伺服液压缸和普通液压缸的区别

伺服液压缸和普通液压缸的区别
伺服液压缸和普通液压缸的区别

两者的设计思路和用途不同。普通缸主要作往复运动,某些有定位功能;伺服缸是为控制设计的,更看重动态性能。楼上挺幽默,在液压中控制元件是阀,动力元件是泵,缸和马达属于执行元件。

懂伺服,国内像704所等伺服阀做的也还行,伺服液压的核心是控制不是液压,只是因为液压是传动功率体积比最大的方式,更符合大力带小负载(相对),提高响应的原则才选择了液压传动,其实伺服液压跟伺服电机什么的都类似,重点是在控制上。当今液压系统的核心问题是提高传动效率,节能,所以才有什么负载敏感,闭式系统的出现,而伺服系统是典型的低效率系统,以效率换动态响应,正好相反,当然伺服系统也希望效率越高越好。各位可以好好看看机械手册,液压和伺服液压明显是两大块,就是因为二者的侧重点完全不同。东西并不是看上去相似就没多大区别,就像有翅膀的不一定是天使,也可能是鸟人。

两者的设计思路和用途不同。普通缸主要作往复运动,某些有定位功能;伺服缸是为控制设计的,更看重动态性能。楼上挺幽默,在液压中控制元件是阀,动力元件是泵,缸和马达属于执行元件。

伺服缸要考虑磨擦力,在伺服系统中它影响了系统的动态响应,控制精度,稳定性等等

在伺服缸设计中要选取用低磨擦系数的密封件,而运动面要比普通的更加精密。

电液伺服控制系统工作原理

电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液力(或力矩)控制系统。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。

电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

电液伺服控制系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量地变化而变化,输出功率却被大幅度地放大。

液压缸的组成:基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置和排气装置五部分组成。

伺服液压缸的要求

低摩擦、无爬行、有较高的频率响应。低内外泄露。通常对其摩擦副作特殊处理。

钢筒:内摩擦面镀硬铬后抛光或精密衍磨。

活塞密封:用玻璃微珠填充的聚乙烯制的O型圈。

活塞杆密封:用丁腈橡胶制预加唇形密封圈,也有用内圆带很小圆锥度的导向套静动压密封圈。

活塞缸导向套:用高耐磨和高硬度的Fe3N铸铁。

防尘圈:用双金属型,并预先衍磨成刃口型。

油管:伺服阀与液压缸之间的油管用过渡块内直接钻孔的通道和预装的厚壁刚性短管。

伺服液压系统细节处理

勃特克boatke液压油泵5个主要性能参数 1、压力 压力可分为工作压力、额定压力和最高压力等。 ①工作压力是指液压泵(或马达)在实际工作时输出(输入)油液的压力,工作压力由外负载决定。 ②额定压力是指液压泵(或马达)在正常工作条件下,按试验标准规定能连续运转的最高压力,其大小受液压泵(或马达)寿命限制,当工作压力大于额定压力时称为超载。 ③最高压力是指液压泵(或马达)的可靠性寿命和泄漏所允许的最高间断压力,其作用时间不超过全部工作时间的1%~2%,该压力由溢流阀设定通常情况下,液压泵(或马达)的工作压力不等于其额定压力。 2、转速 转速(r/min)可分为工作转速、额定转速、最高转速和最低稳定转速等。 ①工作转速是指在工作时液压泵(或马达)的实际转动速度。 ②额定转速是指在额定压力下,液压泵(或马达)能连续长时间运转的最高转速。即当转速超过该转速后,液压泵(或马达)将造成吸油不足,产生振动和噪声,会遭受气蚀损伤,寿命降低。 ③最高转速是指液压泵(或马达)不受异常损坏的情况下不可超越的最高转速极限。 ④最低稳定转速是指马达正常运转所允许的最低转速。 液压油泵(或马达)的转速能力受到流量和旋转组件机械负荷的影响,它是排量和压力的函数,一般情况下,当压力降低或排量减小时,液压泵(或马达)的转速能力提高。 在同等压力条件下,转速随排量减小而增加,到最小排量(不一定是零排量)与全排量之间的某一排量时达到极限值不再增加。在小排量最高转速下,液压泵(或马达)的旋转组件惯性力附加载荷极大,可能使液压泵(或马达)破坏或使转动处形成极限润滑状态而加剧磨损。 在额定转速以下,液压泵(或马达)的使用寿命和传动效率对转速变化不如对压力变化那样敏感,因此从提高液压泵(或马达)功率利用率、降低成本角度考虑,选用额定转速作为匹配转速是适宜的。 3、排量

液压缸结构图示共12页

液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端 盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 3.2.1.2 缸筒、端盖和导向套的基本要求 缸 筒 是 液 压 缸 的 主 体, 其 内 孔 一 般 采 用 镗 削、 绞 孔、 滚 压 或 珩 磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要 承受很大的液压力,因此,应具有足够的强度和刚度。

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

伺服液压缸和普通液压缸的区别

两者的设计思路和用途不同。普通缸主要作往复运动,某些有定位功能;伺服缸是为控制设计的,更看重动态性能。楼上挺幽默,在液压中控制元件是阀,动力元件是泵,缸和马达属于执行元件。 懂伺服,国内像704所等伺服阀做的也还行,伺服液压的核心是控制不是液压,只是因为液压是传动功率体积比最大的方式,更符合大力带小负载(相对),提高响应的原则才选择了液压传动,其实伺服液压跟伺服电机什么的都类似,重点是在控制上。当今液压系统的核心问题是提高传动效率,节能,所以才有什么负载敏感,闭式系统的出现,而伺服系统是典型的低效率系统,以效率换动态响应,正好相反,当然伺服系统也希望效率越高越好。各位可以好好看看机械手册,液压和伺服液压明显是两大块,就是因为二者的侧重点完全不同。东西并不是看上去相似就没多大区别,就像有翅膀的不一定是天使,也可能是鸟人。 两者的设计思路和用途不同。普通缸主要作往复运动,某些有定位功能;伺服缸是为控制设计的,更看重动态性能。楼上挺幽默,在液压中控制元件是阀,动力元件是泵,缸和马达属于执行元件。 伺服缸要考虑磨擦力,在伺服系统中它影响了系统的动态响应,控制精度,稳定性等等 在伺服缸设计中要选取用低磨擦系数的密封件,而运动面要比普通的更加精密。 电液伺服控制系统工作原理 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液力(或力矩)控制系统。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 电液伺服控制系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量地变化而变化,输出功率却被大幅度地放大。 液压缸的组成:基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置和排气装置五部分组成。 伺服液压缸的要求 低摩擦、无爬行、有较高的频率响应。低内外泄露。通常对其摩擦副作特殊处理。 钢筒:内摩擦面镀硬铬后抛光或精密衍磨。 活塞密封:用玻璃微珠填充的聚乙烯制的O型圈。 活塞杆密封:用丁腈橡胶制预加唇形密封圈,也有用内圆带很小圆锥度的导向套静动压密封圈。

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

液压油缸设计

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。— 液压缸工作腔的压力(Pa ) 错误!未找到引用源。— 液压缸回油腔的压力(Pa ) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径 F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: ()212 1212 4F d p D p p p p π=---有杆腔进油并不考虑机械效率时: ()221 1212 4F d p D p p p p π=+--

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F 工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。 F/N v/mm·s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 -38 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

液压缸课程设计.docx

河南理工大学机械学院 课程设计说明书 题目名称:单柱压力机的液压缸设计 学院:机械与力工程学院 班:机11-1 姓名:邱 学号:3 指教:刘俊利 目录 一、程的目的及要求?????????????? 二、程内容及参数确定????????????? 三、液缸主要尺寸的确定??????????????? 四、液缸的密封???????????????? 五、支承向的????????????????? 六、防圈的?????????????????? 七、液缸材料的用???????????????? 八、程?????????????????? 九、参考文献?????????????????????

说明书 一、课程设计的目的 油缸是液压传动系统中实现往复运动和小于 360°回摆运动的液 压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程 机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重 机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高 装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸 式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发 射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以, 研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对 于更好的利用液压传动具有十分重要的意 义。 设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书 所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工 整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得 出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。 说明书的最后要附上草图。

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

液压缸结构图示

创作编号:BG7531400019813488897SX 创作者:别如克* 液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一

焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式 用于要求外形尺寸小、重量轻的场合。

液压伺服系统设计

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 4.1 全面理解设计要求 4.1.1 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 4.1.2 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 4.1.3 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有

液压缸结构图示

液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分 组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、 缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

· (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 · 3.2.1.2 缸筒、端盖和导向套的基本要求 ·缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。

MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

双作用液压缸的设计与控制

中原工学院机电学院 机电系统综合实验 (2016-2017学年第 1 学期) 专业:机械电子工程 题目:可伸缩伺服液压缸 姓名:程方园 学号:2 班级机电131 指导教师:周高峰崔路军 完成日期:2017 年 1 月12 日 机械电子工程系

目录 设计任务书 (3) 1.设计目的与意义 (4) 2. 设计内容和要求 (4) 2.1确定总体方案 (4) 2.2设计内容 (5) 2.3设计要求 (5) 3.设计进度安排 (5) 4.机电系统设计的分析、计算、选用与说明 (5) 4.1机械设计 (5) 4.1.1液压缸的结构设计 (5) 4.1.2、液压缸的主要技术性能参数的计算 (6) 4.1.4、液压缸主油缸的设计计算 (8) 4.1.5、缸体的材料和技术要求 (11) 4.1.6、活塞杆径的计算与校核 (11) 4.1.7、快速液压缸柱塞直径的计算 (13) 4.1.8、缸盖的设计计算 (13) 4.1.9、液压缸油口的直径计算 (14) 4.1.10、导向套的设计计算 (15) e.内孔中的环形油槽和直油槽要浅而宽,保证润滑条件良好 (15) 4.2液压回路设计 (16) 4.3电路设计 (16) 4.4控制设计 (17) 5. 机电综合课程设计结论 (17) 6.机电综合课程设计的收获、体会和建议 (17) 7. 参考文献 (18) 8.附录 (18)

设计任务书

可伸缩伺服液压缸设计与控制 1.设计目的与意义 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构, 起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 2.设计内容和要求 1)理解可伸缩伺服液压缸的功能和工作原理,确定其功能参数; 2)明确可伸缩伺服液压缸的具体结构和控制方式,并给出相关参数; 3)分析和计算可伸缩伺服液压缸机械结构,并确定控制的具体实现。 4)绘制可伸缩伺服液压缸机械图纸和电气电子线路图; 5)撰写技术说明书 2.1确定总体方案 当下各种液压缸规格品种比较少,主要是因各种机械对液压缸的要求差别太大。比如对液压缸的内径、活塞杆直径、液压缸的行程和连接方式等要求不一样。由于本次液压设计主要是实现立式快速的原则,故选双作用单活塞杆立式快速液压缸的设计。采用焊接连接。

液压油缸标准尺寸表

一、液压油缸定义 液压油缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 二、液压油缸型号尺寸有: 1、常用的标准有Φ140/100-800其含义是缸(直)径(内径)为140,杆径为100,行程为800。一般注明缸径,杆径,行程,连接方式,安装距离,工称压力,生产时间,出厂编号等。 2、180/150/125/100427019MPa50-75吨;缸筒材料采用45#或强度相当的材料,安全余量大;密封圈采用日本华尔卡产品;零部件采用数控机床加工,精度易于得到有效保证,生产质量一致性好。 3、三级、四级液压缸;额定工作压力19MPa;行程3880~6200mm;最大伸出套筒直径为195mm;油缸推力20-56吨,适用车载40-85吨。采用高端的三维设计及仿真软件进行油缸的设计,校核油缸关键部位的强度,进行液压系统及流场的仿真。 三、液压油缸型主要尺寸的确定 (1)缸筒直径的确定

根据公式:F=P×A,由活塞所需要的推力F和工作压力P可求得活塞的有效面积A,进一步根据油缸的不同结构形式,计算缸筒的直径D。 (2)活塞杆尺寸的选取 活塞杆的直径d,按工作时的受力情况来确定。根据表4-2来确定。 (3)油缸长度的确定 油缸筒长度=活塞行程+活塞长度+活塞导向长度+活塞杆密封及导向 长度+其它长度。活塞长度=(0.6—1)D;活塞杆导向长度=(0.6—1.5)d。其它长度指一些特殊的需要长度,如:两端的缓冲装置长度等。某些单活塞杆油缸油时提出最小导向程度的要求,如:H≥L/20+D/2。

液压缸结构图急

课程目录 3 . 2 液压缸的结构 ? 3.2 液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、 前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

3 . 2 . 1 缸体组件 3 . 2 . 1 . 1 缸筒 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结 构具体分析。 3.2.1 缸体组件 ? 缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。

与端盖的连接形式 3 . 2 . 1 . 2 缸筒、端盖(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖 的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外 形尺寸小、重量轻的场合。 ?

《液压伺服控制》(王春行版)课后题答案

第二章 液压放大元件 习题 1. 有一零开口全周通油的四边滑阀,其直径m d 3 108-?=,径向间隙m r c 6105-?=,供油压力Pa p s 51070?=,采用10号航空液压油在40C ?工作,流量系数62.0=d C ,求阀的零位系数。s pa ??=-2104.1μ3/870m kg =ρ 解:对于全开口的阀,d W π= 由零开口四边滑阀零位系数 s m p w C K s d q /4.1870/107010814.362.02530=????=?=-ρ ()s p m r K a c c ??=???????=?=----/104.410 4.13210814.310514.3323 122 3620μπ m p K K r p C K a c q c s d p /1018.332110 02 0?== ?= πρ μ 2. 已知一正开口量m U 3 1005.0-?=的四边滑阀,在供油压力Pa p s 51070?=下测得零位泄漏流量min /5L q c =,求阀的三个零位系数。 解:正开口四边滑阀零位系数ρ s d q p w c k 20= s s d co p p wu c k ρ = ρ s d c p wu c q 2= s m q K c q /67.11005.060/1052 3 30 =??==--ν s a s c c p m p q K ?--?=???==/1095.51070260/10523125 30 m p K K K a c q p /1081.2110 00?==

3. 一零开口全周通油的四边滑阀,其直径m d 3 108-?=,供油压力Pa p s 510210?=,最大开口量m x m 30105.0-?=,求最大空载稳态液动力。 解:全开口的阀d W π= 最大空载液动力: 4.11310 5.010********.343.043.035300=???????=??=--?m s s x p W F 4. 有一阀控系统,阀为零开口四边滑阀,供油压力Pa p s 510210?=,系统稳定性要求阀的流量增益s m K q /072.22 0=,试设计计算滑阀的直径d 的最大开口量m x 0。计算时取流量系数62.0=d C ,油液密度3 /870m kg =ρ。 解:零开口四边滑阀的流量增益: 870 /1021014.362.0072.25 0????=??=d p W C K s d q ρ 故m d 3 1085.6-?= 全周开口滑阀不产生流量饱和条件 67max >v X W mm X om 32.0=

液压油缸标准尺寸表

液压油缸一般指液压缸,液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 液压油缸主要应用于机械中,是工程机械最主要部件,主要是为机械提供动力的重要核心元件。 液压油缸型号的选择,主要是看液压油缸内径,以及其使用压力这两个。如果,其推力是为4吨,其使用压力是为8MPa,那么,其型号可以表示为80*40*300-8MPa。如果,油缸内径为60,使用压力为16MPa,那么,型号表示是为60*35*300-16MPa。 常用的标准有Φ140/100-800其含义是缸(直)径(内径)为140,杆径为100,行程为800。 液压油缸:根据《2013-2017年中国液压油缸行业产销需求预测与转型升级分析报告》统计,2010年我国液压行业实现产值351.13亿元,同比增长33.29%。我国的液压工业经过近50年的发展,已具有相当生产实力和技术水平,可基本满足经济发展的一般需求,其中重大成套装备的配套率已达到60%以上。尤其是近10年来下游行业的快速成长,积极推动了液压行业的成长。油缸是我国液压产品中比较成熟的产品之一。行业保持多年快速增长,已经形成了较为成熟

的供需链,具备了较大的市场规模。前瞻网数据显示,我国液压油缸行业销售收入由2005年的31亿元增长至2010年的近110亿元,5年复合增长率为28.83%。但是,和液压行业相同,油缸占全国工业总产值的比例仍较低,远低于国外发达国家水平。同时,我国具有市场需求旺盛、成本低等优势,预计未来将成为世界液压行业和油缸行业的重心。

相关文档
最新文档