水箱液位控制系统

水箱液位控制系统
水箱液位控制系统

课程设计报告

设计题目:水箱液位控制系统

班级:自动化0901班

学号:

姓名:郝万福

指导教师:王姝梁岩

设计时间:2012年5月7号----5月25号

摘要

在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

在这次课程设计中,我们主要是设计一个水箱液位控制系统,涉及到液位的动态控制、控制系统的建模、PID 参数整定、传感器和调节阀等一系列的知识。通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。首先测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。然后,通过参数试凑法对PID参数的调试,使上述的模型能快速的达到稳定并且超调量和余差等满足设计要求。最后通过MATLAB仿真实验,加深了对双容水箱滞后过程以及串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。在PID参数整定过程中,我对比例控制,积分控制,微分控制的作用、效果以及调试方法有了一定了解。通过这次课程设计加深我们对《自动控制原理》、《过程控制系统及仪表》等科目的理解。

关键词:水箱液位控制PID参数整定串级控制前馈控制MATLAB仿真

目录

1.概述 .................................................................................. 错误!未定义书签。

2.课程设计任务及要求 ........................................................ 错误!未定义书签。

实验系统熟悉及过程建模................................................. 错误!未定义书签。

实现单容水箱(上)液位的单回路控制系统设计 ........... 错误!未定义书签。

实现双容水箱液位(上下水箱串联)的单回路控制系统设计错误!未定义书签。

实现水箱(上)液位与进水流量的串级控制系统设计 ... 错误!未定义书签。

实现副回路进水流量的前馈控制 ....................................... 错误!未定义书签。

3 实验系统熟悉及过程建模................................................... 错误!未定义书签。

描述实验系统的总体结构(结构图及语言描述)。....... 错误!未定义书签。

水箱液位控制系统的原理框图 ·······················································错误!未定义书签。

水箱液位控制系统的数学模型 ·······················································错误!未定义书签。

利用实验建模方法建立进水流量和主管道流量之间关系的数学模型。错误!未定义书签。

进水流量和上水箱液位模型............................................. 错误!未定义书签。

副回路流量与上水箱液位数学模型................................. 错误!未定义书签。

双容水箱串联进水流量与下水箱液位模型 ....................... 错误!未定义书签。

4 单容水箱液位的单回路控制系统设计 ................................ 错误!未定义书签。

结构原理............................................................................. 错误!未定义书签。

单容水箱控制器PID参数整定 ......................................... 错误!未定义书签。

旁路阶跃干扰响应曲线..................................................... 错误!未定义书签。

副回路进水阶跃干扰响应曲线......................................... 错误!未定义书签。

干扰频繁剧烈变化的解决办法......................................... 错误!未定义书签。

5.实现双容水箱液位(上下水箱串联)的单回路控制系统设计错误!未定义书签。

6.实现水箱(上)液位与进水流量的串级控制系统设计 ....... 错误!未定义书签。

7.实现副回路进水流量的前馈控制 ........................................ 错误!未定义书签。

8.总结 ..................................................................................... 错误!未定义书签。

1.概述

本次课程设计,是让我们应用自控控制原理和过程控制理论知识来设计水箱液位控制系统。在实验过程中,我们用到了wincc软件,调节阀,传感器,PLC等原件,使得我们对于工厂的一些基础设备有了一定了解。在设计过程中,我们通过手动和自动调节使液位保持平衡,以及通过经验凑试法来调节PID参数,这使得我们对于自动控制原理和过程控制系统及仪表课本加深理解,对工业生产中的液位控制有了一定了解,同时也学以致用,不再局限于书本的知识,培养我们独立思考的能力和小组合作精神。

2.课程设计任务及要求

实验系统熟悉及过程建模

描述实验系统的总体结构(结构图及语言描述)。

利用实验建模方法建立进水流量和主管道流量之间关系的数学模型。

要求写出具体的建模步骤及结果。

利用实验建模方法建立进水流量和水箱(上)液位之间关系的数学模型。

要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)

利用实验建模方法建立副回路流量和水箱(上)液位之间关系的数学模型。要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)

⑤利用实验建模方法建立双容水箱(上下串联)的进水流量(上水箱进水)和水箱(下)液位之间关系的数学模型。要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)

实现单容水箱(上)液位的单回路控制系统设计

画出此单回路控制系统的控制原理图及方框图。详细说明控制系统方框图中的各部分环节所对应的物理意义。说明该控制系统的控制依据和控制功能。

采用经验凑试法调节PID参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。要求在PID参数调试过程中,按控制质量从坏到好分别(P,PI,PID)记录6组以上的控制系统过渡过程(过渡过程曲线,控制质量指标),并说明你做参数进一步调整的原因,进而掌握PID控制作用对控制质量的影响。

控制系统稳态时,打开旁路干扰阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。

打开副回路进水阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。实现双容水箱液位(上下水箱串联)的单回路控制系统设计画出此单回路控制系统的控制原理图及方框图。详细说明控制系统方框图中的各部分环节所对应的物理意义。说明该控制系统的控制依据和控制功能。

采用经验凑试法调节PID参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。要求在PID参数调试过程中,按控制质量从坏到好分别(P,PI,PID)记录6组以上的控制系统过渡过程(过渡过程曲线,控制质量指标),并说明你做参数进一步调整的原因,进而掌握PID控制作用对控制质量的影响。

控制系统稳态时,打开旁路干扰阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。

打开副回路进水阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。

实现水箱(上)液位与进水流量的串级控制系统设计

画出此串级控制系统的控制原理图及方框图,详细说明控制系统方框图中的各部分环节所对应的物理意义;说明该控制系统的控制依据和控制功能;分析该控制系统和液位单回路控制系统相比有哪些变化,这些变化会使得该系统有哪些优势。

采用经验凑试法调节主、副控制器参数,使控制系统达到满意的控制质量。要求写出调试控制器参数的具体步骤。在PID参数调试过程中,记录10组以上的控制系统过渡过程(过渡过程曲线,控制质量指标)来说明你的调试过程,并说明你做参数进一步调整的原因。

在设定值发生阶跃变化(设定值阶跃增大及设定值阶跃减小)时,观察并记录控制系统的过渡过程(过渡过程曲线,控制质量指标)。

打开旁路干扰阀(较大幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标);并和(1)中的控制质量进行对比,分析并说明控制质量变化的原因。

打开副回路进水阀(较大幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标);并和(1)中的控制质量进行对比,分析并说明控制质量变化的原因。

实现副回路进水流量的前馈控制

画出此前馈-串级复合控制系统的控制原理图及方框图,详细说明控制系统方框图中的各部分环节所对应的物理意义;说明该控制系统的控制依据和控制功能;分析该控制系统和液位单回路控制系统相比有哪些变化,这些变化会使得该系统有哪些优势。

试求解前馈控制器的模型。

采用简化模型代替前馈控制器,利用Matlab仿真软件调节前馈控制器参数,使得副回路进水流量发生剧烈变化时,控制系统达到满意的控制质量。写出前馈控制器参数的调

试步骤,记录与其对应的6组以上的控制系统过渡过程(包括:过渡过程曲线,控制质量指标),充分反映你的参数调试过程。

3 实验系统熟悉及过程建模

描述实验系统的总体结构(结构图及语言描述)。

水箱液位控制系统的原理框图

水箱液位控制系统是一个简单控制系统,所谓简单液位控制系统通常是指由一个被控对象、一个检测变送单元(检测元件及变送器)、以个控制器和一个执行器(控制阀)所组成的单闭环负反馈控制系统,也称为单回路控制系统。

简单控制系统有着共同的特征,它们均有四个基本环节组成,即被控对象、测量变送装置、控制器和执行器。

图3-1 水箱液位控制系统的原理框图

这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。

水箱液位控制系统的数学模型

该系统主要是自衡的非振荡过程,即在外部阶跃输入信号作用下,过程原有的平衡状态被破坏,并在外部信号作用下自动的非震荡地稳定到一个新的稳态,这一大类是在工业生产过程中最常见的过程。 确定过程的输入变量和输出变量

如下图所示,流入水箱的流量1F 是由进料阀1来控制的;流出水箱的流量2F 取决于水箱液位L 和出料阀2的开度,而出料阀的开库是随用户的需要而改变的。这里,液位L 是被控变量(即输出变量),进料阀1为控制系统中的控制阀,它所控制的进料流量1F 是过程的控制输入(即操纵量),出料流量2F 是外部扰动。本设计以进料流量1F 作为输入变量。

利用实验建模方法建立进水流量和主管道流量之间关系的数学模型。

图3-3 系统结构图模式

关闭副管道回路控制系统,利用主管道将系统工作模式切换至手动方式,控制上水箱液位。首先将阀的开度设置为20%,然后通过调节上水箱进水阀和出水阀使液位保持稳定,实现无扰动调节。

突然改变阀的开度,模拟给定阶跃变化,观察上主管道流量变化情况。如图3-4所示:

图3-4 手动模式给定阶跃响应曲线

图中红线为阀开度曲线,可以看出是一个阶跃信号。粉色曲线为电磁流量曲线,通过放大

2

L

1F

2F

1

t

L( )

L(t) L(0)

图3-2 水箱液位过程及其阶跃响应曲线

可以近似为无滞后一阶惯性模型。可以假设流量变化模型为: 0

0()1

s S K

W

T =+ ()

一阶非周期过程比较简单,只需确定放大系数0K 及时间常数0T 即可获得传递函数模型。 确定静态放大系数0K :利用所测取的阶跃响应曲线估计并绘出被控量的最大稳态值

)(∞y ,如图3-5所示,放大系数0K 为:

()

(0)

0x

y

y

K ∞-=

? ()

确定时间常数0T :因为00()0.6320.632()y T K x y ?=?=?∞,所以响应曲线)(632.0)(1∞=y t y 所对应的时间1t 就是时间常数0T ,同理响应曲线)(865.0)(2∞=y t y 所对应的时间2t 是2倍时间常数,即02T 。

0(y (∞y 00

(865.0?y (632.0?y y

图3-5 无滞后一阶对象的响应曲线

电磁流量初始稳态值y=,给定幅值R ?%为10%阶跃响应后重新达到稳态值y2=。

()

(0)

300.26170.1885

6.321010

R

y

y

K ∞---=

=

=??

T 0时刻电磁流量值:

0(0.25170.1885)0.6320.18850.2063T y =-?+=

可以对应查找t 1%)的值如下表所示

表1 电磁流量T 0时刻表

由此可以计算出T 0的值:

0108T t t s =-=

综上所述,得出进水流量与主管道流量之间的数学模型为:

3

0 6.3210()81

W s s -?=+

进水流量和上水箱液位模型

如图2黄色曲线为上水箱液位高度曲线,同样可以看出上水箱液位和主管道流量同样满

足一阶惯性环节。上水箱液位和进水流量液位之间的模型为:

01111()1

T s W s K T s +=+

但是上水箱液位时间常数远远大于进水流量的时间常数,即10T T >>,所以模型可以近似为一阶惯性模型:

1

11()1

K W s T s =

+ 电磁流量初始稳态值h1=,进水流量近似为阶跃响应,计算其幅值时可以把最大值和

最小值换算成100%的阶跃: 0.25170.1885

x%=

100%=0.0910.6948

-??

重新达到稳态值h2=。可以计算出:

==1.18x

h h K ∞-?()(0) 同时可以计算出T 0时刻电磁流量值:

()0

13.60 2.900.632 2.909.66h T =-?+=

可以对应查找h 1%)的值如下表所示:

表2 上水箱液位T1时刻表

上水箱液位h0(0%)h1%)

时刻04:04:1304:06:53由此可以计算出T0的值:

1108

T t t s

=-=综上所述,得出进水流量与主管道流量之间的数学模型为:

11.18

(s)=

160s+1

W

副回路流量与上水箱液位数学模型

关闭主管道回路控制系统,利用副管道将系统工作模式切换至手动方式,控制上水箱液位。首先将变频器输出频率设置为30Hz,然后通过调节上水箱进水阀和出水阀使液位保持稳定,实现无扰动调节。

突然改变变频器输出为35Hz,模拟给定阶跃变化,观察上主管道流量变化情况。如图3所示:

图3-6 副回路手动模式给定阶跃响应曲线

如图3-6黄色曲线为上水箱液位高度曲线,同样可以看出上水箱液位和副管道流量同样满足一阶惯性环节。上水箱液位和进水流量液位之间的模型为:

2221()1

Ts W s K T s +=+

但是上水箱液位时间常数远远大于进水流量的时间常数,即1T T >>,所以模型可以近似为一阶惯性模型:

222()1

K W s T s =+

电磁流量初始稳态值h(0)=,副管道进水流量近似为阶跃响应,计算其幅值时可以把变

频器输出最大值和最小值换算成100%的阶跃 0.19130.091

%100%=0.2220.4513

x -?=

?

重新达到稳态值h(∝)=。可以计算出:

0=0.728x

h

h K ∞-=

?()

(0)

同时可以计算出T 2时刻电磁流量值:

()2

=18.25 2.0920.632 2.092=12.304h T -?+

可以对应查找h 1%)的值如下表所示:

表3 上水箱液位T 2时刻表

由此可以计算出T 0的值:

210169T t t s =-=

综上所述,得出进水流量与主管道流量之间的数学模型为:

()20.728

s =

169s 1

W +

双容水箱串联进水流量与下水箱液位模型

下水箱液位高度曲线如下图绿色曲线所示:

图3-7 下水箱液位高度曲线

从图可以看出为S 状的阶跃响应曲线若对模型精度要求较高,则应采用二阶对象的模型结构,故可以假设下水箱液位和进水流量液位之间的模型为:

3

12()(1)(1)

o K W s T s T s =

++

式中,0K 、1T 、2T 的求法如下:

第一,求取过程的静态放大系数0K 。

3[()(0)]=1.3K y y x =∞-?

第二,1T 、2T 可根据阶跃响应曲线上的两个点来确定,如图5所示:

图3-8 S 状阶跃响应曲线

首先读取)(4.0)(1∞=y t y 和)(8.0)(2∞=y t y 所对应的时间1t 和2t 值,测量时刻如下表:

表3 双容下水箱液位时刻表

下水箱液位 h 0(0%) h 1(40%) h 1(80%) 时刻

04:04:13

04:08:11

04:12:43

由此可以计算出1238t s =,2510t s =。然后利用下式计算1T 、2T 。

计算46.021=t t ,可采用下式所示的二阶环节近似,即:

3

32

3()(1)K W s T s =

+

此时,时间常数为:

12

3171.562 2.18

t t T +=

=?

综上所述可知双容水箱串级下水箱液位与进水流量模型为

32

1.3

()(171.561)W s s =

+

在做这个实验的时候,上水箱测量值的曲线产生毛线,我们及时检查,发现可能是因为线路松动造成的,重新接线后,就解决了问题。

4 单容水箱液位的单回路控制系统设计

结构原理

在设计过程控制系统时,如何选择控制器,以满足生产工艺要求至关重要,如果选择不当,可能根本达不到控制要求。本次课程设计通过对PID 控制器参数整定,进一步熟悉了过程控制系统设计过程。

单回路控制系统的控制原理图如下

图 4-1 单回路控制系统原理图 根据原理图可以画出对应的系统方框图如下:

图4-2单回路控制系统的控制原理方框图

PID 控制器是调节器,需要我们手动设置参数,其传递函数为:

1

()(1)c d i W s K T s T s

=+

+ 液位变

+

PID 控制

控制阀液位

_

水箱

调节阀为气关阀,随输入信号增大通过水流量也增大。上水箱液位控制过程之前已经建立过模型,其传递函数为:

0()1

o

o K W s T s =

+ 系统由于扰动)(s F 作用使被控量)(s Y 偏离了给定值)(s X ,即产生偏差)(s E ,调节器根据偏差)(s E 大小并按某种控制算法发出控制信号)(s U 送往调节阀,以改变阀门开度,即改变控制变量)(s Q ,从而克服扰动)(s F 对被控量)(s Y 的影响,使测量值)(s Z 接近设定值)(s X 。功能是是输出回到设定值。

单容水箱控制器PID 参数整定

调节器参数整定,是指决定调节器的比例度δ、积分时间I T 和微分时间D T 的具体数值,通过改变调节器的参数,使其特性和过程特性相匹配,以改善系统的动态和静态指标,取得最佳的控制效果。所谓最佳的控制效果,就是在某种质量指标下,系统达到的最佳调整状态。此时的控制器参数就是所谓的最佳整定参数。

系统设计需要调节PID 参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。本次课程设计中采用经验凑试法整定PID 参数,达到的控制效果满足控制要求。

经验凑试法(现场凑试法)是根据经验先将控制器的参数放在某一数值上,直接在闭环控制系统中通过改变设定值施加扰动,观察过渡过程曲线形状,运用δ、I T 、D T 对过渡过程的影响为依据,按规定的顺序对比例度δ、积分时间I T 和微分时间D T 逐个进行反复凑试,直到获得满意的控制质量.

比例控制规律是最基本的控制规律。它能较快地克服扰动的影响,使系统稳定下来,但存在余差。由于积分能消除余差,所以在比例的基础上加上积分控制,是效果更好,在本次试验中,微分的作用不太明显。实验操作时,需要把控制方式切换到自动模式,首先设定

积分时间常数∞=I T ,微分时间常数0=D T ,比例系数P 从小到大改变以试出比较理想的控制效果。

图4-3 K P =5控制效果

图4-4 K P =18控制效果

如图4-3、图4-4所示为比例系数的整定过程,p =5k 时达到稳定的时间太长,为使响应加快,需要增大比例作用,所以K P 应该增大。当p =18k 时达到稳定的时间短,超调也很小,所以认为此时比例系数比较合理。

由于图4的液位高度设定值是22,而达到稳定时液位高度为,存在比较大的偏差,所以

需要引入积分作用。

根据经验凑试法调节步骤,首先将比例度放大10%~20%,取K=15不断调节T I 的大小,使之

达到合适的效果。

图4-5 T I =104ms

图4-6 T I =7×104ms

图4-7 T I =8×104ms

如图4-5所示,当4i =10ms T ,阶跃响应震荡过于剧烈,由此可知积分作用太强,应该减弱积分作用,所以应增大i T 。令4i =710ms T ?,递减比为:1。控制效果比较好,再增大积分时间时,递减比反而增大,如图4-7所示,4i =810ms T ?,递减比为:1。综合以上叙述可知,

4

i

=710ms T ?相对最合理。从实验效果来看可以不加微分作用就能满足要求。而实际上单容水箱滞后不明显,可以不加微分。为了加强对控制系统设计的了解,我们仍然引入了微分作用,但是改善效果作用不大。

先将比例度减小10%~20%,取16.2P K =,时间常数4i =710ms T ?,调节微分作用。

4

=1.510ms D

T ?时效果比较好,从图4-8所示:

图4-8 PID 调节效果

从图可以看出,引入微分起到的效果并不太理想,所以可以不加微分,只用PI 调节。

旁路阶跃干扰响应曲线

通过PID 控制器参数的整定,可以使输出稳态值达到设定值,且响应速度比较快,控制效果好。但是要评价一个系统的好坏,不能只看输出值是否能达到设定值,还要看系统是否有抗干扰能力。工业现场有很多因素会影响控制过程,我们称之为扰动。为检验系统是否有抗干扰能力,可以在控制系统达到稳态时,打开旁路干扰阀,不同开度的旁路阀可以模拟不同的阶跃扰动。

图4-9 旁路阶跃扰动

如图9所示,当系统达到稳态时,打开一个较小开度的旁路阀,通过PID 控制器的调节,能很快抑制干扰。但是如果旁路阀开度太大,即干扰太大,超出了系统的调节范围,此时调节阀开度会降到0,水箱液位曲线呈发散状态,因此系统不能达到稳定状态。从整体效果来看,控制系统能抑制较大的干扰,而且能快速响应扰动,控制效果好。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

基于PLC的液位控制系统设计论文

题目:基于PLC的液位控制系统设计姓名: 学号: 系别: 专业: 年级班级: 指导教师: 2013年5月18日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。矚慫润厲钐瘗睞枥庑赖。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。聞創沟燴鐺險爱氇谴净。 本毕业论文内容不涉及国家机密。 论文题目: 作者单位: 作者签名: 年月日

目录 摘要............................................................................................................. 1残骛楼諍锩瀨濟溆塹籟。引言............................................................................................................. 1酽锕极額閉镇桧猪訣锥。 1.研究现状分析 ................................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.1题研究背景、意义和目的 ...................................................... 2謀荞抟箧飆鐸怼类蒋薔。 1.2液位控制系统的发展状况 ...................................................... 3厦礴恳蹒骈時盡继價骚。 1.3课题研究的主要内容................................................................ 4茕桢广鳓鯡选块网羈泪。 2.控制方案设计 ................................................................................... 4鹅娅尽損鹌惨歷茏鴛賴。 2.1系统设计 ...................................................................................... 4籟丛妈羥为贍偾蛏练淨。 2.2单容水箱对象特性 .................................................................... 6預頌圣鉉儐歲龈讶骅籴。 3.硬件配置 .............................................................................................. 8渗釤呛俨匀谔鱉调硯錦。 3.1控制单元 ...................................................................................... 8铙誅卧泻噦圣骋贶頂廡。 3.2检测单元 ...................................................................................... 9擁締凤袜备訊顎轮烂蔷。 3.3执行单元 ...................................................................................... 9贓熱俣阃歲匱阊邺镓騷。 4.软件设计 .............................................................................................. 9坛摶乡囂忏蒌鍥铃氈淚。 4.1STEP 7-Micro/WIN编程软件简介 ........................................ 9蜡變黲癟報伥铉锚鈰赘。 4.2参数设定及I/O分配 .............................................................. 10買鲷鴯譖昙膚遙闫撷凄。 5.程序编程和系统仿真.................................................................. 12綾镝鯛駕櫬鹕踪韦辚糴。 5.1程序设计 .................................................................................... 12驅踬髏彦浃绥譎饴憂锦。 5.2程序仿真和分析....................................................................... 13猫虿驢绘燈鮒诛髅貺庑。 6.结论....................................................................................................... 16锹籁饗迳琐筆襖鸥娅薔。参考文献................................................................................................ 17構氽頑黉碩饨荠龈话骛。附录........................................................................................................... 19輒峄陽檉簖疖網儂號泶。致谢........................................................................................................... 22尧侧閆繭絳闕绚勵蜆贅。

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

基于单片机的水位控制系统毕业论文

基于单片机的水位控制系统 毕业论文 目录 河系学院本科生毕业论文(设计)诚信声明........................... 错误!未定义书签。河西学院本科生毕业论文(设计)开题报告........................... 错误!未定义书签。摘要............................................................ 错误!未定义书签。ABSTRACT ........................................................ 错误!未定义书签。 1. 绪论 (2) 1.1 研究背景 (2) 1.2研究现状 (2) 2.设计任务及要求分析 (3) 2.1 设计任务及要求 (3) 2.1.1 设计任务 (3) 2.1.2 设计要求 (3) 2.1.3 要求分析 (3) 3. 系统方案论证与选择 (3) 3.1方案设计 (3) 3.2 系统整体方案 (5) 3.2 各单元电路方案论证 (5) 3.3 主要模块简介 (7) 3.3.1 核心芯片STC89C51单片机 (7) 3.3.2 1602液晶显示器 (9) 4. 硬件电路设计 (13) 4.1 单片机最小硬件系统电路 (13) 4.2水位显示电路 (13) 4.3 水位调整及其报警电路 (15) 4.4初值设置按键电路 (15) 5. 程序设计 (16) 5.1水位控制系统主程序设计流程图 (16) 5.2 水位控制系统主程序 (16) 6. 实物调试与测试 (16) 6.1实物图 (17) 6.2 测试结果分析 (17) 7. 结束语 (17) 参考文献 (18) 致谢 (20) 附录 (21) 河西学院本科生毕业论文(设计)题目审批表 (29)

单容水箱液位控制报告

湖南工程学院 系统综合训练报告 目录 概述 二硬件介绍说明 (4)

2.1电动调节阀 (4) 2.2扩散硅压力液位变送器 (5) 2.2扩散硅压力液位变送器 (5) 2.4远程数据采集模块ICP-7017、ICP-7024面板 (5) 三.软件介绍说明 (7) 3.1工艺流程 (7) 3.2制作总体回路 (8) 3.2制作总体回路 (9) 四.调试结果与调试说明 (11) 4.1调试说明: (11) 4.2调试结果 (12) 五.实训心得12

第1 章系统总体方案 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。 1.1被控参数的选择 根据设计要求可知,水箱的液位要求保持在一恒定值。所以,可以直接选取水箱的液位作为被控参数。 1.2控制参数的选择 影响水箱液位有两个量,一是流入水箱的流量。二是流出水箱的流量。调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。 对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。 1.3调节阀的选择 在工程中,当系统的控制作用消失时,如果调节阀没有关闭则会造成水的浪费甚至出现事故,因此,需要关闭调节阀。故选择电动气开式调节阀。

下水箱液位控制系统

摘要 液位控制是常见的工业过程控制之一,它广泛运用于水塔、锅炉、高层建筑水箱、罐、工业化工槽等受压容器的液位测量。随着科技的进步,人们对生产的控制精度要求越来越高,所以提高液位控制系统的性能显得十分重要。 本文介绍了一种基于组态软件WinCC和西门子STEP 7的下水箱液位控制系统的设计过程。控制对象为实验室的水箱液位设备,采用以太网进行通讯,用软件完成了系统硬件配置,实现了任意液位高度的手动/自动调节。在系统远程监控方面,利用WinCC软件进行了远程监控界面的设计,通过对液位数据的采集、处理、输出处理,实现了对液位高度的实时监控、自动/手动的无扰切换、报警显示等功能。 关键词:液位控制;实时监控;以太网;WinCC软件

Abstract The level control is one of the common industrial process control, it is widely used in cooling towers, boilers, high-rise buildings, water tanks, tanks, industrial chemical tank level measurement of the pressure vessel. With the advances in technology, production control accuracy requirements are high, so to improve the performance of the liquid level control system is very important. This paper introduces a kind of based on Wincc configuration software and Siemens STEP 7 under the tank liquid level control system of the design process. This design uses the Ethernet communication, the software system hardware configuration, design and debugging of various modules of the ladder to achieve a any level of a high degree of manual / automatic adjustment. Wincc software system RMON RMON interface design, the level of data collection, processing, output processing, the liquid level in the real-time monitoring, automatic / manual bumpless switching, alarm display and other functions. Keywords: evel control;data collection;Siemens STEP 7;Wincc software

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

基于PLC水箱液位控制系统毕业设计

上传说明: 本论文仅供大家学习和参考用

本科毕业论文 基于PLC的液位控制系统设计 考生姓名:准考证号: 专业层次:工业自动化(本)院(系):电子信息工程学院指导教师:职称: 二OO 年十月

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。

The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

水池水位自动控制系统设计

水池水位自动控制系统设计与制作 摘要 根据物体在水中漂浮的性质,可以用一个浮球来感知水塔里水位的升降,用来控制水泵,使水泵能自动对水池上水,水满时能自动断电停止,真正做到了水池的全自动控制功能,解决了人们日常用水的诸多不便。 本毕业论文范文写的是水池水位自动控制电路的作用是根据水位的高低,自动地控制水泵的启动与停止。水泵和水位的高低是相互反馈的。这样就可以实现水位自动控制的目的。我所设计的水位制动控制装置是有以下几部分组成:水位自动控制电路,高低水位报警器,数码显示。水位自动控制在一定范围内(如 2 -6 米),当水位低至2米时使水泵启动上水;当水位升至6米时,使水泵停止工作。因特殊情况水位超限(如高至7米、低于2米)报警器报警。设有手动按键,便于随机控制。由数码管直观显示当前水位。本系统可以随时的控制水位的高低,防止过量放水或来水无人打开关。 关键词:水池;浮子开关;自动上

Abstract According to the nature of an object floating in the water, you can use a float to sense the water level in the lift tower to control the pump, the pump automatically to the water tower, Sheung Shui, water, power off automatically when full stop pumping water tower, and truly automatic control tower to solve the inconvenience of daily water. Pham Van of the thesis is written in the role of water level automatic control circuit is based on the level of the water level, automatic control of pump start and stop. Pumps and water level is the level of mutual feedback. This level can automatically control. I designed the brake control device is the water level has the following components: automatic water level control circuit, high and low water level alarm, digital display. Automatic water level control within a certain range (eg. 2-6 meters), when the water level as low as 2 meters, the Sheung Shui to start the pump; when the water level to 6 meters, the pump stopped working. Water level gauge due to special circumstances (such as up to 7 meters, as low as 2 meter) alarm to the police. With manual buttons, easy to stochastic control. Visual display by the LED current level. The system can control the water level at any level, to prevent excessive drainage or runoff and no open relations Keywords:water tower; float switch; automatic pumpin

毕业设计论文:基于MCGS组态软件的水位控制系统

新疆工程学院 课程设计 题目:基于MCGS组态软件的水位控制系统 目录 前言 (1) 1.设计概述 (2) 1.1 设计任务介绍 (2) 1.2 设计系统组成框图 (2) 1.3 设计分析 (2) 1.4. 设计所用软件介绍 (3) 1.4.1什么是MCGS组态软件 (3) 1.4.2 MCGS组态软件的系统构成 (3) 1.4.3 MCGS组态软件的功能和特点 (5) 1.4.4 MCGS组态软件的工作方式 (5) 2 设计思路 (6) 3 组态画面的设计 (7) 3.1 工程建立 (7) 3.2建立流程画面 (7) 3.3 定义数据对象 (8) 3.4.动画连接 (9)

3.5模拟设备连接 (9) 3.6 控制流程 (10) 3.7 报警显示 (10) 3.8 报表输出 (12) 3.9 趋势曲线显示 (12) 3.10 安全机制 (13) 3.11 水位控制系统总效果 (15) 4总结 (17) 5参考文献 (18)

前言 计算机技术和网络技术的飞速发展,为工业自动化开辟了广阔的发展空间,用户可以方便快捷地组建优质高效的监控系统,并且通过采用远程监控及诊断、双机热备等先进技术,使系统更加安全可靠,在这方面,MCGS工控组态软件将为您提供强有力的软件支持。 MCGS是一种流行的组态软件开发环境,组态技术是计算机控制技术综合发展的结果,是技术成熟化的标志。MCGS通用版组态软件主要完成通用工作站的数据采集和加工,实时和历史数据处理、报警和安全机制、流程控制、动画显示、趋势曲线和报表输出等日常性监控事务。对工作站软件的要求主要是系统稳定可靠,能方便的代替大量的现场工作人员的劳动和完成对现场的自动监控和报警处理,随时或定时的打印各种报表。由于组态技术的介入,计算机控制系统的应用速度大大加快了。采用组态控制技术的计算机控制系统最大的特点是从硬件设计到软件开发都具有组态性,因此系统的可靠性和开发速度提高了,开发难度却下降了。随着国内工业生产技术的进步以及自动化技术的发展,人们对自动化监控系统的需求越来越大,要求越来越高。一方面要求界面简单明了、宜于操作、数据采集实时性好以及高可靠监控性,同时还要求开发周期短,系统便于更改、扩充、升级。工控组态软件正是符合这些要求而在工业领域得到广泛应用。本文对组态技术进行了一些研究,对其发展概况进行了比较全面的了解。利用组态软件对双储液罐水位控制系统进行监控系统设计。

水槽液位闭环控制系统课程设计报告

摘要 本文根据液位系统过程机理,建立了单容水箱的数学模型。在设计中用到的PID算法提到得较多,PLC方面的知识较少。并根据算法的比较选择了增量式PID算法。建立了PID 液位控制模拟界面和算法程序,进行了系统仿真,并通过整定PID参数,同时得出了整定后的仿真曲线和实际曲线。主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析,FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。PLC在工业自动化中应用的十分广泛。PID控制经过很长时间的发展,已经成为工业中重要的控制手段。本设计就是基于PLC的PID算法对液位进行控制。PLC经传感电路进行液位高度的采集,然后经过自动调节方式来确定完PID参数后,通过控制直流泵的工作时间来实现液位的控制。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。本次设计主要内容是利用提供的被控对象单容水槽和相关仪器仪表,设计液位控制系统,利用组态王软件编写控制算法实现控制系统的上位机监控。 关键词:组态王,液位控制,PID算法,过程控制

一、设计任务 (3) 二、实验目的 (3) 三、实验方案 (4) 四、实验过程 (5) 实验总结 (17) 参考文献 (18) 附录 (19)

一、设计任务: (1)液位监控:完成一个液位监控系统,要有流程图画面,报警画面,历史曲线、实时曲线、报表等个画面键可以灵活切换。 (2)通过组态软件,结合实验已有设备,按照定值系统的控制要求,根据较快较稳的性能要求,采用但闭环控制结构和PID控制规律,设计一个具有美观组态画面和较完善组态控制程序的液位单回路过程控制系统。 设计要求 (1)根据液位单回路过程控制系统的具体对象和控制要求,独立设计控制方案,正确选用过程仪表。 (2)运用组态软件,正确设计液位但回路过程控制系统的组态图、组态画面和组态控制程序。 二、实验目的: (1)能根据具体对象及控制要求,独立设计控制方案,正确选用过程仪表。 (2)能够根据过程控制系统A/D、D/A和开关I/O的需要,正确选用模块。 (3)能根据与计算机串行通讯的需要,正确选用RS485/RS232转换与通讯模块。

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

相关文档
最新文档