基于组态王的单容水箱液位控制系统

基于组态王的单容水箱液位控制系统
基于组态王的单容水箱液位控制系统

内蒙古科技大学信息工程学院测控专业毕业实习报告

题目:基于组态王的单容水箱液位控制系统

学生姓名:

学号:

专业:测控技术与仪器

班级:测控2009-1

指导教师:李文涛教授

前言

随着科学技术的发展,现代工业生产中的控制问题也日趋复杂。在人们的生活中以及某些化工和能源的生产过程中,常常涉及一些液位或流量控制的问题。比如,在石油、化工、轻工等工业生产过程中,有许多贮罐作为原料、半成品的贮液罐,前一道工序的成品或半成品不断地流入下一道工序的贮液罐进行加工和处理,为保证生产过程能连续进行,必须对贮罐的液位进行控制。此外,居民生活用水的供应,通常需要使用蓄水池,蓄水池中的液位需要维持合适的高度。还有一些水处理的过程也需要对蓄水池中的液位实施控制。这些实际问题都可以抽象为某种水箱的液位控制。因此,液位控制系统是过程控制的重要研究模型,对液位控制系统的研究具有显著的理论和实际意义。

本课题主要以单容水箱作为研究对象,运用研华PCI1710及1720板卡进行单容水箱对象特性的测试,从而求得其数学模型,并利用MATLAB软件进行了控制系统的仿真及分析,并确定出一组合适的PID参数对其进行控制。其次,采用组态王进行系统监控,通过对调节器PID参数的整定,实现了水箱液位的闭环控制,使水箱液位稳定在设定值,满足设计要求。

一、总体方案设计

该设计方案硬件部分由计算机,水泵,电磁阀,液位变送器,PCI-1710与1720板卡组成,软件部分以组态王来实现编程控制。组态王通过从 PCI-1710与1720板卡两个I/ O模块与外界硬件设备通讯,对采集的数据进行处理来实时监控。系统启动后,水泵由水源抽水,通过管道将水送到上水箱,液位变送器测得水箱液位通过板卡PCI-1710转换为数字信号输入计算机,组态监控中心对测得信号进行处理,通过PID运算,输出控制信号由板卡PCI-1720进行D/A转换,传送给电磁阀,进而控制水的流量实现对水箱液位控制。系统方框图如图1.1所示。

图1.1系统方框图

二、单容水箱对象特性测试及分析

2.1被控对象动态特性概述

被控对象的动态特性是指被控对象的输入发生变化时,其输出(被调量)随时间变化的规律。研究动态特性的原因是控制系统的设计方案都是依据被控对象的动态特性进行的,特别是调节器参数的整定也是依据对象的动态特性进行的。从控制观点看,被控对象本质上都有相同之处,分析被控对象的动态特性,可知被控对象控制的难易程度与调节过程的快慢。要评价一个系统的工作质量,只看稳态是不够的,还应看动态过程中被调量随时间的变化情况。因此,研究系统的动态特性就显得特别重要。

2.2被控对象数学模型的建立

建立被控对象数学模型的方法主要有三种,分别是机理法、实验法、机理法与实验法相结合的混合法。机理法根据被控过程的内部机理,运用已知的静态或动态平衡关系,用数学解析的方法求取被控过程的数学模型。实验法是先给被控过程人为地施加一个输入作用,然后记录过程的输出变化量,得到一系列实验数据或曲线,最后再根据输入-输出实验数据确定其模型的结构(包括模型形式、阶次与纯滞后时间等)与模型的参数。混合法是机理演绎法与实验辩识法相互交替使用的一种方法。

2.2.1机理法建立单容水箱的数学模型

从机理出发,依据物料平衡和能量平衡的关系,用理论的方法推导被控对象的数学模型。单容水箱的模型如下图2.1所示:

图2.1单容水箱模型图

其中:被控参数--h ;输入量--Qi ;干扰量--Qo

分析水位在调节阀1开度扰动下的动态特性,即确定h ~Qi 之间的数学关系 根据动态物料平衡关系,在任何时刻水位的变化均满足 在起始的稳定平衡工况下有如下关系式: (式2-1)

(式2-2)

两式相减得增量形式的平衡方程: (式2-3)

假设

(式2-4)

则单容液位过程的微分方程增量式

Q R h dt

h

d RA

?=?+? (式2-5)

传递函数为

1

1)()()(+=

+==

Ts R

RCs R s Q s H s G i (式2-6) T--被控过程的时间常数T=RC; K--被控过程的放大系数,K=R; C--被控过程的容量系数,C=A

有些被控过程存在纯滞后,则具有纯滞后的单容过程相应的传递函数为

s

i e Ts K s Q s H s G 01

)()()(τ-+==

(式2-7) 其阶跃响应曲线与无滞后的曲线形状相同,只是在时间上推迟了0τ。

由此可见,用机理法建立数学模型的首要条件是被控过程的机理必须为人们充分掌握,并且可以比较确切的加以数学描写。考虑到参数测量的准确性与复杂性,排除机理法的使用。

2.2.2阶跃响应曲线法建立单容水箱的数学模型

阶跃响应曲线法是实验法的一种,即对被控对象施加一阶跃信号,并且阶跃响

()o i Q Q A

dt dh -=1

()

00

1

0o i

Q Q A

-=

()o i Q Q A

dt h d ?-?=?1

R

h

Q o ?=

?

应获取应注意以下的问题:(1)合理选择阶跃扰动的幅度(一般约为额定负荷的10%~20%)(2)实际阀门只能以有限速度移动(3)一般认为阶跃信号是在t1 /2时加入(4)试验前确保被控对象处于稳定工况(5)考虑过程的非线性特性,应进行多次测试。(6)若过程不允许同一方向扰动加入,则采用矩形脉冲扰动,可从脉冲响应曲线求出所需的阶跃响应。

根据以上原则,经过多次测量,得出在阶跃扰动为稳态值的10%时,时间与液位高度的对应关系如下表2.1所示(t=10输出无变化):

表2.1液位过程的阶跃响应数据

由于是单容水箱,则其数学模型可以用一阶惯性环节加纯延迟的传递函数即

()s e T K

s G τ-+=

1

s (式2-8) 来近似,确定参数k 、T 、τ有两种方法:作图法、参数两点法。

用作图法求参数时需注意:(1)t1/2处为扰动起点(2)在s 型响应曲线

找拐点,并作切线。T 、τ值如下且x

y k ?=

t

Y

图2.2(a )阶跃信号 图2.2(b )一阶惯性环节加纯延迟

显然,用这种方法求直线效果是很差的。首先,与式(2-8)所对应的阶跃响应是一条向后平移了τ时刻的指数曲线,它不可能完美的拟合成S 型的曲线,再次,在做图中,切线的画法也有很大的随意性,这将直接关系到τ和T 的取值,

因此,参数的确定排除用此方法,选用参数两点法,首先,将响应曲线标幺

)

()

(*∞=

y t y y (式2-9) (式2-10) ()?????

*

0t <τy t =t -τ

取y*(t1)=0.39,取y*(t2)=0.63,记t1和t2

则)(212t t T -= (式2-11) 212t t -=τ (式2-12) 取τ+=T t 8.03 τ+=T t 24 验证55.0)(3*=t y 87.0)(4*=t y

基于以上原理,用Matlab 编程,程序见附录[A],并且在误差的范围之内,可以接受。则数学模型为:s e s S G 581

13720

)(-+=

(式2-13)

2.2.3利用simulink 工具箱验证模型的准确性

在matlab 中打开simulink ,编写以下程序并在命令窗口对曲线进行处理,程序见附录[A]:

图2.3 广义对象阶跃响应框图

则用数据拟合出的曲线(原系统)与建立模型后的曲线(近似曲线)如下图2.4所示:

100

200

300400

500

600

t/s

h /m m

单容水箱阶跃响应曲线对比

图2.4 单容水箱阶跃响应曲线对比

2.2.4 PID控制器校正单容水箱系统

利用Simulink仿真模块集在模型编辑窗口建立PID控制器,如下图2.5所

示:

图2.5 PID控制子模块

之后,点击Edit—Mask Subsystem,对其进行封装。其封装图如图2.6所示。

图2.6 PID控制器的封装

加入PID调节器后,系统方框图如下图2.7所示:

图2.7系统方框图

此后,反复调试PID参数,得到如下较为理想的曲线。因为微分对纯延迟环

.

节不起作用,则纯延迟部分始终无法消除,其参数设计如图2.8所示

图2.8 PID参数

对应的阶跃响应曲线如下图2.9所示。Array

0100200300400500600

图2.9 理想PID参数下的阶跃响应曲线

三、单容水箱监控画面的设计

3.1组态王设计步骤

建立新工程项目:在运行组态王程序时,弹出组态王工程管理器画面,此时建立一个新工程,执行以下的操作步骤:

(1)在工程管理器中选择菜单“文件/新建工程”,弹出“新建工程向导一欢迎使用本向导”对话框。

(2)点击“下一步”,弹出“新建工程向导二选择工程所在路径”对话框。从对话框中选择或指定工程所在路径,倘若用户需要更改工程路径,请单击“浏览”按钮;如果路径或文件夹不存在,请选择创建。

(3)点击“下一步”,弹出“新建工程向导三工程名称和描述”对话框。往对话框中输入工程名称:水箱液位控制界面。

(4)点击“完成”,再点击“是”,将新建的工程设为组态王当前工程,此时组态王工程管理器中出现新建的工程。

制作动态画面:按照实际工程的要求绘制监控画面,并使静态画面随着过程控制对象产生动态效果。

(1)新建画面命名:单容水箱液位控制,选择画面风格“大小可变”和“覆盖式”。单击确定后进入开发系统新画面进行设计。点击工具栏中的“打开图库”,选择需要的图素。水箱液位监控画面如图3.1所示。

图3.1 水箱液位监控画面

3.2动态画面的连接

画面设置完之后,要定义板卡及变量的信息,接下来就要实现动画的连接。

其中这部分连接包括仪表对象、当前液位值显示文本对象、实时趋势曲线、数据报表、报警窗口、退出界面等。连接之后,接下来就是编写命令语言。

3.3 水箱液位PID参数控制界面

用上述同样的方法可以对KP、KI、Kd、SV、UK、Pv后的”##”,进行动画连接。水箱液位PID参数控制界面运行画面如下图所示。

图3.2 水箱液位PID参数设置画面

总结

本设计用组态软件实现了水箱液位的监控,并且能够通过PID参数的设计达到控制液位的目的。本次毕业设计,增加了我对专业知识的认识和了解,尤其是过程控制和智能仪器知识的运用。经过大量相关资料的查阅,包括控制系统工作原理以及如何利用过程控制及智能调节器实现各种功能,我不仅学会了许多知识,而且培养了我独立解决问题的能力,同时在对硬件设计的过程中,巩固了我的专业课知识,使我受益匪浅。总之,通过本次设计不仅进一步强化了专业知识,还掌握了设计系统的方法、步骤等,为今后的工作和学习打下了坚实的基础。再者,我对Matlab比较感兴趣,并且经过上学期的学习有了一定的基础,上手比较容易,首先经过对资料的整理、理解和消化,我对自己的设计内容思路清晰了,仿真达到预期效果时,我就开始整理自己的思路,最终明确了参数的影响。达到了课设的目的。这次毕业设计不但巩固我所学的基础知识,而且提高我的动手能力和动脑能力。所以总的来说,这次毕业设计我学到很多!

参考文献

[1]李文涛.过程控制[M].北京:科学出版社,2012.

[2]雄伟.工控组态软件及应[M].北京:中国电力出版社,2011.

[3]PCI-1710/1710HG快速安装手册.

[4]潘海.基于组态王的水箱液位控制系统设计[J].科技资讯,2009(26).

[5]张玲霞,李学军,李杰.基于组态王的液位控制系统仿真实验[J].长春大学学报,2010(04).

[6]袁荣华,黄世钊,冯钏山,潘树林.基于组态王的水箱液位监控系统设计及测试[J].广西大学学报,2008(01).

[7]陈曦,丁跃浇,肖翀.基于PLC和组态王的单容水箱液位定值控制实验[J].湖南理工学院学报,2011(01).

[8]崔成梅,陈金艳,马永青.工业过程控制的模块化设计方法[J]. 黑龙江科技信息, 2008(17).

[9]石浩旭.基于组态王的远程过程控制系统的设计[J].科技致富向导, 2011(15).

[10]王树青.工业过程控制工程[M].北京:化学工业出版社,2003.

[11]吴祚武.液位控制系统[M].北京:化学工业出版社,2006.

[12]何玉樵.化工过程控制及仪表[M].成都:成都科技大学出版社 ,1991.

[13]邵世煌.计算机控制技术[M].北京: 纺织工业出版社,1991.

[14]关业伟,鲁凯生.组态王和MATLAB的DDE应用研究[J]. 船海工程, 2005(06).

[15]房向荣,施仁.组态王与智能仪器的动态数据交换[J].工业仪表与自动化装置,2005(03).

附录[A]

// 求取参数k、T、

tw=10;%输出无变化的时间

t=[10,20,40,60,80,100,140,180,250,300,400,500,600]-tw;

h=[0,2,8,20,36,54,88,118,144,166,184,192,196];

h=h/h(length(h));

h1=0.39;t1=interp1(h,t,h1)+tw;%利用一维线性插值计算h=0.39时的时间t1 h2=0.63;t2=interp1(h,t,h2)+tw;%利用一维线性插值计算h=0.63时的时间t2 T=2*(t2-t1),tao=2*t1-t2

得出:T =136.7077 tao =58.0462

t3=0.8T+tao=167.41236 t4=2T+tao=331.4616时

h3= interp1(t,h,167.41236)时得 0.5921而理论值为0.55

h4= interp1(t,h,331.4616)时得0.8850而理论值为0.87

k=200/10=20

//对曲线进行处理

tw=10;%输出无变化的时间

t1=[10,20,40,60,80,100,140,180,250,300,400,500,600]-tw;

h1=[0,2,8,20,36,54,88,118,144,166,184,192,196];

[t2,x2,h2]=sim('sy3_3_2',600);plot(t1,h1,t2,h2)

plot(t1,h1,':',t2,h2,'-')

legend('原系统','近似系统')

xlabel('t/s')

ylabel('h/mm')

title('单容水箱阶跃响应曲线对比')

grid

组态王-水箱水位控制

自动化应用软件实训

1 绪论 组态王Kingview是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业部的各种生产系统和应用以及信息交流汇集在一起,实现了最优化管理。适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定围。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。 2 系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 3 系统方案论证 整个供水系统可以抽象为原水箱和储水箱两个容器的液位控制。原水箱的水来自地下,储水箱的液位由水塔的水泵和储水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当注水阀和用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)围,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)围,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。水位高于80和低于30时,报警指示灯开始闪烁,提醒工作人员系统是否正常工作。这样便实现了单容水箱液位的自动控制。 4 系统监控界面设计 设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记录界面、历史曲线界面。 水箱水位监控界面如图4.1所示,实时曲线界面如图4.2所示,实时报表界

单容水箱液位控制报告

湖南工程学院 系统综合训练报告 目录 概述 二硬件介绍说明 (4)

2.1电动调节阀 (4) 2.2扩散硅压力液位变送器 (5) 2.2扩散硅压力液位变送器 (5) 2.4远程数据采集模块ICP-7017、ICP-7024面板 (5) 三.软件介绍说明 (7) 3.1工艺流程 (7) 3.2制作总体回路 (8) 3.2制作总体回路 (9) 四.调试结果与调试说明 (11) 4.1调试说明: (11) 4.2调试结果 (12) 五.实训心得12

第1 章系统总体方案 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。 1.1被控参数的选择 根据设计要求可知,水箱的液位要求保持在一恒定值。所以,可以直接选取水箱的液位作为被控参数。 1.2控制参数的选择 影响水箱液位有两个量,一是流入水箱的流量。二是流出水箱的流量。调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。 对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。 1.3调节阀的选择 在工程中,当系统的控制作用消失时,如果调节阀没有关闭则会造成水的浪费甚至出现事故,因此,需要关闭调节阀。故选择电动气开式调节阀。

基于组态王的单容水箱液位控制系统

内蒙古科技大学信息工程学院测控专业毕业实习报告 题目:基于组态王的单容水箱液位控制系统 学生姓名: 学号: 专业:测控技术与仪器 班级:测控2009-1 指导教师:李文涛教授

前言 随着科学技术的发展,现代工业生产中的控制问题也日趋复杂。在人们的生活中以及某些化工和能源的生产过程中,常常涉及一些液位或流量控制的问题。比如,在石油、化工、轻工等工业生产过程中,有许多贮罐作为原料、半成品的贮液罐,前一道工序的成品或半成品不断地流入下一道工序的贮液罐进行加工和处理,为保证生产过程能连续进行,必须对贮罐的液位进行控制。此外,居民生活用水的供应,通常需要使用蓄水池,蓄水池中的液位需要维持合适的高度。还有一些水处理的过程也需要对蓄水池中的液位实施控制。这些实际问题都可以抽象为某种水箱的液位控制。因此,液位控制系统是过程控制的重要研究模型,对液位控制系统的研究具有显著的理论和实际意义。 本课题主要以单容水箱作为研究对象,运用研华PCI1710及1720板卡进行单容水箱对象特性的测试,从而求得其数学模型,并利用MATLAB软件进行了控制系统的仿真及分析,并确定出一组合适的PID参数对其进行控制。其次,采用组态王进行系统监控,通过对调节器PID参数的整定,实现了水箱液位的闭环控制,使水箱液位稳定在设定值,满足设计要求。

一、总体方案设计 该设计方案硬件部分由计算机,水泵,电磁阀,液位变送器,PCI-1710与1720板卡组成,软件部分以组态王来实现编程控制。组态王通过从 PCI-1710与1720板卡两个I/ O模块与外界硬件设备通讯,对采集的数据进行处理来实时监控。系统启动后,水泵由水源抽水,通过管道将水送到上水箱,液位变送器测得水箱液位通过板卡PCI-1710转换为数字信号输入计算机,组态监控中心对测得信号进行处理,通过PID运算,输出控制信号由板卡PCI-1720进行D/A转换,传送给电磁阀,进而控制水的流量实现对水箱液位控制。系统方框图如图1.1所示。 图1.1系统方框图

组态王 储水箱液位控制

目录 1绪论 (1) 2系统需求分析 (1) 3系统方案论证 (1) 4系统监控界面设计 (1) 5数据字典设计 (4) 6动画连接 (5) 7储水箱液位控制程序 (7) 8心得体会 (9)

1绪论 组态王Kingview是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现了最优化管理。适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。 2系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 3系统方案论证 整个供水系统可以抽象为原水箱和储水箱两个容器的液位控制。原水箱的水来自地下,储水箱的液位由水塔的水泵和储水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当注水阀和用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。水位高于80和低于30时,报警指示灯开始闪烁,提醒工作人员系统是否正常工作。这样便实现了单容水箱液位的自动控制。 4系统监控界面设计 设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记

单容水箱液位定值控制实验

实验上水箱液位定值控制系统 一. 实验目的 1.了解闭环控制系统的结构与组成。 2.了解单闭环液位控制系统调节器参数的整定。 3.观察阶跃扰动对系统动态性能的影响。 二. 实验设备 1. THJ-2型高级过程控制系统装置 2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根 三. 实验原理 单回路控制系统的结构/方框图: 它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。系统的给定量是某一定值,要求系统的被控制量稳定至给定量。由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。 本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。系统的给定信号为一定值,它要求被控制量上水箱液位在稳定时等于给定值。由反馈控制的原理可知,应把上水箱的液位经传感检测作为反馈信号。其实验图如下:

过程:储水箱的水被抽出后经过电动调节阀调节进水量送给上水箱,经过LT1的测量变送使上水箱的液位反馈给LC1,LC1控制电动调节阀的开度进而控制入水流量,达到所需要的液位并保持稳定。 四.实验接线 其接线图为:图中LT2改接为LT1 五.实验内容及步骤 1.按图要求,完成系统的接线。 2.接通总电源和相关仪表的电源。 3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。 4.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。 5.启动计算机,运行MCGS组态软件软件,并进行下列实验: 设定其智能调节仪的参考参数为:SV=8cm;P=20;I=40;D=0;CF=0;ADDR=1;Sn=33;diH=50;dil=0;上水箱出水阀开度:45%。运行MCGS组态软件软件,并进行实验当实验数据稳定的同时记录的实验曲线如下图:

基于组态王的储液罐液位自动控制

自动化应用软件实训 专业:______ 自动化_______ 班级:动1101 姓名: __________________ 学号:— 指导教师:____________

基于组态王的储液罐液位自动控制系统 1任务要求 基于组态王的储液罐液位自动控制系统的要求:进水阀控制储液罐的水位,出水阀 控制主液箱的水位,排气阀用于保持储液罐内的压强与外界压强一致 ,储液罐与主液 箱设置的最大水位值为100。当储液罐水位<100时,出水阀打开,储液罐液位增加,直 到水位达到100;当主液箱水位<100并且储液罐液位不等于0时,出水阀打开,主液箱 水位增加,储液罐液位减少;当主液箱水位 <100时,出水阀打开,主液箱液位增加, 直到水位达到100;当用户打开水龙头时,主液箱液位减少,出水阀打开,储液罐液位 减少,进水阀打开,储液罐液位增加,如此循环。 2界面设计 2.1新建工程 打开组态王首先新建立工程“课程工程”,进入画面界面,进入画面界面,点击新 建工程画面,进入开发系统界面,确定背景属性。如图 1所示 图1建立工程 22主监控界面设计 打开“控制中心”画面,调用所需要的器件,然后调整好各器件的位置,进行相应 的管道连接,使得整个画面安排合理、紧凑。如图 2所示。 I 字凰 C0M1 COM2 COM3 悔 DDE 实时鶴吨 捱薛匚

图2储蓄罐液位自动控制系统主监控界面 2.3实时趋势曲线设计 新建画面,调用实时趋势曲线,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.4历史趋势曲线设计 新建画面,调用历史趋势曲线,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.5实时报警设计 新建画面,调用报警窗口,选择实时报警窗,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.6历史报警设计 新建画面,调用报警窗口,选择历史报警窗,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.7报表设计 新建画面,调用报表窗口,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 3数据字典设计 选中数据字典,然后双击新建来定义变量,按要求定义相应的变量,并注意其变量类型及其后续设置。最后结果如图3所示。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

实验报告:单容液位定值控制系统实验报告

过程控制综合实验报告实验名称:单容液位定值控制系统 专业:电气工程 班级: 姓名: 学号:

实验方案 一、实验名称:单容液位定值控制系统 二、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 三、实验原理 本实验系统结构图和方框图如图1所示。被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制(本次实验我组采用的是PI控制)。

(a)结构图 (b)方框图

一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验控制水箱; 2.实验对象及控制屏、计算机一台、SA-44挂件一个、PC/PPI通讯电缆一根; 3.三相电源输出(~380V/10A)、单相电源输出(~220V/5A)中单相I、单相II端口、三相磁力泵(~380V)、压力变送器LT2、电动调节阀中控制信号(4~20mA 输入,~220V输入)、S7-200PLC 中AO端口、AI2端口。 三、实验原理 本实验系统结构图和方框图如图1所示。被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。图1-1为单容水箱液位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。图1-2是单容液位控制系统结构图。 图1-1 单容水箱液位控制系统的方块图系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定

值无偏差存在。图1-2 是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。 图1-2 单容液位控制系统结构图 比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图1-3中的曲线①、②、③所示。 图1-3 P 、PI 和PID 调节的阶跃响应曲线 二、单容水箱液位控制系统建模 t(s) T( c) . 1 e ss 2 3 1

组态王水位控制

汽包水位控制设计 1. 工艺流程: 除氧水通过给水泵进入给水调节阀,通过给水调节阀进入省煤器,冷水在经过省煤器的过程中被由炉膛排出的烟气预热,变成温水进入汽包,在汽包内加热至沸腾产生蒸汽,为了保证有最大的蒸发面因此水位要保持在锅炉上汽包的中线位置,蒸汽通过主蒸汽阀输出。 空气经过鼓风机进入空气预热器,在经过空气预热器的过程中被由炉膛排出的烟气预热,变成热空气进入炉膛。煤经过煤斗落在炉排上,在炉排的缓慢转动下煤进入炉膛被前面的火点燃,在燃烧过程中发出热量加热汽包中的水,同时产生热烟气。 在引风机的抽吸作用下经过省煤气和空气预热器,把预热传导给进入锅炉的水和空气。通过这种方式使锅炉的热能得到节约。降温后的烟气经过除尘器除尘,去硫等一系列净化工艺通过烟囱排出。 图2-1工业锅炉工艺流程 2. 系统设计任务 该系统通过PID控制调节电子调节阀的开度,以使锅炉汽包液位按给定值变化。且当系统干扰变化时,液位能最终稳定在给定值。

该液位监控系统由水箱控制对象系统、I/O 接口板、计算机和组态王软件组成。 根据题目要求,详细分析液位监控系统的设计要求,并进行软硬件的总体设计。在完成总体设计后,进行硬件的详细设计,利用组态王软件完成锅炉液位监控系统的设计工作。同时进行控制软件的流程设计和编制工作,并用仿真PLC 完成控制软件的仿真调试工作。 根据汽包锅炉给水系统动态特性,我们可以确定给水控制的一些基本思想。(1)由于对象的内扰动特性存在一定延迟和惯性,若采用以水位为被调量的单回路系统,则控制中水位会出现较大的偏差,所以我们设计采用串级控制方案。由于对象在蒸汽内负荷扰动时,有“虚假水位”的现象,若采用单回路系统,则在扰动的初始阶段,调节器将给水流量变化相反的方向,从而夸大了锅炉进、出流量的不平衡。 所以我们采用串级前馈控制,串级控制系统和单回路系统相比控制效果更稳定,响应速度更快,进度高,前馈控制可以改善给水控制系统的控制品质。 (2)锅炉的给水系统,汽包液位的动态特性似乎与单容水槽一样,但是实际情况却要复杂的多。其中最突出的一点就是水循环系统中充满了夹带着大量的蒸汽气泡的水,而蒸汽气泡的总体积是随着气泡压力和炉膛热负荷的变化而改变的。如果有某种原因使蒸汽泡的总体积改变了,即使水循环系统中的总水量没有变化,汽包水位也会随之发生改变。 于是,我们采用电厂锅炉汽包水位控制常用的单级三冲量给水控制系统。

单容水箱实验报告

单容液位定值控制系统 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。 三、实验原理 图3-6 中水箱单容液位定值控制系统 (a)结构图 (b)方框图 本实验系统结构图和方框图如图3-6所示。被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 四、实验内容与步骤 本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。以上小水箱为例叙述实验步骤如下: 1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。 2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱

进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。 3. 采用智能仪表控制: 1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。 2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。 3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。 4)管路、阀门、接线检查无误后接通总电源开关,打开24V电源开关、电动调节阀开关、单相I开关。 5)检查智能调节仪基本参数设置:ctrl=1, dip=1,Sn=33, DIL=0,DIH=50,OPL=0,OPH=100,run=0。 6)打开上位机MCGS组态环境,打开“THPCAT-2智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验六、单容水箱液位定值控制实验”,进入“实验六”的监控界面。 7)先将仪表设置为手动状态,将磁力泵开关打到“手动”位置,磁力驱动泵上电打水,适当增加或减小仪表输出值,使水箱液位平衡在设定值。 8)按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。 9)待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰: a.突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)。 b.将电动调节阀的旁路F1-5(同电磁阀)开至适当开度,将电磁阀开关打至“手动”位置。 c.适当改变上小水箱出水阀F1-10开度(改变负载)。 以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-7所示。 图3-7 单容水箱液位的阶跃响应曲线 10)分别适量改变调节仪的P及I参数,重复步骤9,用计算机记录不同参数时系统的阶跃响应曲线。

基于组态王6.5的串级PID液位控制系统设计(双容水箱)

本科毕业论文(设计) 题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院 专业:自动化 姓名: ### 指导教师: ### 2011年 6 月 5 日

Cascade level PID control system based on Kingview 6.5

摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。 就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 Abstract It is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such as

组态王-水箱水位控制

自动化应用软件实训 组态王Kingview就是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部的各种生产系统与应用以及信息交流汇集在一起,实现了最优化管理。适用于从单一设备的生产运营管理与故障诊断,到网络结构分布式大型集中监控管理系统的开发。在日常生活中,我们最常见的就就是对储水罐液位的控制,系统就是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。 2系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔与储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔与储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 3系统方案论证 整个供水系统可以抽象为原水箱与储水箱两个容器的液位控制。原水箱的水

来自地下,储水箱的液位由水塔的水泵与储水箱的出水阀门综合决定。各种工业用水与生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当注水阀与用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。水位高于80与低于30时,报警指示灯开始闪烁,提醒工作人员系统就是否正常工作。这样便实现了单容水箱液位的自动控制。 4系统监控界面设计 设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记录界面、历史曲线界面。 水箱水位监控界面如图4、1所示,实时曲线界面如图4、2所示,实时报表界面如图4、3所示。报警记录界面如图4、4所示,历史曲线界面如图4、5所示。 图4、1水箱水位监控界面

组态王_水箱水位控制

目录 水箱水位控制 (1) 第一章绪论 (1) 第二章系统需求分析 (1) 第三章系统控制方案 (1) 第四章系统监控界面设计 (2) 第五章数据字典设计 (4) 第六章应用程序命令语言 (4) 反应中心监控车间的设计 (6) 第一章系统监控界面设计 (6) 第二章应用程序命令语言 (8) 心得体会 (9)

水箱水位控制 第一章绪论 在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定围。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。在双容水箱中,我们需要实时检测和调节水箱水位,为为了最大程度上减轻了人们工作负担,需要设计一个组态王液位控制系统对水箱的水位进行实时检测。双位水箱串级控制系统是被测对象由两个不同容积的水箱串联组成,故称其为双容水箱,控制原理是通过水泵将储水箱中的水送上水箱,通过阀门对其控制,使其可以合理的进行储水,当然,如果进水量大于出水量,则自动通过溢水口排入储水箱。 第二章系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 第三章系统控制方案 整个供水系统可以抽象为主水箱和储水箱两个容器的液位控制。主水箱的水来自地下,储水箱的液位由水泵和储水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当主水箱进水阀打开时,水箱液位以较小的速度增长,增到90,水位达到高水位线,发出警报,水箱液位达到98时,主水箱进水阀自动关闭;此时,储水箱水泵打开,开始抽水,输送到储水箱中;当储水箱液位到达高水位时(90)报警,到达液位98时关闭水泵;储水箱出水阀打开;当储水箱

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使 水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动 的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般 生产过程的要求,故它在过程控制中得到广泛地应用。图 1-1为单容水箱液 位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的 选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之, 控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常 工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个 很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十 分重要的工作。图1-2是单容液位控制系统结构图 GK-07 图i-i 单容水箱液位控制系统的方块图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调 节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定 值无偏差存在。图1-2是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度3的大 小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分 电帖泵2 04 上水箱

(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数3, Ti选择合理,也能使系统具有良好的动态性能。 图1-2单容液位控制系统结构图 比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图1-3中 二、单容水箱液位控制系统建模 2.1液位控制的实现 液位控制的实现除模拟PID调节器外,可以采用计算机PID算法控制。首先由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,

基于组态王的水位控制系统设计

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 《计算机控制系统》 组态王课程设计报告设计题目:水位控制系统设计 专业电子信息

班级092 学号200916022218 学生姓名保昆 2012年5月25日 目录 一、设计目的和要求 (4) 1.1课程设计目的 (4) 1.2课程要求 (4) 二、设计思路 (4) 三、设计过程 (5) 3.1新建工程 (5) 3.2新建画面 (5) 3.3建立仿真系统 (6) 3.4新建数据词典 (6) 3.5各项参数的设置 (7) 3.5.1按钮参数设置 (7) 3.5.2水位报警画面 (7) 3.5.3数据报表画面 (9) 3.5.4历史曲线画面 (13)

3.5.5总体命令语言设置 (13) 四、设计总结与体会 (15) 4.1设计结果 (15) 4.2心得体会 (17)

一、设计目的和要求 1.1课程设计目的 1、熟悉并熟练掌握组态王软件; 2、通过组态王软件的使用,进一步掌握了解过程控制理论基础知识; 3、培养自主查找资料、搜索信息的能力; 4、培养实践动手能力与合作精神。 1.2课程要求 “组态王”软件包括由工程浏览器和画面运行系统三大部分组成。在工程浏览中可以查看工程的各个组成部分,也可以完成数据库构造、定义外部设备等工作;工程管理器中内嵌了画面管理系统,用于新工程的创建和已有工程的管理。画面的开发和运行由工程浏览器调用画面制作系统和运行系统来完成。用组态王对一个简单控制过程进行组态,要求画出组态画面,能进行动画连接,可以模拟查询数据报表、历史数据曲线以及报警画面。 题目是水位控制系统,是对象为一储水罐,用水泵从水源抽水作为进水端,阀门控制出水端,中间有水位传感器。 二、设计思路 做一水位控制系统的组态,要求:动画显示水流运动。当水位高于或低于警戒水位时,报警界面出现,提示报警,并记录在报警事件中。设置登录权限,只有管理员才能启动系统,只有在此时水泵才可启动,其余权限中人员只能观看不能操作。组态中有历史曲线与数据报表,用来记录长时间过程中水位的变化情况,同时在主监控画面中也显示有即时报警与数据记录的功能。

组态王水箱液位控制

基于组态王的水箱液位控制系统 1.引言 自动化软件在自动化产品的研发过程中有着举足重轻的地位,尤其在科学技术飞速发展的今天,自动化软件的应用越来越受到人们的重视。本文采用的自动化软件是北京亚控公司出品的组态王6.53,其软件包由工程浏览器(TouchExploer)、工程管理器(ProjMamager)和画面运行系统(TouchView)三部分组成。在工程浏览器中可以查看工程的各个组成部分,也可以完成数据库的构造、定义外部设备等工作;工程管理器内嵌画面管理系统,用于新工程的创建和已有工程的管理。画面的开发和运行由工程浏览器调用画面制作系统TOUCHMAKE和工程运行系统TOUCHVIEW来完成的。 本文利用组态王强大的组态功能和友好的人机界面实现了对供水系统中水塔和储水箱的实时监控,并且具有一定的工程应用价值。 2.系统需求分析及方案论证 2.1 系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。

2.2 系统方案论证 整个供水系统可以抽象为水塔和主水箱两个容器的液位控制。水塔的水来自地下水,主水箱的液位由水塔的水泵和主水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 系统通过智能模块将液位的检测量采集到组态王对应变量中,由组态王统一管理给出系统各部分运行趋势、报表及报警事件,并通过与给定的液位设定比较来控制入水量,从而使液位保持在一定的范围之内。 本系统假定主水箱满液位为100,而水塔容量相对于主水箱来说应该大很多,为了明显起见,我们选水塔容量为500.当水塔液位低于100时水塔进水,主水箱液位低于20时水塔自动供水,高于90时供水关闭。由于工业用水和生活用水的需求相差比较大,所以给他们设定了不同的流速,并且它们的使用时随机的,顾没有对两储水罐的出水阀进行自动控制。应运程序代码如下: if(\\本站点\泵==1) {\\本站点\控制水流=8; \\本站点\水塔=\\本站点\水塔-8; \\本站点\主水箱= \\本站点\主水箱+8; } else {\\本站点\控制水流=0; \\本站点\水塔=\\本站点\水塔; \\本站点\主水箱= \\本站点\主水箱; } if(\\本站点\阀门1==1) {\\本站点\控制水流1=5; \\本站点\主水箱= \\本站点\主水箱-5; } else \\本站点\控制水流1=0; if(\\本站点\主水箱>90) \\\本站点\泵=0; if(\\本站点\主水箱<20)

单容水箱液位控制系统的PID算法

自动控制原理课程设计报告

单容水箱液位控制系统的PID算法 摘要随着科技的进步,人们对生产的控制精度要求越来越高,水箱液位系统是过程控制中一种典型的控制对象,提高液位控制系统的性能十分重要。本文针对理想的单容水箱液位系统,将包括单容水箱、电动机等在内的部分分别建立数学模型,并加入常规PID对系统性能进行调节。但由于实际单容水箱液位系统具有时滞性和非线性,实际生产中若要对其建立精确的数学模型比较困难。因此,将模糊控制的方法引用到对单容水箱液位系统的PID控制中,通过Simulink仿真验证了算法的有效性。结果表明,和常规PID控制相比,模糊PID控制具有良好的动静态品质。 关键词单容水箱液位; PID控制; MA TLAB; Simulink; 模糊控制. PID control method in water level systemof single-tank ABSTRACT With the development of technology, the control precision is more and more important. And thewater level system of single-tankis a typical control target in process control. The article mainly deals with the water level system of single-tank. It establishes mathematics model for every part of the system, and uses the traditional PID to improve the function . But in actual industry,it’s hard to establishes precise mathematics model. So, it introduces fuzzy PID control in this system. The result suggests that fuzzy PID control is more suitable than the traditional one. KEY WORDS the water level of single-tank; PID control; MA TLAB ; Simulink; fuzzy control. 在工业过程控制中,被控量通常有:液位、压力、流量和温度。其中,液位控制是工业中常见的过程控制,广泛运用于水塔、锅炉、高层建筑水箱等受压容器的液位测量,是工业自动化的一个重要的组成部分。因此,对它进行研究有很高的价值。 单容水箱是一个自衡系统,自衡调节过程比较缓慢,液位很难达到预期值。加入闭环调整后,系统的性能有所改善。但是,实际过程中往往要求要求水箱系统超调小、响应快、稳态误差小。并且要求水箱在一定扰动下,即出水阀门打开后,液位能够平稳、快速、准确地恢复到一个恒定值。因此,在水箱液位控制过程中引入PID调节。 常规PID适用于数学模型容易确定的系统。理想模型下,引入PID调节后,系统的动态和静态性能改善。但是实际中,液位控制具有滞后、非线性、时变性、数学模型难以准确建立等特点。常规的PID控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化。而模糊控制具有对参数变化不敏感和鲁棒性强等特点,但控制精度不太理想。如果将模糊控制和常规的PID控制结合,用模糊控制理论来整定PID控制器的比例、积分、微分系数,就能更好地适应控制系统的参数变化和工作条件的变化。 本文主要对单容水箱闭环系统建立模型,分析其闭环系统、引入常规PID控制及引入模糊PID控制后的系统性能,并用MATLAB进行仿真。 1 单容水箱液位控制系统模型 1.1原理图 1.2系统闭环结构框图 负载阀 调节阀 电机浮子 减速器 电位器 图1单容水箱液位闭环控制系统

PID回路指令及水箱水位控制(组态王)

//////// 学院 题目:PID回路指令及水箱水位控制(组态王) 系别:船舶工程学院 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 2015 年6月 15 日

目录 一、总体设计方案 1、控制要求 (1) 2、控制硬件和全局图 (1) (1)硬件和软件设备 (1) (2)PLC 变频器的综合控制系统全局图 (1) 二、MM420的PID控制系统参数设置 1、MM420 变频器的基本介绍 (2) (1)变频调速原理 (2) (2)变频器工作原理 (3) 2、MM420的PID控制系统参数设置 (3) (1)各参数的设置 (3) (2)模拟量扩展模块接线图及模块设置 (7) (3)如何用DIP开关设置EM235扩展模块 (7) 三、PLC 的运行程序梯形图及外接线图 1、西门子S7-200PLC的运行程序梯形图 (8) (1)主程序 (8) (2)子程序 (10) (3)中断程序 (11) 2、该供水水箱控制系统的外部接线图 (12) 四、组态王设计与调试 1、什么是组态王 (13) 2、组态软件特点 (14) (1)延续性和可扩充性 (14) (2)封装性(易学易用) (14) (3)通用性 (14) 3、与PLC建立通信 (15) (1)进入工程浏览器主界面 (15)

(2)新建通信 (16) 4、建立数据词典 (21) 5、组态王绘制画面 (21) 6、组态王画面连接 (21) 7、组态王命令语言设定 (24) 8、组态王的调试结果界面和说明 (24) 五、总结与体会 (25)

第一章总体设计方案 1.1控制要求 在某恒压供水水箱自动调节系统中,要求动力系统能在自动或者手动的模式下,均可控制电机运行,使水位维持在满水的70%。其中运行速度与运行时间均可通过组态王界面在线修改 : 自动模式是指动力系统运行在指令作用下自动完成对水位的监控;手动模式是指动力系统不同时间的转换需要人为的发出控制指令改变。 系统中,计算机作为 PLC、组态王的编程组态平台; PLC 控制变频器,变频器即为 PLC 的控制对象,又为电动机的控制器;组态王为PLC 的上位机,完成监控作用。 供水水箱示意图 1.2控制硬件和全局图 (1)硬件和软件设备 :西门子S7-200PLC,计算机,组态王,MM420变频器等。 (2) PLC 变频器的综合控制系统全局图。

相关文档
最新文档