基于神经网络的图像分割

基于神经网络的图像分割
基于神经网络的图像分割

基于遗传神经网络的图像分割

摘要

针对图像分割的复杂性,利用遗传算法对BP神经网络的权值和阈值进行优化,设计出误差最小的神经网络,然后再对图像的像素进行分类识别,实现并提高了图像分割性能。仿真实验表明,与传统的图像分割方法相比,取得了比传统方法更好的图像分割效果。

关键词:图像分割;神经网络;遗传算法;遗传优化

A Study of Genetic Neural Network Used in Image Segmentation

ABSTRACT

Because of the complexity of image segmentation, the optimization of the weights and thresholds of BP neural network are realized by genetic algorithm, and a BP neural network with minimum error is designed. It classify the image pixels, implement and improve the performance of image segmentation. The results of simulation show that the algorithm neuralnetwork can better achieve the image segmentation, compared with the traditional method.

Key word :Image segmentation;Neural Network;Genetic algorithm;Genetic optimization

一、遗传算法

1.1基本概念

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。

对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:

遗传算法

式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。

1.2遗传算法的基本运算过程如下:

a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

b)个体评价:计算群体P(t)中各个个体的适应度。

c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。

e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。

群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。

f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

1.3遗传算法特点

遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:

①首先组成一组候选解;

②依据某些适应性条件测算这些候选解的适应度;

③根据适应度保留某些候选解,放弃其他候选解;

④对保留的候选解进行某些操作,生成新的候选解。

以下是遗传算法流程图:

遗传算法

在遗传算法中,上述几个特征以一种特殊的方式组合在一起:

基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点:

(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。

(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。

二、人工神经网络

人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)

它是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

2.1基本特征

人工神经网络具有四个基本特征:

(1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定

的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

2.2神经元处理单元

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。

2.3并行分布式系统

人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

三、遗传神经网络

神经网络的应用正向大规模、复杂的形势发展,目前设计网络的方法已远远不能满足需要,ANN需要高效的自动设计方法。近几年,出现了一些优化网络结构和权值的方法,如optimal brain surgeon(OBS)[1], magnitude based pruning (MBP)[2],和unit-OBS[3](对OBS的改进算法)等,它们共同的思路是通过删减网络的神经元或连接来降低网络复杂度并改善网络的性能,但这些方法的效率不高且很难找到最优的网络结构和权值的组合。遗传算法的发展使神经网络结构和权值的优化有了一个崭新的面貌,它的搜索能够遍及整个解空间,容易得到全局最优解[4]。用遗传算法优化神经网络,可以使神经网络具有自进化、自适应能力,从而构造出进化的神经网络[5],本文将提出一种基于遗传算法的多层前馈神经网络结构和权值同时进化的方法(geneticmu ltilayer neural network, GMNN),此方法给出了前馈神经网络个体的编码方式,在适值函数的设计中考虑了网络的结构、训练误差及网络的泛化能力等因素,方法中还采用了自适应变异率,小生境技术等来改善算法的性能。

3.1对遗传算法的改进

与BP算法相比,遗传算法显示出很强的鲁棒性以及解空间的并行性等优点,从而能较快地找到问题的一个较优解。然而对于较复杂的问题,由于遗传算法随机搜索的特征,其局部爬山能力较差。所以,我们对交叉、变异算子做了改进,使其具备了一定的判断能力,具体的改进方法如下。

1)用轮转法选择父代中的两个个体进行遗传操作,若这两个个体进行了交叉操作,则对这两个父代个体再进行n次交叉操作,即对这两个父代个体分别进行了n+1次交叉,得到了n+1种交叉结果,每次交叉产生的两个子代的适应值分别记为li1,li2(i=1,…,n+1)。然后选出max(li1,li2)值最大的一组结果(记为L),与父代的两个个体比较,如果父代两个体的较高适应值大于L的较高适应值,则选择父代的两个体作为新一代的两个个体,否则将L中的两个体作为新一代的两个个体。这样做的目的是针对父代中的两个个体为其选择较好的交叉方式以产生更好的后代,如果交叉没有产生更好的后代,则将父代个体复制到下

一代。为了避免个别高适应值个体的多次复制到下一代以使种群多样性退化,要为每一个体设一标志位,以保证该个体只复制一次到下一代。

2)变异操作的改进类似交叉操作的改进,以选出较好的变异结果。

四、图像分割

4.1基于遗传神经网络的图像分割

遗传神经网络在特征分类方面,有着非常广泛的应用。通过先期的学习,能够通过分类得到特定的对象和特征。将其用在图像分割上面,主要对特定类型的一类图像进行分割。如,在一副含有苹果和草莓的图像当中,分割出苹果或者草莓;在一副含有人的图像中,分割出肤色区域。在本例中,主要将其用在医学图像的分割上。

在分割之前要做好两项工作:一是提取前景和背景的特征值;二是用提取好的特征值进行遗传神经网络训练。

(1) 提取特征值主要通过手工对图像进行分析,确定前景色的范围和背景色的范围,然后把前景色和背景色按顺序存入一个数组中,生成的这个数组就为训练样本数组。然后再建立一个同样大小的数组,来保存样本的特征值。如果为前景则特征值为1,背景色特征值为0。

(2) 遗传神经网络训练将上一步提取好的样本值和特征值送入遗传神经网络进行训练。遗传神经网络首先在权值、阈值的值空间中,搜索出一组最合适的权值和阈值,将此设置为神经网络的初始权值、阈值。然后再进行训练,直到均方误差收敛到指定值,或者达到最大迭代次数。此时的神经网络是最优的。

(3) 图像分割可以将图像分割看成一个分类的过程。图像(G)中的每一个像素(Gij)是一个待分类的样本,将这个样本送入遗传神经网络(sim)进行分类,将输出一个特征值Vi,这个特征值决定该样本属于其中一类的概率。可以决定,如果该值大于0.5,那么认为它是前景(F),否则它就是背景(B)。

式中 H 分割后的图像。

4.2代码实现

function retstr = gabpdemo() NNTWARN OFF

retstr=-1;

%

%用于产生样本文件

generatesample('datasample.mat'); %

%遗传神经网络训练示例

gaP = [100 0.00001];

bpP = [500 0.00001];

load('datasample.mat');

gabptrain( gaP,bpP,p,t )

%

%神经网络分割示例

load('datanet.mat');

img = imread('imagea.bmp');

bw = segment( net,img ) ;

figure;

subplot(2,1,1);

imshow(img);

subplot(2,1,2);

imshow(bw);

%

%传统BP训练

%出现的结果,可能收敛不到目标值,或者收敛步数太长(356步) epochs = 2000;

goal = 0.00001 ;

net = newcf([0 255],[6 1],{'tansig' 'purelin'});

net.trainParam.epochs = epochs;

net.trainParam.goal = goal ;

load('datasample.mat');

net = train(net,p,t);

%

%遗传BP训练

%遗传算法寻找最优权值、阈值会用一些时间

%bp的训练还是非常快,38步就收敛到的目标值

gaP = [100 0.00001];

bpP = [500 0.00001];

gabptrain( gaP,bpP,p,t );

4.3程序运行

程序在MATLAB7.0下运行,同时要求将遗传算法工具箱加入到MATLAB的搜索路径中,在MATLAB命令窗口中直接运行gabpdemo.m文件即可。主要界面分别如下图所示。

传统BP神经网络训练过程误差

基于神经网络的图像分割

基于遗传神经网络的图像分割 摘要 针对图像分割的复杂性,利用遗传算法对BP神经网络的权值和阈值进行优化,设计出误差最小的神经网络,然后再对图像的像素进行分类识别,实现并提高了图像分割性能。仿真实验表明,与传统的图像分割方法相比,取得了比传统方法更好的图像分割效果。 关键词:图像分割;神经网络;遗传算法;遗传优化 A Study of Genetic Neural Network Used in Image Segmentation ABSTRACT Because of the complexity of image segmentation, the optimization of the weights and thresholds of BP neural network are realized by genetic algorithm, and a BP neural network with minimum error is designed. It classify the image pixels, implement and improve the performance of image segmentation. The results of simulation show that the algorithm neuralnetwork can better achieve the image segmentation, compared with the traditional method. Key word :Image segmentation;Neural Network;Genetic algorithm;Genetic optimization 一、遗传算法 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

图像分割的遗传算法操作

基于有监督分类的地物识别 姓名:周钟娜学号:SA04006104 一实验原理: 图像识别是计算机视觉研究中一个重要而困难的任务。常用的方法很多,有统计模式识别,集群分类等等。其中统计模式识别是根据统计规律进行推测、判断,得出结论。句法模式识别是按照句法分析方法进行判别。图像识别还可以根据有无监督分为有监督分类和无监督分类。有监督分类是有已知训练样本,要通过学习,得出样本的特征和规律等信息,再根据这些信息对图像进行分类识别。无监督分类则没有已知样本,是基于物以类聚来分类。 图像识别方法还可以分为参数方法和非参数方法。参数方法是假设已知函数形式,只要求出其待定的参数。非参数方法没有函数形式,通常用邻近方法来判断。 模式识别的一般步骤如图1所示: 图1 模式识别的一般步骤 下图2所示为监督分类基本步骤。 图2 监督分类基本步骤

二实验步骤 本实验使用的软件环境为Visual C++,采用有监督分类的方法对遥感图像的地物进行识别。使用的源图像为同一区域的12幅遥感综合图象(n1~n12), 并有该地区各类地貌实况数据_图(GT)。 具体步骤如下: 1.事先在GT图中选取一部分作为样本,以图像格式保存在名字为yb.bmp的 文件中。打开该文件,将样本中各类的点分别存在一数组内。 2.分别读入12幅遥感综合图象。 3.样本学习。将每一类的点计算其对应在12幅遥感综合图象中的灰度平均 值。确定迭代次数为5次,则各类的平均灰度趋于稳定。本实验图像中共有7类地物,每类地物在12幅遥感综合图象各有其灰度平均值。 4.分类。将得到的稳定的平均灰度值作为参考值,对每一个点都进行如下计 算:首先计算其在每幅遥感综合图象中的灰度值与每一类灰度平均值的差值,每类对应有12个差值;再将各类的12个差值归一化,即除以对应的灰度平均值;将各类对应归一化的12个差值分别相加,最后选取差值和最小的那一类作为该点的类别,如果差值过大,则认为不属于以上7类。 5.如果该点在12幅遥感综合图象的灰度值均为0则认为该点是水域(海洋 或湖泊)。 三实验结果 采用的原始样本如图3所示,样本学习得到的各地物在各光谱波段的灰度均值在本文末页,根据学习训练得到全图的地物分布如图4所示。 图3 各区域样本图4 实验结果 实验结果图像中,蓝色为水体,黑色部分不属于要分的7类,红色部分为冻土地和苔原,黄色部分为山林,白色部分为草地,绿色部分为灌木,紫色部分为混合农作物,草绿色部分为无作物区域。从结果可以看出分割的效果还比较理想。

遗传算法在图像处理中的应用

. . 课程:新技术讲座 题目:遗传算法在图像处理中的应用姓名: 学号:

目录 摘要 (2) 1.引言 (3) 2.遗传算法的基本原理和基本性质 (3) 3.遗传算法在图像处理中的应用 (5) 3.1在图像增强中的应用 (5) 3.2在图像恢复中的应用 (6) 3.3在图像分割中的应用 (7) 3.4在图像压缩中的应用 (8) 3.5在图像匹配中的应用 (9) 4.遗传算法在图像处理中的问题及发展方向 (10) 参考文献 (10)

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism, random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving complex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in computer science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on Genetic Algorithm in digital image processing.Moreover,it studies the problems of the Genetic Algorithm in the field of image processing and the direction of development in the future,Moreover,the author elaborates the personal opinion in the end. keyword :Genetic Algorithm,Digital image processing

使用卷积神经网络的图像样式转换

《使用卷积神经网络的图像样式转换的研究》 院系信息工程学院 专业电子与通信工程 班级信研163 提交时间:2016年11月28日

使用卷积神经网络的图像样式转换的研究 湖北省武汉,430070 摘要:以不同的风格样式渲染图像的内容一直都是一个十分困难的图像处理任务。也可以说,以前主要限制因素是不知如何明确表示内容信息。在这里我们使用图像表示导出优化的能够识别对象的卷积神经网络,这使得高级图像信息显示。我们引入了一种可以分离和重组自然图像的图像内容和艺术风格的神经算法。这个算法允许我们生成高质量的新目标图像,它能将任意照片的内容与许多众所周知的艺术品的风格相结合。我们的结果提供了对卷积神经网络学习的深度图像表示的新理解,并且展示了他们的高水平图像合成和操纵的能力。 关键词:卷积神经网络;图像处理;神经算法 The Study of Image Style Transfer Using Convolutional Neural Networks LiWenxing School of Science,Wuhan University of Technology,Wuhan 430070,China Abstract: Rendering the content of an image in a different style has always been a difficult image processing task. It can also be said that the main limiting factor in the past is that I do not know how to clearly express the content information. Here we use an image representation to derive an optimized, object-aware convolutional neural network, which allows advanced image information to be displayed. We introduce a neural algorithm that can separate and reconstruct the image content and artistic style of natural images. This algorithm allows us to generate high-quality new target images that combine the content of any photo with the style of many well-known works of art. Our results provide a new understanding of the depth image representation of convolution neural network learning and demonstrate their ability to synthesize and manipulate high-level images. Keywords: Convolutional Neural Network;Image Processing;Neural algorithm

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

基于卷积神经网络的图像复原(一改)

基于卷积神经网络的图像复原技术 摘要 数字图像的处理就是将图像的信号转换成为数字格式,并用计算机进行加工和处理的过程。图像复原是数字图像处理领域一个重要的研究方向,它是指去除或减轻在数字图像过程中发生的图像质量下降(退化),这些退化包括由光学系统、运动等造成的图像模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像,图像数字化包括量化和取样。 图像复原的基本思路:预先建立图像退化的数学模型,然后对退化图像进行拟合。图像的复原模型可以用连续数学和离散数学处理,预处理项的实现可在空间域卷积,或在频域相乘。 经典的图像复原方法有逆滤波法、卡尔曼滤波法。奇异值分解伪逆法、最大熵复原法等等,这些要么面临着高维方程的计算问题,要么要求恢复过程必须满足广义平稳过程假设,这些大大降低了图像复原广泛的应用。而神经网络以其强大的自学习、强鲁棒性、自适应性以及并行处理方面的优势被广泛运用到各个领域。 本文从卷积神经网络的基本概念和算法出发,深入研究卷积神经网络理论, 旨在传统的神经网络结构基础上改进其固定结构,并基于此理论算法进一步开展图像复原的深入研究。 (1)首先,简单介绍人工神经网络与卷积神经网络国内外研究现状以及其 基本概念和基本原理,阐述其基本结构和网络参数,指出目前卷积神经网络的优缺点。 (2)为了验证卷积神经网络对图像复原的优越性,本文将列举一些传统图像复原前后图片以突出卷积神经网络的优越,此外设计了适应本系统的卷积核和激励函数。并通过实验证明了卷积神经网络比传统模式识别方法更高效的识别性能。 (3)针对传统卷积神经网络缺乏对于具体问题的网络配置设计理论,网络

遗传算法的数据挖掘综述

基于遗传算法的数据挖掘综述 朱玲 (江西理工大学信息工程学院,赣州市中国 341000) 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘;遗传算法 Data Mining Based on Genetic Algorithm Zhu Ling (College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China 341000) Abstract:This paper defines the concept of genetic algorithm and the source of the theory, introduces the research direction and application field of genetic algorithm, explains the related concepts, coding rules, three main operators and fitness functions of genetic algorithm, describes the genetic algorithm calculation process and Parameter selection criteria, and in the given genetic algorithm based on the combination of practical applications to be explained. Key words: data mining; genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1] 发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结构对象的优化过程中显示出比传统优化方法更为独特的优势和良好的性能。它利用其生物进化和遗传的思想,所以它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是作用于由参数集进行了编码的个体上。此编码操作使遗传算法可以直接对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组解,采

基于遗传算法的图像分割

基于遗传算法的图像分割研究 摘要:遗传算法是对生物进化论中自然选择和遗传学机理中生物进化过程的模拟来计算最优解的方法。遗传算法具有众多的优点,如鲁棒性、并行性、自适应性和快速收敛,可以应用在图像处理技术领域中图像分割技术来确定分割阈值。图像分割是图像处理技术的研究对象之一,它对于图像特征提取、图像识别等图像处理技术等有着重要意义。主要研究基于遗传算法的图像分割效果,采用Matlab 软件进行仿真实验,对不同图像分割算法的效果进行比较。实验表明,遗传算法是处理图像分割的优秀算法,图像分割效果相比于传统的图像分割算法效果更佳。 关键词:图像分割; 阈值计算; 遗传算法; 图像特征 指导老师签名:

Study on Image segmentation based on genetic algorithm Abstract:Genetic algorithm is an optimal solution method of using natural selection in biological evolution and biological evolution in genetic mechanism. Genetic algorithm has many advantages such as robustness , parallel , adaptive , and fast convergence , can be used in the field of image processing to determine the threshold value. Image segmentation is one of the object s of image processing , it is meaningful to the image feature extraction , image recognition and other image processing technologies. The image segmentation effect based on genetic algorithm of using MATLAB software to simulate the different image segmentation algorithms and compare the result . Experiments indicate that the genetic algorithm is out standing to deal with the image segmentation ,the result s is more outstanding than traditional image segmentation algorithm. Keywords : image segmentation ;threshold computation ;genetic algorithm; image feature Signature of supervisor:

卷积神经网络

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经认知机。 Trotin 等人提出了动态构造神经认知机并自动降低闭值的方法[1],初始态的神经认知机各层的神经元数目设为零,然后会对于给定的应用找到合适的网络规模。在构造网络过程中,利用一个反馈信号来预测降低阈值的效果,再基于这种预测来调节阈值。他们指出这种自动阈值调节后的识别率与手工设置阈值的识别率相若,然而,上述反馈信号的具体机制并未给出,并且在他们后来的研究中承认这种自动阈值调节是很困难的【8】。 Hildebrandt将神经认知机看作是一种线性相关分类器,也通过修改阈值以使神经认知机成为最优的分类器。Lovell应用Hildebrandt的训练方法却没有成功。对此,Hildebrandt解释的是,该方法只能应用于输出层,而不能应用于网络的每一层。事实上,Hildebrandt没有考虑信息在网络传播中会逐层丢失。 Van Ooyen和Niehuis为提高神经认知机的区别能力引入了一个新的参数。事实上,该参数作为一种抑制信号,抑制了神经元对重复激励特征的激励。多数神经网络在权值中记忆训练信息。根据Hebb学习规则,某种特征训练的次数越多,在以后的识别过程中就越容易

基于遗传算法的图像分割

基于遗传算法的图像分割 摘要:图像分割是模式识别与图像分析的预处理阶段,是图像处理到图像分析的关键步骤,也是一种基本的计算机视觉技术,在图像识别与图像分析中具有重要的意义。本文介绍了图像分割的一般模型、基于阈值选取的图像分割方法,讨论了遗传算法的概念、实现过程、数学理论基础、特点、应用及发展前景。鉴于遗传算法的优化原理,提出了一种基于遗传算法的图像分割方法,该方法将遗传算法引入图像分割,利用遗传算法的快速寻优特点,优化了求解阈值的过程,极大地减少了计算量和存储空间。 关键词:遗传算法,图像分割,阈值 The Image Segmentation Based on Genetic Algorithm Abstract:Image segmentation, as the pretreatment of the pattern recognition and image analysis, as the key step of the image processing to image analysis, and also as one computer vision technology, is very important on image recognition and image analysis. This paper introduces the general model of image segmentation, and image segmentation method based on the threshold value, and discusses the concept, the realization process of genetic algorithm, mathematics theory foundation, characteristics, application and development prospect.In view of the optimization of genetic algorithm, this paper proposes a image segmentation method based on genetic algorithm, the genetic algorithm is introduced into image segmentation, the method using the fast optimization characteristics of genetic algorithm, optimization of the process of solving the threshold, greatly reduce the amount of calculation and storage space. Key words: genetic algorithm, image segmentation, threshold 1.引言 遗传算法是基于进化论自然选择机制的、并行的、统计的、随机化搜索方法。对此, 科学家进行了大量的研究工作,并成功地将 它们运用于各种类型的优化问题。在分割复 杂图像时,人们往往采用多参量进行信息融合,在多参量参与最优值的求取过程中,优 化计算是最重要的。把自然进化的特征应用 到计算机算法中,将能解决很多困难。遗传 算法的出现为解决这类问题提供了新而有效 的方法,它不仅可以得到全局最优解,而且 大量缩短了计算时间。 2.图像分割 2.1图像分割的一般模型 图像分割是依据图像的灰度、颜色或几 何性质将图像中具有特殊含义的不同区域区 分开来,这些区域是互不相交的,每一个区 域都满足特定区域的一致性。比如对同一物 体的图像,一般需要将图像中属于该物体的 像素(或物体特征像素点)从背景中分割出来,将属于不同物体的像素点分离开。分割出来的区域应该同时满足: 1、分割出来的图像区域具有均匀性。 2、分割出来的图像区域具有连通性。 3、相邻分割区域之间针对选定的某种差异显著性。 4、分割区域边界应该规整,同时保证边缘的空间定位精度。 假设一幅图像中所有像素的集合为F ,有关均匀性的假设为 P (.)。分割定义把F 划分为若干子集 {S1,S2,…,Sn},其中每个 子集都构成一个空间连通区域。以上四个条 件进行数学描述,即: 如果加强分割区域的均匀性约束,分割 区域很容易产生大量的空白和不规整的边缘;若过分强调分割后不同区域之间的性质差异,则会造成非同质区域的合并和丢失一部分有 意义的边界。图像分割和机器视觉界的研究

人工智能原理-基于Python语言和TensorFlow-卷积神经网络

人工智能原理: 基于Python语言和TensorFlow 张明 副教授

第六章:卷积神经网络 1.卷积神经网络 2.卷积神经网络的模型架构 3.卷积运算 4.卷积常见层 5.TensorFlow和图像 6.模型训练 7.模型评估 8.多GPU的模型训练

6.1:卷积神经网络 应用:是深度学习技术中极具代表的网络结构之一,属于人工神经网络的一种。它在许多最新的神经网络模型中都有具体的应用,并被应用于多个实际领域中,其中应用最频繁,也是应用最成功的领域就是图像处理。在国际标准的ImageNet数据集上,许多成功的模型都是基于卷积神经网络的应用。 优点:卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的一个卷积层中,通常包含了若干个特征平面,每个特征平面都是由一些矩形排列的神经元所构成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核带来的直接好处就是减少了网络中各层之间的连接,同时又降低了过拟合的风险。子采样层也叫作池化,通常有均值子采样和最大值子采样两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型的复杂度,减少了模型的参数。

6.1:卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,属于人工神经网络的一种。其应用最成功的领域就是图像处理。在国际标准的ImageNet数据集上,许多成功的模型都是基于卷积神经网络的应用。 卷积神经网络相较于传统的图像处理算法的优点在与避免了对图像处理时复杂的前期预处理过程(提取人工特征等),可以直接输入原始图像。

相关文档
最新文档