励实验接线图 3、旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数 近似不变,将读数填入表5-1。 X(mm) 9.700 9.500 9.300 9.100 8.900 8.700 8.500 8.300 8.100 7.900 V(v) 0 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 X(mm) 7.700 7.500 7.300 7.100 6.900 6.700 6.500 6.300 6.100 5.900 V(v) 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19 X(mm) 5.700 5.500 5.300 5.100 4.900 4.700 V(v) 0.20 0.21 0.22 0.23 0.24 0.24 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

位移实验

综合实验二位移实验 (一)电容式传感器的位移实验 一、实验目的 了解电容式传感器结构及其特点。 二、基本原理 利用电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容式传感器。本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图2-9所示:它是有二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2πx/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2π2?X/ ln(R/r),式中ε2π、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。 图2-9 圆筒式变面积差动结构电容式位移传感器三、需用器件与单元 主机箱、电容传感器、电容传感器实验模板、测微头。 四、实验步骤 1.测微头的使用和安装参阅实验九。按图2-10将电容传感器装于电容传感 接主机箱电压表的Vi器实验模板上,并按图示意接线(实验模板的输出V O1 n)。 2.将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时针转3圈)。 3.将主机箱上的电压表量程(显示选择)开关打到2v挡,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈,即△X=0.5mm位移,读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表6,出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。 迟滞误差4.根据表6据计算电容传感器的系统灵敏度S、非线性误差δ L 、

加速度传感器和位移

加速度传感器和位移 2010-12-23 14:05 转载自分享 最终编辑uestcliang **加速度传感器采集的加速度值有没有必要转换为位移量** 加速度信号转换为位移量可以通过两种方法:时域积分和频域积分。在时域中积分,方法简单,但由于测试上原幅值将产生严重偏移趋势项,极大影响测量的准确程度。理论上加速度在时域上进行两次积分可以得到位移,但速度经过两次积分后想获得速度,但积分的结果却与现实有很大的偏差(如图1)。经分析并请教高手后个人认为 1、测试获得的加速度中存在很多成分,在进行积分前必须对信号进行处理,否则积分的结果肯定会出现问题; 2、无论是硬件积分还是软件积分均存在低频放大高频截止的特性。在用加速度进行二次积分得到位移的过程中因 3、如果真的可以用加速度进行积分可以获得速度和加速度的话,那厂家也就不需要再花昂贵的代价去生产速度及 从现场采集的信号,比如加速度信号,实质上是连续信号,是不定积分的范畴。而目前很多积分算法,都是定积信号中的低频,是很难积分的,因为积分一下,就要出现一个转频,还是在分母上,频率很低时,其倒数接近无那就要涉及滤波器的设计了,选择什么样的滤波器,把那些频率滤掉,是一个很关键的问题,只要有滤波,就预值的大小,如果再滤波滤的不太合理的话,那误差就更大,失去了积分的意义了! 积分低频问题有两种,一种是所谓的零位,这一般是由仪器或传感器产生的,真实振动不会有直流成分,所以积分这个也不是振动信号,主要是由传感器或仪器的温漂或零漂引起的,用一般方法很难去掉,当然也不是完全没办以最快捷有效的方法还是高通滤波,设计尽可能好的滤波器,截止频率尽可能低以减少能量损失,衰减尽可能陡相位或线性相位滤波了。至于频域积分,主要是丢失了相位信息,其实对于旋转机械信号来说,两者差别并不是 第二,频域积分。频域积分据说相对稳定一些,不过存在相位误差的问题。

位移传感器的主要分类

位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫米。图中N、S分别表示正、负磁极。霍耳式位移传感器的惯性小、频响高、工作可靠、寿命长,因此常用于将各种非电量转换成位移后再进行测量的场合。 光电式位移传感器:它根据被测对象阻挡光通量的多少来测量对象的位移或几何尺寸。特点是属于非接触式测量,并可进行连续测量。光电式位移传感器常用于连续测量线材直径或在带材边缘位置控制系统中用作边缘位置传感器。 根据型号特性 导电塑料位移传感器: 用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性极高、耐化学腐蚀。用于宇宙装置、导弹、飞机雷达天线的伺服系统等。

相关文档
最新文档