发电厂烟气余热利用热经济性分析与计算

发电厂烟气余热利用热经济性分析与计算
发电厂烟气余热利用热经济性分析与计算

发电厂烟气余热利用热经济性分析与计算摘要面对我国能源和水资源紧缺等状况,在电厂设计中,优化系统设计,合理地利用电厂的烟气余热,提高机组效率,节约用水,减少煤耗,是节能的重要措施之一。本文针对我院某投标工程,对烟气余热利用的可行性及收益情况进行了分析。

关键词优化设计;烟气余热利用;投资;收益

the analysis and calculation of heat recovery from exhaust gas of power plant

hua xiu-feng ,li xiao-ming

(states nuclear electric power planning design & research institute, beijing 100094, china)

abstract: according to the shortage of the energy sources and water in our country, when we design the power plant, optimum design is adopted, the heat from the exhaust gas is used. the efficiency of the power plant is increased, water and coal is saved. this is a good method to save the resource. in this article, based on a power plant our company bid for, the feasibility and income of the heat recovery from exhaust gas of power plant is analyzed.

key words: optimum design; heat recovery from exhaust gas; investment; income

在火力发电厂中,锅炉的排烟余热问题即锅炉的排烟温度高一

锅炉烟气量估算方法完整版

锅炉烟气量估算方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

常用锅炉烟气量估算方法 烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。3L!p+A)H#y&z9H#^ 烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。4b4p3u#E0W 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;)u%S!h+k%X,g0] 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。9^)e8|$w/q+P 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。;~#I+I8I!]"h8q 物料衡算公式:8v;_$M*U'V8T;~ 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1%,则烧1吨煤排放16公斤S O2。,C8Sr9W"L&J 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2。'J5D"G3m2C$\*U6p 排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】0.7~0.9,即用水量的70-90%。2E#C1W&]'g3V+Q+Q 【生活污水排放系数】采用本地区的实测系数。。*B-t?G1f:U)N)j 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。9S1s-]1`*h3m._9E*t!A%@'i 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘9E-R)m)O1A9H9Y4C(C 原?煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法/d2G%D.c1d*].x-C

发电厂烟气余热利用热经济性分析与计算

发电厂烟气余热利用热经济性分析与计算摘要面对我国能源和水资源紧缺等状况,在电厂设计中,优化系统设计,合理地利用电厂的烟气余热,提高机组效率,节约用水,减少煤耗,是节能的重要措施之一。本文针对我院某投标工程,对烟气余热利用的可行性及收益情况进行了分析。 关键词优化设计;烟气余热利用;投资;收益 the analysis and calculation of heat recovery from exhaust gas of power plant hua xiu-feng ,li xiao-ming (states nuclear electric power planning design & research institute, beijing 100094, china) abstract: according to the shortage of the energy sources and water in our country, when we design the power plant, optimum design is adopted, the heat from the exhaust gas is used. the efficiency of the power plant is increased, water and coal is saved. this is a good method to save the resource. in this article, based on a power plant our company bid for, the feasibility and income of the heat recovery from exhaust gas of power plant is analyzed. key words: optimum design; heat recovery from exhaust gas; investment; income 在火力发电厂中,锅炉的排烟余热问题即锅炉的排烟温度高一

锅炉烟气量估算方法

常用锅炉烟气量估算方法 烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。3 L! p+ A) H# y& z 9 H# ^ 烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。4 b4 p3 u# E0 W 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;) u% S! h+ k% X, g0 ] 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。9 ^) e8 |$ w/ q+ P 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。; ~# I+ I8 I! ]" h8 q 物料衡算公式:8 v; _$ M* U' V8 T; ~ 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1 %,则烧1吨煤排放16公斤SO2 。, C8 S r9 W" L& J 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2 。' J5 D" G3 m2 C$ \* U6 p ?排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】0.7~0.9,即用水量的70-90%。2 E# C1 W& ]' g3 V+ Q+ Q 【生活污水排放系数】采用本地区的实测系数。。* B- t G1 f: U) N) j 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。9 S1 s- ]1 `* h3 m. _9 E * t! A% @' i 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘9 E- R) m) O1 A9 H9 Y4 C( C 原煤:每吨原煤排放8~10公斤烟尘

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

火力发电厂烟气余热利用的分析及运用

POWER SUPPLY TECHNLLOGIES AND APPLICATIONS 火力发电厂烟气余热利用的分析及运用 郭洪远 (宁夏京能宁东发电有限责任公司宁夏灵武750400) 【摘要】由于目前水资源、能源紧缺、环境日益恶化等等状况,合理有效的利用电厂的烟气余热,提高火电机组的效率,减少煤耗是节能的主要且重要的措施之一。在火力发电厂中,锅炉的排烟余热问题一直是困扰人们的一个问题。本文对发电厂烟气余热利用的途径进行了分析,重点研究了利用烟气余热来加热凝结水的系统。研究表明,设置烟气余热系统,可大大提高火力发电厂热效率,降低煤耗,增加发电量,具有一定的经济效益和社会效益。因此在电厂优化设计中,合理有效的利用火电厂的烟气余热,提高机组运行效率,节约用水,减少煤耗,是节能的关键。 【关键词】烟气余热;优化设计;提高效率;节能 引言 由数据统计可知,在火力发电厂中,锅炉的排烟热损失大约占锅炉热损失的70%,随着锅炉运行时间的增加,受热面污染程度也随之增加,排烟温度要比设计温度高大约25℃,在我们国家,存在着很多锅炉投运时间较长、排烟温度较高甚至达到200℃的火电机组。如果能够合理的利用工艺和新技术来降低锅炉排烟温度,回收利用排出的烟气余热,将较大程度上降低火力发电厂的煤耗,达到节约能源的目的。 1.烟气余热利用的状况 目前,国外已经把火电机组的排烟温度设计为大约100℃,比之前的排烟温度值大大降低,在近几年来国外建立火电厂的共同特点有: (1)烟气的最终排放并不是通过常见的专用烟囱,而是通过自然风冷却塔排人大气之中。 (2)增添了烟气热量回收的环节,即在烟气脱硫装置和除尘器之间的烟道上安装了烟气冷却器,回收的热量用于凝结水的加热。

烟气流量计算公式

锅炉烟尘测试方法 1991—09—14发布1992—08—01实施 国家技术监督局 国家环境保护局发布 1、主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数的测试方法。 本标准适用于GBl3271有关参数的测试。 2、引用标准 GB l0180 工业锅炉热工测试规范 GB l327l 工业锅炉排放标准 3、测定的基本要求 3.1 新设计、研制的锅炉在按GBl0180标准进行热工试验的同时,测定锅炉出口原始烟尘浓度和锅炉烟尘排放浓度。 3.2 新锅炉安装后,锅炉出口原始烟尘浓度和烟尘排放浓度的验收测试,应在设计出力下进行。 3.3 在用锅炉烟尘排放浓度的测试,必须在锅炉设计出力70%以上的情况下进行,并按锅炉运行三年内和锅炉运行三年以上两种情况,将不同出力下实测的烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下的烟尘排放浓度,对于手烧炉应在不低于两个加煤周期的时间内测定。 表1 锅炉实测出力占锅炉设计出力的百分数,% 70-《75 75-《80 80-《85 85-《90 9 0-《95 》=95 运行三年内的出力影响系数K 1.6 1.4 1.2 1.1 1.05 1 运行三年以上的出力影响系数K 1.3 1.2 1.1 1 1 1 3.4 测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测定位置应距弯头、接头、阀门和其他变径管的下游方向大于6倍直径处,和距上述部位的上游方向大于3倍直径处。 3.5 测孔规格: 在选定的测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右的短管,并装上丝堵。 3.6 测点位置、数目: 3.6.1 圆形断面:将管道断面划分为适当数量的等面积同心圆环,各测点均在环的等面积中心线上,所分的等面积圆环数由管道直径大小而定,并按表2确定环数和测点数。 表2 圆形管道分环及测点数的确定 管道直径D,mm 环数测点数 《200 1 2 200-400 1-2 2-4 400-600 2-3 4-6 600-800 3-4 6-8 800以上4-5 8-10

燃煤锅炉排烟量及烟尘和二氧化硫浓度地计算

阳 * * 大学《环境工程学》课程设计 题目:某燃煤采暖锅炉房烟气除尘系统设计 院系:环境与安全工程学院 专业: 班级: 学生: 指导教师: 2012 年 9 月日

1 前言 1.1我国大气治理概况 我国大气污染紧,污染废气排放总量处于较高水平。为节制和整治大气污染,“九五”以来,我国在污染排放节制技能等方面开展了大量研究研发工作,取患了许多新的成果,大气污染的防治也取得重要进展。在“八五”、“九五”期间,国家辟出专款开展全球气候变化预先推测、影响和对策研究,在温室气体排放和温室效应机理、海洋对全球气候变化的影响、气候变化对社会形态经济与自然资源的影响等方面取得很猛进展。近年来,我国环境监测能力有了很大提高,初步形成了具有中国特色的环境监测技能和管理系统,环境监测工作的进展明显。 “九五”期间全国主要污染物排放总量节制计划基本完成。在国生产总值年均增长8.3%的情况下,在大气污染防治方面,2000年全国二氧化硫、烟尘、工业粉尘等项主要污染物的排放总量比“八五”末期分别下降了10~15%。 结合经济结构调整,国度取缔、关停了8.4万多家技能落后、浪费资源、劣质、污染环境和不切合安全生产条件的污染紧又没有治理前景的小煤矿、小钢铁、小水泥、小玻璃、小炼油、小火电等“十五小”企业,对高硫煤实行限产,有用地削减了污染物排放总量。 1.2大气污染防治技能 为节制和整治大气污染,“九五”以来,我国在石炭洁净加工研发技能、石炭洁净高效燃烧技能、石炭洁净转化技能、污染排放节制技能等方面开展了大量研究和研发,取患了许多新的成果。 的排如果中国的燃煤电站的烟气排放要达到目前发达国度规定的水平,SO 2 放量将从每一年680万吨下降至170万吨,NOx的排放量将从100%下降至30%,DO2也将减排2500万吨。中国节制和整治大气污染任重而道远。 设计尺度主要参考《大气污染物排放限值》,工艺运行设计达到国度GB13271--91锅炉大气污染物排放尺度。

浅谈热电厂余热回收利用

浅谈热电厂余热回收利用 发表时间:2014-12-15T09:51:33.980Z 来源:《工程管理前沿》2014年第12期供稿作者:杜庆军 [导读] 火电厂余热的综合利用技术的推广和应用,不仅可以获得良好的经济和环境效益,同时能够提高火电厂的节能减排能力 杜庆军 东南大学建筑设计研究院有限公司江苏南京 210096 摘要:面对能源和水资源紧缺、环境日益恶化以及因原煤价格上涨而引起的发电亏损现状,作为能耗和排放大户的火力发电厂,如何合理地利用烟气余热,成为火电厂提高机组效率、减少煤耗而达到节能降耗的主要举措之一。基于此,文章介绍了通过加大对锅炉连排水和烟气余热进行综合利用的节能技术,并通过应用实例对该节能技术的经济、环保效益进行了分析。 关键词:火电厂;烟气;余热;综合利用;节能 1 火电厂低温余热利用技术 1.1 汽水系统余热利用技术 目前在锅炉汽水系统的余热回收利用上主要有两个方面:一是将连排水直接引入到加热器中用于加热锅炉给水,这种方式为常规的余热利用方式,利用效率较低;二是利用火电厂锅炉连排水中剩余的高品位热能进行做功,再驱动发电机生产电能,输出的水汽混合物再送至热水站,用于生产供居民使用的热水或供暖,这种方式能够使余热得到充分回收利用。这里的发电装置是利用连排水余热加热螺杆膨胀动力机,再通过联轴器带动发电机发电的热能利用系统。螺杆膨胀动力机构造及工作原理如图1所示: 做功完后排出的高温水汽混合物首先进入机内阴阳螺杆齿槽A,使螺杆发生转动,随着螺杆的转动,齿槽A逐渐旋转至B、C、D位置,在此过程中由螺杆封闭的容积逐渐增大,热水得以降压、降温而膨胀做功,最后从后端齿槽E排出,而做功产生的旋转动力由阳螺杆通过联轴器输出给发电机,带动发电机发电。 1.2 锅炉排烟系统的余热利用技术 我国正在运行的火电厂中,锅炉排烟温度一般都在125℃~150℃之间,排烟温度偏高而导致的热能损失已经成为火电厂面临的困境之一。而目前对这部分余热的回收大多采用的是在排烟系统中安装烟气冷却器,通过空气或水等导热介质将余热传输至锅炉给水系统或进气系统,对助燃空气、冷凝水进行加热而达到节能的目的。但是由于烟气冷却之后会使烟气中的部分SO2等酸性腐蚀性气体结露而对管壁等造成腐蚀,因而在实际应用中仍有很多问题需要解决。经过该冷却器的高温烟气和其内部翅片管束中的冷水进行热置换,使水得到加热。该冷却器主要分为高低温设置于除尘器的前后,具体布置如图2所示。这种将冷却器按照高、低温段分开布置,并将高温段布置在除尘器之前,将低温段布置在除尘器之后的方式,能够通过布置于除尘器之前的高温段冷却器将烟气温度降至120℃左右,从而提高其后面除尘器的效率,使其除尘效果更好、能耗更低,并且对使用布袋式除尘器的装置而言,由于进入的烟气温度降低可以延长其使用寿命;而位于除尘器之后的冷却器则可以对烟气进行深度冷却,并将余热充分利用。 1.锅炉; 2.暖风机; 3.空气预热器; 4.烟气冷却器; 5.静电除尘器; 6.烟气冷却器; 7.脱硫塔; 8.耐酸泵; 9.湿烟囱 图2 分高低温布置在除尘器前后的冷却器示意图 采用这种冷却器布置策略的余热回收装置主要使用于以下三种情况:一是除尘器采用布袋式除尘器而对烟气温度较敏感的新建工程中;二是除尘器进气温度在130℃~150℃之间或更高,而且增压风机有400Pa上下裕量的改造工程中;三是烟气温度在130℃上下,在除尘器后方安装高低温一体型冷却器空间不够,且增压风机有400Pa上下裕量的改造工程中。 2 余热利用技术应用实例分析 2.1 汽水系统的余热利用实例 以某火电厂2×200MW机组为例,其额定蒸发量为670t/h,2台锅炉的设计连排流量为12t/h,实际运行流量为8~10t/h。对其采用螺杆膨胀动力发电装置改造之后,初期运行一台锅炉,并利用汽包排污阀来控制连排流量,使其达到装置设计要求,这样发电装置发电功率达到200kW。通过运行测试确定该装置的投入未对汽轮机发电机组造成不良影响,且机组运行安全可靠,实现了无人值守。应用效果得到验证后对另一台锅炉开展改造,投运后2台锅炉正常运行时,发电装置发电功率可达300kW的满负荷额定容量运行。 应用效果分析:在2台锅炉正常运行情况下按发电功率为300kW计算,刨去发电装置自损耗1.1kW,按锅炉全年运行6500h,上网电价按0.35元/(kW·h)的情况下,采用该系统可以增加发电量(300-1.1)×6500=194.285万度,可获收益68.0万元,而且同时还向社会提供了大量的热水。这样按机组的发电煤耗率为3209/(kW·h)计算,年可节省标煤621.71t。若按每吨煤燃烧要排放CO21.98t计算,每年可以

溴化锂直燃机烟气余热利用计算方法

烟气余热回收热量计算方法 一.烟气余热回收热量Q的计算 1.烟气的平均比热:Cp 烟气的入口温度T1时的比热C1 烟气的出口温度T2时的比热C2 烟气的平均比热Cp=(C1+C2)/2 2.烟气的质量流量:Vm(kg/h) 烟气入口温度T时的密度P 烟气的质量流量Vm= P*V 3.烟气换热量(显热):Q烟气 烟气换热量Q=Cp×Vm×△T=Cp×Vm×(T1-T2) 4.水蒸汽的凝结热量(潜热):Q凝水 天然气密度:0.642kg/m3;甲烷纯度为:90% 1kg甲烷燃烧产生2kg水蒸汽,1kg水蒸汽冷凝成水释放539kcal热量。 Q凝水=天然气量(m3/h)×0.642×90%×2×539 5. 烟气余热回收热量:Q=Q凝水+Q烟气 二.计算实例 例:某用户采用100万大卡直燃机组,额定制冷时排气温度为160℃。利用一台烟气板交对烟气余热进行回收利用将卫生热水由25℃加热至55℃,烟气通过烟气板交后排气温度降至75℃。 1.计算烟气换热量:Q烟气 烟气换热量Q烟气=Cp×Vm×△T=Cp×Vm×(T1-T2) 1万大卡燃料热值充分燃烧排气量为18m3; 100万大卡机组额定天然气用量为84.5m3/h,排气量V(m3/h)为:84.5×8600÷10000×18=1308 排气温度为160℃时,烟气质量流量Vm(kg/h): Vm=P×V=0.829×1308 =1084 烟气的平均比热Cp: 烟气入口温度为160℃时的比热C1:0.2590 烟气出口温度为75℃时的比热C2:0.2520 Cp=(C1+C2)/2=(0.2590+0.2523)/2=0.2555 烟气换热量Q烟气=Cp×Vm×△T =Cp×Vm×(T1-T2) =0.2555×1084×(160-75) =23541kcal 2. 计算水蒸汽凝水热量:Q凝水 Q凝水=84.5×0.642×90%×2×539=52632kcal 烟气余热回收热量: Q=Q烟气+Q凝水=23541+52632=76173kcal 3. 余热回收效率:76173÷(8 4.5×8600)×100%=10.4%三.烟气温度、密度、比热关系

烟气量计算

1-1:实际烟气量(标准状态、含水)的计算(适用于固、液体燃料) V K0=0.0889(C Y+0.375S Y)+0.265H Y-0.0333O Y V Y0=0.01866(C Y+0.375S Y)+0.79V K0+0.008N Y+0.111H Y +0.0124W Y+0.0161V K0 V Y=V Y0+1.0161(α-1)V K0 适用说明:本公式计算结果含有水份,不能引用于对照标准分析,应用于锅炉除尘水的计算。 1-2:干烟气量(标准状态、无水)的计算 V gy=0.01866(C Y+0.375S Y)+0.79V K0+0.008N Y+(α-1)V K0 式中:V K0—理论空气量(Nm3/kg); V Y0-理论烟气量(Nm3/kg); V Y -实际烟气量(Nm3/kg); V gy-干烟气体积(Nm3/kg); α-烟道处的过量空气系数; 适用说明:本公式计算结果不含水份,可用于对照标准分析,应用于锅炉污染物浓度的计算。 2:烟尘产污系数的计算 2-1:燃煤锅炉。 燃煤锅炉初始排放浓度,引用GB13271-2001《锅炉大气污染物排放标准》相关标准,详见下表(Ⅰ时段指2000年12月31日前;Ⅱ时段指2001年1年1日后)。 表1 燃煤锅炉烟尘初始排放浓度和烟气黑度限值 - 1 -

- 2 - 2-2:燃油锅炉。 考虑完全燃烧状态,燃油中的灰分完全排出。 G 烟尘=1000×A Y G 烟尘-烟尘产生系数,kg/t-油; A Y -燃油中的含灰量,%; 3:SO 2产污系数的计算 P S G Y SO ???=100022 2SO G -SO 2产污系数,kg/t-燃料; S Y -燃料中含硫量,kg/t-燃料; P -燃料中硫的转化率,%;(P 燃煤=0.8;P 燃油=1)

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

锅炉烟气量、烟尘、二氧化硫的计算

一、烟气量的计算: 0V -理论空气需求量(Nm 3 /Kg 或Nm 3 /Nm 3 (气体燃料)); ar net Q ?-收到基低位发热量(kJ/kg 或kJ/Nm 3 (气体燃料)); daf V -干燥无灰基挥发分(%) ; V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); α-过剩空气系数, α=αα?+0。 1、理论空气需求量 daf V >15%的烟煤: daf V <15%的贫煤及无烟煤: 61.04145Q ar net 0+= ?V 劣质煤ar net Q ?<12560kJ/kg : 455.04145 Q ar net 0+= ?V 液体燃料: 21000Q 85.0ar net 0+? =?V 气体燃料,ar net Q ?<10468kJ/Nm 3: 1000 Q 209.0ar net 0?? =V 气体燃料,ar net Q ?>14655kJ/Nm 3 : 25.01000 Q 260.0ar net 0-? =?V 2、实际烟气量的计算 (1)固体燃料 无烟煤、烟煤及贫煤: 0ar net Y )1(0161.177.04187 1.04Q V V -++?α= ar net Q ?<12560kJ/kg 的劣质煤: 0ar net Y )1(0161.154.04187 1.04Q V V -++?α= (2)液体燃料: 0ar net Y )1(0161.14187 1.1Q V V -+?α= (3)气体燃料: ar net Q ?<10468kJ/Nm 3时: 0ar net Y )1(0161.10.14187 0.725Q V V -++?α= ar net Q ?>14655kJ/Nm 3 时: 0ar net Y )1(0161.125.04187 1.14Q V V -+-?α=

锅炉废气排放量计算

1.工业废水排放量=工业新鲜用水量×80% 2.燃煤废气量计算公式∶ V=(α+b)×K×Q低×B÷10000 式中:V—燃煤废气量(万标立方米) α—炉膛空气过剩系数(见表1) b—燃料系数(见表2) K=1.1 Q低—煤的低位发热值,取Q低=5200大卡 B—锅炉耗煤量(吨) 3.燃煤二氧化硫排放量计算公式∶ G=2×0.8×B×S×(1-η) 式中:G—燃煤二氧化硫排放量(吨) B—锅炉耗煤量(吨) S—煤中全硫分含量。 η—二氧化硫脱除率。 4.煤粉炉、沸腾炉和抛煤机炉燃煤烟尘产生量计算公式∶ G= ( B×A×dfh ) / ( 1-Cfh ) ×1000 其他炉型燃煤烟尘产生量计算公式∶ G=B×A×dfh×1000 燃煤烟尘排放量=G×(1-η) 燃煤烟尘排放量=G×η 式中:G—燃煤烟尘产生量(千克)

B—锅炉耗煤量(吨) A—煤的灰份,有化验的取实测值、无化验的取A=26.99% dfh—烟气中烟尘占灰份量的百分数(见表3),取中间值 Cfh—烟尘中可燃物的百分含量,煤粉炉取4~8%、沸腾炉取15~25% η—除尘器的除尘效率。 5.燃煤氮氧化物产生量计算公式∶ GNOX=1630×B(β×n+10-6×Vy×CNOX) 式中:GNOX—燃煤氮氧化物产生量(千克) B—锅炉耗煤量(吨) β—燃料氮向燃料型NO的转变率(%);与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%,燃油锅炉32~40%,煤粉炉20~25%。 n—燃料中氮的含量(%),见表4 Vy—1千克燃料生成的烟气量(标米3/千克),取7.8936标米3/千克。 CNOX—燃烧时生成的温度温度型NO的浓度(毫克/标米3),通常可取70ppm, 即93.8毫克/标米3。 6.燃煤炉渣产生量≈耗煤量÷3 7.对于一般锅炉燃烧一吨煤,约产生下列污染物: Ⅰ产生0.78936万标立方米燃料燃烧废气; Ⅱ产生32.00千克二氧化硫; Ⅲ产生0.33333吨炉渣; Ⅳ产生53.98千克烟尘; Ⅴ产生9.08千克氮氧化物。

火力发电厂烟气余热利用的分析与应用

火力发电厂烟气余热利用的分析与应用 随着我国经济与科技的发展,对资源的需求越来越大,而由于我国资源一直处于供不应求的状态,使得我国国民越来越重视对资源的有效利用,研发出了很多节能减排的科技手段。火力发电厂是我国非常重要的发电来源,在传统的火力发电当中,其损耗的能源非常多,远大于其转化的电能,在发电过程中大量资源被浪费,与我国节约能源的政策完全不符。如何改变以往的火力发电模式,将多余的烟气余热加以有效利用成为了行业内讨论的重点话题。本文就如何确保煙气余热的有效利用做了简要分析,并详细介绍了烟气余热利用系统的一些理论,望能给业内人士提供一些参考和建议。 标签:火力发电厂;烟气余热;能源利用 所谓火力发电厂其主要发电手段就是将可以燃烧的物体进行燃烧加工,让其转化为可供人们使用的电能。在其发电过程中仪器设备和操作工艺严重影响了能源的转化效率。我国大部分火力发电厂仍然使用的是传统的锅炉发电设备,这类设备在使用中并不能有效的保证能源的高效率转化,如在锅炉的排烟过程中,能源就会被大量的浪费。因此改良发电设备,研究更有利于转化的技术和器材与如何利用这些多余的能源已经成为当前行业内研究的重要方向,为了达到节约用能的目的,业内人士必须不断深入研究,来确保有更好的方式被运用到实际火力发电当中。 一、烟气余热利用条件分析 将火力发电中的烟气余热高效利用是有一定条件的,如果不能满足烟气余热利用的条件,那么就很难保证烟气余热能够被有效收集,也会降低电能的转化率。当前要想达到烟气余热的有效利用,一般需要满足以下条件: (一)确保设备的防腐蚀性 在锅炉设备排出的烟气当中,其存在很多具有腐蚀性的酸性气体,这些酸性气体在排出过程中会导致发电厂很多设备被腐蚀,不仅影响发电厂的发电效率,还影响烟气的排出率,导致大部分烟气在排出过程中就被损耗,故火力发电厂必须采取一定措施来保证设备的防腐蚀性。首先发电厂的工作人员应该先对发现酸性气体的位置进行标记,记录好出现问题的设备,然后再使用热水再循环工艺来解决仪器表面的问题,防止仪器在高温情况下和酸性气体发生腐蚀反应。此外工作人员还可以安装低温省煤器,通过仪器降温来达到防腐的目的,一般可将低温省煤气安装在烟气的出口和入口处,在两处进行烟气温度的处理,大大降低了最终的烟气温度,在某些情况下低温省煤气还可被安装在烧煤设备上,工作人员可以根据设备的反应迅速对烟气的温度进行控制,在防止设备腐蚀的同时,还能有效地提高能源的转化效率,也同时提高了烟气的排出率[1]。 (二)保证设备的干燥和整洁

(完整word版)电厂余热利用

用于采暖供热的热源; 水源热泵系统的构建则是通过对水源热泵的利用来实现对电厂循环水余热的回收,进而再实现利用;而水源热泵本身则是将低温水作为热源,进而实现对建筑物的供热与供冷,实际运行的过程中,则是以部分电能与机械能的消耗作为补偿,进而以热力循环系统将低温水进行回收再利用,这就为实现节能环保提供了新的技术途径。这一装置在实际应用的过程中,则更适合应用于同时需要供热与供冷的建筑中。 热、电、冷联产分布式能源技术,即将热、电、冷纳入同一个生产系统, 通过对能源的梯级利用, 提高能源的综合利用效率; 而将煤、燃气等一次能源用于发电,将发电后的余热用于采暖或制冷, 将更低品位的能源用于供应生活热水, 就是热、电、冷联产。这样既利用了能的数量, 也利用了能的质量, 是符合总能系统原则的。 热电联产是指发电厂既生产电能,又利用汽轮发电机产生的蒸汽对用户供热的生产方式,是同时生产电能和热能的工艺过程,比分别生产电和热能要节约很多燃料。 冬季电厂余热用于北方地区农业生产 由水源热泵提高温度后的循环水为农业日光大棚供热。而目前,由于在冬季北方日光大棚的农业生产效益受到环境气候条件的限制,其生产效率比较低,影晌了市场的农产品供应。通过这种方式,既能减少对供热系统的投资,又可以减少供热系统的热量损失。 在我国的华北、东北、西北地区.农业生产无霜期短,每年从lO月份到第二年的E月份不宜进行种植生产,时间长达半年之久。为了延长生产时问,人们建造了日光温室大棚进行种植、养殖。日光温室大棚种植、养殖给人们的生活带来了极大的变化。但是大棚在北方高寒地区受气温影响很大,棚内温度低,存在温差过大,生产并不尽如人意,特别在寒冷冬季.大棚里就得生火加温,由于热源不稳定,常造成植物生长期长、产量低、品质差,甚至出现农作物被冻死的现象由此造成了北方地区冬季的蔬菜、水果等农业产品价格较高.影响人们生活水平的提高。

燃煤锅炉烟气量计算

燃煤锅炉烟气量计算 2010-12-10 14:43:55| 分类:默认分类 | 标签:燃烧 so2 二氧化硫排放量烟尘|举报|字号订阅 煤和油类燃烧产生大量烟气和烟尘,烟气中主要污染物有尘、二氧化硫、氮氧化物和一氧化碳等。各种污染物排放量的经验数据和计算方法如下: 通常情况下,煤中的可燃性硫占全硫分的70%~90%,一般取80%。根据硫燃烧的化学反应方程式可以知道,在燃烧中,可燃性硫氧化为二氧化硫,1克硫燃烧后生成2克二氧化硫,其化学反应方程式为: S+O2=SO2 根据上述化学反应方程式,有如下公式: G=2×80%×W×S%×(1-η)=16WS(1-η) G——二氧化硫排放量,单位:千克(Kg) W——耗煤量,单位:吨(T) S——煤中的全硫分含量 η——二氧化硫去除率,% 【注:燃油时产生的二氧化硫排放量G=20WS(1-η)】 例:某厂全年用煤量3万吨,其中用甲地煤1.5万吨,含硫量0.8%,乙地煤1.5万吨,含硫量3.6%,二氧化硫去除率10%,求该厂全年共排放二氧化硫多少千克。 解:G=16×(15000×0.8+15000×3.6)×(1-10%) =16×66000×0.9=950400(千克) 经验计算: 根据生产过程中单位产品的经验排放系数进行计算,求得污染物排放量的计算方法。只要取得准确的单位产品的经验排放系数,就可以使污染物排放量的计算工作大大简化。因此,我们要通过努力,不断地调查研究,积累数据,以确定各种生产规模下的单位产品的经验排放系数。如生产1吨水泥的粉尘排放量为20~120千克。

废气: 燃烧1吨煤,排放9000~12000万Nm3燃烧废气;燃烧1吨油,排放10000~18000万Nm3废气,柴油取小值,重油取大值。 SO2: 燃烧1吨煤,产生16S千克SO2。S为燃煤硫份,一般为0.6~1.5%。如硫份为1.5%时,燃烧1吨煤产生24千克SO2 。 燃烧1吨油,产生20S千克SO2。S为燃油硫份,一般为重油0.5~3.5%,柴油0.5~0.8%。如硫份为2%时,燃烧1吨油产生40千克SO2 。 烟尘: 燃烧1吨煤,产生1.5A~4A千克烟尘。A为燃煤灰份,一般为15~30%,。如灰份为15%时,燃烧1吨煤产生30千克烟尘(此算法仅适用于手烧炉、链条炉、往复炉、振动炉,一般振动炉在3A,其余一般在2A)。 燃烧1吨柴油,产生1.2千克烟尘;燃烧1吨重油,产生2.7千克烟尘。 注:计算SO2、烟尘排放量时要考虑除尘设施的去除率η,公式如下 排放量=产生量×(1-η) 炉渣:燃烧1吨煤,产生0.144A/15吨炉渣。如燃煤灰份为30%时,燃烧1吨煤产生0.288吨炉渣(此算法仅适用于手烧炉、链条炉、往复炉。振动炉经验系数为燃烧1吨煤产生0.126A/15吨炉渣)

烟气余热利用方案说明

烟气节能器方案简要说明 xx公司在xx新建一条生产线,该生产线的一部分工艺采用天然气作为燃料进行加热,产生的废气目前通过烟道排出,浪费了部分能源。由于新厂地处东北,冬季气温低需要进行供暖,目前使用4台额定功率523kW的燃气常压热水锅炉提供热水满足供暖。为了充分利用能源,减少排放和生产成本,拟对生产线废气余热进行部分回收,以降低燃气常压热水锅炉的燃气消耗。 一、 概况 铁岭新厂共有两条生产线,均用天然气作为燃料进行供热。每条生产线使用后的废气流量为3000m3/h,温度约175℃,通过500×600mm的矩形烟道排放,烟道位置和走向如下图。 箭头所示位置可安装烟气节能器,上下距离约2000mm。 新厂车间供暖面积10000m2,办公区供暖面积2000m2,使用4台功率523Kw、天然气耗量53.5m3/h、进/回水温度85/60℃的燃气常压热水锅炉并联在供热管网的循环管路上进行供暖和供热,整个管网用一台流量187m3/h、扬程44m的离心泵驱动。

二、 烟气节能器 烟气热水器回收废气一部分余热,将一部分供暖循环水从60℃加热到85℃,用来代替部分天然气。换热器形式为管壳式,采用双金属复合管作为传热元件,水平装配。烟气从热水器的下方进入,从热水器的上方流出,供暖循环水从热水器的上方进入,从热水器的下方流出,形成逆向流动。烟气节能器的设计参数如下表: 节能器吊挂在烟道中间,烟侧进出口与烟道焊接在一起。节能器的上方有压缩气体吹扫口,在节能器下方的烟气入口处安装可抽出的规格为50目的单层不锈钢滤网。 三、 实施步骤

1.在厂房的主横梁上焊接水平梁,然后向上焊接斜拉梁,向 下焊接吊挂梁; 2.断开烟道,将节能器吊装到烟道中间,并与烟道焊接,同 时节能器的吊耳与吊挂梁进行焊接; 3.从供暖循环水主管引水管到节能器的进水和出水口,并用 法兰连接; 4.引一压缩空气管道连接到节能器附近并与吹扫口连接。 四、 节约燃气预测 序号项目单位数值 1 节能器换热功率kW 480 2 节能器每年工作时间h 2200 3 节能器年回收热量kJ 3.8×109 4 节约天然气量m313.35×104 2台节能器每年可节约天然气大约26.7×104立方米。 五、 经济效益简单预估 1.项目收益估算 注:采暖季按3个月计算,在东北通常是4个月 2.项目静态投资回收期估算

电厂余热利用

t h e i r b e i n g a r e g o o d f o r s 用于采暖供热的热源; 水源热泵系统的构建则是通过对水源热泵的利用来实现对电厂循环水余热的回收,进而再 实现利用;而水源热泵本身则是将低温水作为热源,进而实现对建筑物的供热与供冷,实 际运行的过程中,则是以部分电能与机械能的消耗作为补偿,进而以热力循环系统将低温水进行回收再利用,这就为实现节能环保提供了新的技术途径。这一装置在实际应用的过程中,则更适合应用于同时需要供热与供冷的建筑中。 热、电、冷联产分布式能源技术,即将热、电、冷纳入同一个生产系统, 通过对能源的梯级利用, 提高能源的综合利用效率; 而将煤、燃气等一次能源用于发电,将发电后的余热用于采暖或制冷, 将更低品位的能源用于供应生活热水, 就是 热、电、冷联产。这样既利用了能的数量, 也 利用了能的质量, 是符合 总能系统 原则的。 热电联产是指发电厂既生产电能,又利用汽轮发电机产生的蒸汽对用户供热的生产 方式,是同时生产电能和热能的工艺过程,比分别生产电和热能要节约很多燃料。 冬季电厂余热用于北方地区农业生产 由水源热泵提高温度后的循环水为农业日光大棚供热。而目前,由于在冬季北方日光大棚的农业生产效益受到环境气候条件的限制,其生产效率比较低,影晌了市场的农产品供应。通过这种方式,既能减少对供热系统的投资,又可以减少供热系统的热量损失。 在我国的华北、东北、西北地区.农业生产无霜期短,每年从lO月份到第二年的E月份 不宜进行种植生产,时间长达半年之久。为了延长生产时问,人们建造了日光温室大棚进 行种植、养殖。日光温室大棚种植、养殖给人们的生活带来了极大的变化。但是大棚在北 方高寒地区受气温影响很大,棚内温度低,存在温差过大,生产并不尽如人意,特别在寒冷冬季.大棚里就得生火加温,由于热源不稳定,常造成植物生长期长、产量低、品质差,甚至出现农作物被冻死的现象由此造成了北方地区冬季的蔬菜、水果等农业产品价格较高.影响人们生活水平的提高。

相关文档
最新文档