聚氨酯发泡资料白料

聚氨酯发泡资料白料
聚氨酯发泡资料白料

多元醇和异氰酸酯是整个聚氨酯反应的最主要两种原料。而聚酯多元醇就是一种常用的多元醇之一。需要测定聚酯多元醇的酸值和羟值,对控制聚氨酯反应的重要性是不言而喻的。羟值反应的聚酯多元醇的分子量,酸值大小影响与异氰酸酯的反应性。

一:聚酯多元醇酸值

一般,聚酯多元醇呈弱酸性,酸值的含义是:每克样品中酸性成分所消耗的KOH的摩尔质量(mg)。单位是:mgKOH/g。

1)测试聚酯多元醇酸值操作步骤:

精确称取聚酯多元醇样品2-4g,加入混合试剂50ml溶液,充分摇均匀,加2-4 d PP指示剂,以0.1N 标准KOH溶液进行滴定,直至出现粉红色15 s 不变为滴定终点,记录滴定值。同时做空白实验。

2)计算公式:

AV(酸值KOHmg/g)=56.1×f ×(V样-V空)÷M样重

f:0.1N 标准KOH溶液的修正值。

56.1:KOH的摩尔质量。

3)分析试剂的配制:

0.1N 标准KOH溶液的配制:精确称取分析级KOH 3.3±0.0001g,加蒸馏水至500ml,摇匀备用。

0.1N 标准KOH溶液的标定(修正值f):

精确称取氨基磺酸1.5±0.0001g于三角瓶内,加适量蒸馏水(约90ml)进行溶解,滴入2-4 d PP指示剂,一所配制的0.1N 标准KOH溶液进行滴定,记录滴定值,则

F值=W/ V ×103

其中W:氨基磺酸称取量V:滴定值

混合试剂的配制:a无水乙醇与醋酸乙酯体积比1:1混合均匀即可;b 甲苯与醋酸乙酯体积比1:1混合均匀亦可。

二:聚酯多元醇的羟值

在聚氨酯合成中,聚酯多元醇羟值是一个重要指标。只有明确了解聚酯多

元醇的羟值,才能确定聚酯多元醇的分子量。羟值含义是:每克样品所消耗的K OH摩尔质量数。单位是mgKOH/g。

1)测试聚酯多元醇羟值的操作步骤(苯酐-吡啶法)。

精确称取聚酯多元醇样品2-5g于磨口锥形三角瓶内,用移液管精确加入苯酐-吡啶酰化剂20ml。摇匀后于烘箱(120℃)加热一小时,取出冷却后,加入蒸馏水90ml震荡,使之充分溶解。再以5 ml酰化剂对瓶壁进行清洗。加2-4 d PP指示剂,以0.5N 标准KOH溶液进行滴定,直至出现粉红色15 s不变为滴定终点,记录滴定值,同一样品分别做两次。并做空白实验。

2)计算公式:

OH(羟值KOHmg/g)=(V空-V样)×f ×56.1/ m样量

f:0.5N 标准KOH溶液的修正值。

56.1:KOH的摩尔质量。

3)分析试剂的配制:

0.5N 标准KOH溶液的配制:精确称取分析级KOH 16.5±0.0001g,加蒸馏水至500ml,摇匀备用。

0.5N 标准KOH溶液的标定(修正值f):精确称取氨基磺酸1.5±0.0001g 于三角瓶内,加适量蒸馏水(约90ml)进行溶解,滴入2-4 d PP指示剂,一所配制的0.5N 标准KOH溶液进行滴定,记录滴定值,则

F值=W/ V ×20.6

其中W:氨基磺酸称取量V:滴定值

苯酐-吡啶酰化剂配制:称取42g邻苯二甲酸酐和6g咪唑溶于300ml吡啶中,混合均匀后贮存于棕色瓶内备用。

注:本法可用于聚醚之酸值和羟值分析检测。所得数据比其他方法相对要可靠。

三:聚酯多元醇其它分析

1)分子量

M分子量=56.1×n ×1000/ 聚酯多元醇校正羟值

聚酯多元醇校正羟值=羟值+酸值

2)水分用水份分析仪检测之。

3)色度用比色法分析之。

4)粘度用粘度仪测定。

聚氨酯计算公式中有关术语及计算方法

1. 官能度

官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子

团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。

2. 羟值

在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。

从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。

在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即

羟值校正= 羟值分析测得数据+ 酸值

羟值校正= 羟值分析测得数据-碱值

对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。

但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,

务必采用校正羟值。

严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。

例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值

羟值校正= 224.0 + 1.0 + 12.0 = 257.0

3. 羟基含量的重量百分率

在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。

羟值= 羟基含量的重量百分率×33

例,聚酯多元醇的OH%为5,求羟值

羟值= OH% ×33 = 5 ×33 = 165

4. 分子量

分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。

(56.1为氢氧化钾的分子量)

例,聚氧化丙烯甘油醚羟值为50,求其分子量。

对简单化合物来说,分子量为分子中各原子量总和。

如二乙醇胺,其结构式如下:

CH2CH2OH

HN<

CH2CH2OH

分子式中,N原子量为14,C原子量为12,O原子量为16,H原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105

5. 异氰酸基百分含量

异氰酸基百分含量通常以NCO%表示,对纯TDI、MDI来说,可通过分子式算出。

式中42为NCO的分子量

对预聚体及各种改性TDI、MDI,则是通过化学分析方法测得。

有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的

脲时,1克分子胺消耗的异氰酸酯的克数。

胺当量和异氰酸酯百分含量的关系是:

6. 当量值和当量数

当量值是指每一个化合物分子中单位官能度所相应的分子量。

如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值

在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。

7. 异氰酸酯指数

异氰酸酯指数表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R 表示。

式中:W异为异氰酸酯用量

W醇为多元醇用量

E异为异氰酸酯当量

E醇为多元醇当量

例,根据下列配方,计算异氰酸酯指数R。

水当量为9

聚氨酯泡沫塑料计算公式及其应用

1. 聚氨酯泡沫收率计算方法

聚氨酯泡沫塑料制造时物料变动情况可按下式表示:

上式4个方程式中左边为使用的原料,右边为产物。

⑷式中:

A:为催化剂,稳定剂,泡沫稳定剂等物料中不挥发物质。

B:为催化剂,稳定剂,泡沫稳定剂等物料中挥发物质。

从以上方程式看出,聚氨酯化合物是最终产品,CO2与CCL3F在发泡过程中损失,其他助剂要看是属于挥发组份还是非挥发组份。

聚氨酯泡沫塑料的收率的计算:

在实际计算中要分析损失物料:

⑴式中实际无损失,⑵式中CO2逸出,⑶式中CCL3F汽化,⑷式中B物质的挥发部分损失。

于⑵式中1公斤克分子的水将损失1公斤克分子的CO2 ,其损失量为W公斤。

⑶式中损失的为F公斤。

则 F = 发泡剂CCL3F的全量

⑷式中损失的组份为B公斤。

则总损失量:W+F+B

以上收率用百分率表示:

例以普通软泡制备过程为代表做的收率计算。

当发泡配方为:

计算:

F=5.0

B=0

从计算说明,按以上配方发泡,当使用原料一百公斤时则制得泡沫塑料为90.5公斤。

2. 异氰酸酯用量的计算

在聚氨酯泡沫配方中,异氰酸酯用量是根据配方中多元醇的质量指标、水的用量来计算的。

⑴聚氨酯硬泡配方异氰酸酯用量的计算

异氰酸酯用量计算方法

每100克多元醇所需的异氰酸酯用量如下:

式中:W—异氰酸酯用量

G—异氰酸酯当量值

g—多元醇当量值

TDI的当量值为87、MDI的当量值为125、PAPI的当量值为126~12 7。

则多元醇所需的异氰酸酯用量:

式中:W为异氰酸酯用量

W醇为多元醇用量

与水反应所需的异氰酸酯用量公式

式中:G为异氰酸酯当量值

W水为水的当量值

9为水的当量值

发泡配方中所需异氰酸酯总量

聚氨酯泡沫制备过程中,除了多元醇和水需用的异氰酸酯用量外,还需考虑异氰酸酯过量程度(即异氰酸酯指数)及纯度。

因此,聚氨酯泡沫塑料中所需异氰酸酯总用量公式如下:

式中:W总为所需异氰酸酯重用量

G为异氰酸酯当量值

W醇为配方中多元醇的总用量

W水为配方中水的总用量

R为异氰酸酯指数

P为异氰酸酯纯度

对普通聚氨酯硬泡来说,指数R一般为1.05,异氰酸酯的纯度由于生产厂家的不同而有所

变化,若不特别说明,在计算时,PAPI 的纯度通常认定为90%。例,根据下列配方计算出PAPI的用量:

求PAPI用量

= 905.6g

异氰酸酯用量的简单算法

在硬泡中,异氰酸酯通常采用PAPI,则G为126,R一般选用1.05,纯度P为90%,则可简化为:

W总=W醇×羟值×0.00263+16×W水

例,根据下列配方计算PAPI的用量

PAPI

W总=W醇×羟值×0.00263+16×W水

W总=500×500×0.00263+100×770×0.00263+16×3

W总=907g

隔热保温层厚度计算

聚氨酯泡沫塑料作为隔热保温材料已广泛用于冷库、油管、保温管道

等。

正确地确定隔热层厚度将大大地节省原料,降低材料费用。

绝热工程包括保温和保冷两方面的内容。

经济厚度计算方法是一种最广泛使用的方法。

把绝热材料的投资和热冷损失的费用综合考虑后得出一种经济厚度,此时保温与保冷费用和热损失费用之和为最小。

一般控制绝热层表面单位面积的热损失不大于规定值。

据国家计委节能局、国家经委能源局召开的全国供热系统节能座谈会提出的“供热系统节能暂行规定”(讨论稿),对于保温管道与设备生产允许最大散热损失为:

⑴外径小于或等于1000m/m的设备和管路的厚度计算公式:

t s= t a+A

a1

式中,D1:保温层外径,m

D0:保温层内径,m

A:散热量Kcal/m2·h(规定值)

λ:保温材料导热系数,Kcal/m·h·℃

a1:传热系数Kcal/m2·h·℃

t f:管内介质温度,℃

t s:保温层表面温度,℃

t a:环境温度℃(对保温采用全年平均气温,对保冷、环境温度和相对温度采

用夏季平均值)

X:保温层厚度,m

⑵ 外径大于1000m/m的设备和管道以及平面计算公式:

在实际计算中,保温层表面温度t s如何确定与各方面都有关系。

从能耗考虑,t s与大气温度t0越接近越好,但是,相应的其投资费用也越大。

反之,则能源又随投资费用的减少而大幅度的增加。

因此,保温保冷层表面温度应分别高于大气温度和露点温度。

同时,式中a1的值(外部传热系数)对保温的场合往往直接取10,对保冷取7。

例1,某冷库,库内最低温度为-20℃,夏季平均气温为30℃,湿度为85%,采用聚氨酯泡沫作绝热材料,其厚度应为多少?

已知t f= -20℃ t a= 30℃λ=0.022 Kcal/m·h·℃ a1=7 Kcal/m 2·h·℃

t s的求法:

t s为绝热层表面露点温度,查阅饱和蒸汽压表得:

30℃时的饱和蒸汽压为31.824mmHg柱

31.824×0.85=27.05mmHg

在27.05mmHg下的饱和温度为27.02℃(查表)因为在保冷时t s应略高于露点温度,故ts=27.2+0.5℃或27.2+1℃,代入:

如t s高于露点温度1℃,则:

所以,以上冷库的绝热层厚度应为6.5厘米以上。

消耗TDI的计算公式

卓创资讯王延哲编辑于:2011-2-16 11:06:10

聚氨酯硬泡配方基础交流之组合料配比之设计、计算、试验、试料

硬泡虽不比软泡、自结皮、弹性体:处处离不开计算----却也并不都是漫无目标地“试”探,个中诀窍想摸出个大概至少要半年。对于身处关键岗位的朋友(比如管配料、检验、产品开发)来说这些都不是难事-----(有条件)大不了多做试验呗!但对于那些刚涉足这个领域的或者条件不太好的弟兄,难度就忒大;毕竟认知的最佳途径是“比对”,有几个参照物理解起来省力气多了。知道“什么是合适的、正常的”已经很不错了,但能解析出“为什么是合适的、为什么不正常”那就要付出多倍的汗水与心血。

本部分设定了隐藏,您已回复过了,以下是隐藏的内容

硬泡虽不比软泡、自结皮、弹性体:处处离不开计算----却也并不都是漫无目标地“试”探,个中诀窍想摸出个大概至少要半年。对于身处关键岗位的朋友(比如管配料、检验、产品开发)来说这些都不是难事-----(有条件)大不了多做试验呗!但对于那些刚涉足这个领域的或者条件不太好的弟兄,难度就忒大;毕竟认知的最佳途径是“比对”,有几个参照物理解起来省力气多了。知道“什么是合适的、正常的”已经很不错了,但能解析出“为什么是合适的、为什么不正常”那就要付出多倍的汗水与心血。

前些日子就想把“大郎烧饼手艺”拿出来献丑,总在最后关头叹息止步:谁不怕出丑呀!本人终究没在学院里研究过硬泡,设计、计算的那一套全是有异于大师著作。好在做过现场工作,现在也想通了:都不干技术活了,要是出了丑还是能弄明白自己“为什么技术饭吃不下去了”----就这一点,值!

以上是废话,下面说正事

[ 关于计算]

一、硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”合理,翻译成土话就是“按比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在内。

理论各组分消耗的-NCO摩尔量计算如下

㈠主料:聚醚、聚酯、硅油(普通硬泡硅油都有羟值,据说是因为加了二甘醇之类的)配方数乘以各自的羟值,然后相加得数Q

S1 = Q÷56100

㈡水:水的配方量w

S2 = W÷9

㈢参与消耗-NCO的小分子物:配方量为K,其分子量为M,官能度为N

K × N

S3 = ————(用了两种以上小分子的需要各自计算再相加)

M

S = S1+S2+S3

基础配方所需粗MDI份量 [(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.0)

其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO消耗量肯定不止这个数,比如有三聚催化剂的情况下到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就好严重的;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真!

[试验设计] 之“冰箱、冷柜”类

本组合料体系重要要求及说明

1、流动性要好,密度分布“尽量”均匀。首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S 以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。

2、泡孔细密,导热系数要低。不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与-NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而使泡孔细密)其次聚醚本身单独发泡其泡孔结构要好(例如以山梨醇为起始的635SA比蔗糖为起始的1050泡孔要细密均匀得多,还有含有甘油为起始剂的835比1050细密,即便是所谓的4110牌号的聚醚,含丙二醇起始的比二甘醇的好。聚醚生产的聚合催化剂不同,所生产出的聚醚性状也有差异:氢氧化钾催化的聚醚分子量分布比二甲胺催化的要窄。另外:聚醚生产时的工艺控制-----温控、拉真空、PO--也就是环氧丙烷流量控制、PO原料质量、后处理等等-----也都会直接影响聚醚发泡的泡孔结构)第三,可以考虑加入一些可以改善泡孔细密度的聚酯成份。第四,适当加入低粘度物调整总体粘度(如210聚醚)

3、耐低温抗收缩性要好这个无须赘言。一是官能度,总体平均要4以上。其次是发泡体成型后空间交联点分布均匀(直观解释是:主聚醚反应活性尽量相差不大,连续的近似的空间结构要稳定得多。)

聚氨酯发泡资料白料

多元醇和异氰酸酯是整个聚氨酯反应的最主要两种原料。而聚酯多元醇就是一种常用的多元醇之一。需要测定聚酯多元醇的酸值和羟值,对控制聚氨酯反应的重要性是不言而喻的。羟值反应的聚酯多元醇的分子量,酸值大小影响与异氰酸酯的反应性。 一:聚酯多元醇酸值 一般,聚酯多元醇呈弱酸性,酸值的含义是:每克样品中酸性成分所消耗的KOH的摩尔质量(mg)。单位是:mgKOH/g。 1)测试聚酯多元醇酸值操作步骤: 精确称取聚酯多元醇样品2-4g,加入混合试剂50ml溶液,充分摇均匀,加2-4 d PP指示剂,以0.1N 标准KOH溶液进行滴定,直至出现粉红色15 s 不变为滴定终点,记录滴定值。同时做空白实验。 2)计算公式: AV(酸值KOHmg/g)=56.1×f ×(V样-V空)÷M样重 f:0.1N 标准KOH溶液的修正值。 56.1:KOH的摩尔质量。 3)分析试剂的配制: 0.1N 标准KOH溶液的配制:精确称取分析级KOH 3.3±0.0001g,加蒸馏水至500ml,摇匀备用。 0.1N 标准KOH溶液的标定(修正值f): 精确称取氨基磺酸1.5±0.0001g于三角瓶内,加适量蒸馏水(约90ml)进行溶解,滴入2-4 d PP指示剂,一所配制的0.1N 标准KOH溶液进行滴定,记录滴定值,则 F值=W/ V ×103 其中W:氨基磺酸称取量V:滴定值 混合试剂的配制:a无水乙醇与醋酸乙酯体积比1:1混合均匀即可;b 甲苯与醋酸乙酯体积比1:1混合均匀亦可。 二:聚酯多元醇的羟值 在聚氨酯合成中,聚酯多元醇羟值是一个重要指标。只有明确了解聚酯多

元醇的羟值,才能确定聚酯多元醇的分子量。羟值含义是:每克样品所消耗的K OH摩尔质量数。单位是mgKOH/g。 1)测试聚酯多元醇羟值的操作步骤(苯酐-吡啶法)。 精确称取聚酯多元醇样品2-5g于磨口锥形三角瓶内,用移液管精确加入苯酐-吡啶酰化剂20ml。摇匀后于烘箱(120℃)加热一小时,取出冷却后,加入蒸馏水90ml震荡,使之充分溶解。再以5 ml酰化剂对瓶壁进行清洗。加2-4 d PP指示剂,以0.5N 标准KOH溶液进行滴定,直至出现粉红色15 s不变为滴定终点,记录滴定值,同一样品分别做两次。并做空白实验。 2)计算公式: OH(羟值KOHmg/g)=(V空-V样)×f ×56.1/ m样量 f:0.5N 标准KOH溶液的修正值。 56.1:KOH的摩尔质量。 3)分析试剂的配制: 0.5N 标准KOH溶液的配制:精确称取分析级KOH 16.5±0.0001g,加蒸馏水至500ml,摇匀备用。 0.5N 标准KOH溶液的标定(修正值f):精确称取氨基磺酸1.5±0.0001g 于三角瓶内,加适量蒸馏水(约90ml)进行溶解,滴入2-4 d PP指示剂,一所配制的0.5N 标准KOH溶液进行滴定,记录滴定值,则 F值=W/ V ×20.6 其中W:氨基磺酸称取量V:滴定值 苯酐-吡啶酰化剂配制:称取42g邻苯二甲酸酐和6g咪唑溶于300ml吡啶中,混合均匀后贮存于棕色瓶内备用。 注:本法可用于聚醚之酸值和羟值分析检测。所得数据比其他方法相对要可靠。 三:聚酯多元醇其它分析 1)分子量 M分子量=56.1×n ×1000/ 聚酯多元醇校正羟值 聚酯多元醇校正羟值=羟值+酸值 2)水分用水份分析仪检测之。

阻燃HFO-1233zd体系聚氨酯硬泡喷涂组合料的研制

阻燃HFO-1233zd体系聚氨酯硬泡喷涂组合料的研制 李坤王磊张峰周建建韩玲 (万华节能科技集团股份有限公司山东烟台264000) 摘要:本文介绍了阻燃HFO-1233zd体系聚氨酯硬泡喷涂组合料的研制过程,研究了HFO-1233zd在聚酯聚醚多元醇中的相溶性、对催化剂活性的影响、对喷涂作业工艺性能的影响、与水互配对泡沫强度和尺寸稳定性的影响,确定了最佳的配方。依此制备的喷涂聚氨酯硬泡具有很好的施工工艺性、优异的储存稳定性、低导热系数,较高的抗压强度,在具有广阔的市场前景。本文研制的HFO-1233zd体系聚氨酯硬泡喷涂组合料2016年9月在北京成功的完成了屋面、墙面近5000平米的施工工程。 关键词:喷涂硬泡;聚氨酯;发泡剂;HFO-1233zd;喷涂施工 聚氨酯喷涂硬泡是一种广泛应用于建筑外墙和冷库保温的高分子材料,在适宜的条件下使用喷涂设备将黑料和白料充分混合后直接喷涂在物体表面,迅速发泡与建筑物形成一体。具有对建筑物外形适应能力强,能够做到防水保温一体化;现场发泡,不存在拼缝,从根本上消除了热桥影响,保温性能高;离火自熄,表面生成积炭层,不会产生熔滴,防火性能好;使用寿命长等优点。 聚氨酯硬泡喷涂组合料所使用发泡剂包括化学发泡剂和物理发泡剂发泡。化学发泡剂主要以水为主,水与异氰酸酯反应生成使反应物膨胀的二氧化碳气体。物理发泡剂一般是惰性的低沸点有机化合物,尤其以氟代烃类化合物为代表。物理发泡剂与所用任何组分不起化学反应,这类低沸点化合物吸收了异氰酸酯和多元醇反应所放出的热量气化而达到发泡的目的[1]。 聚氨酯硬泡使用的第一代合成氟烃类发泡剂CFC-11能在光催化下分解臭氧,导致臭氧层空洞,使进入大气层的紫外线强度增加,危害地球生态系统。在我国,泡沫塑料行业全面停止使用氟氯烃类化合物作为发泡剂和制冷剂。第二代发泡剂以HCFC- 141b 为代表,由于其ODP值仍不为零,只是作为过渡性发泡剂。第三代HFC类发泡剂,包括HFC-245fa、HFC-365mfc、HFC-227ea等[2-3],HFC类发泡剂的优点是不含氯,其ODP值为零,无毒,但GWP 值很高且价格昂贵。 第四代发泡剂HFO-1233zd( 三氟丙烯、LBA),ODP值0,GWP 值低,含双键,不含氯,在大气中的半衰期短,不可燃,沸点合适,其气相热导率仅10. 6 mW /( m·K) (10℃),是较为理想的发泡剂[4-5]。

全水发泡体系的聚氨脂泡沫塑料

全水发泡聚氨酯泡沫塑料综述 朱吕民 (南京四寰合成材料研究所江苏南京210013) 摘要:首先对CFC替代技术的现状进行了简要的介绍,从全水发泡软质聚氨酯泡沫塑料(包括负压发泡技术、强制冷却技术和液态CO2发泡技术)、全水发泡聚氨酯自结皮泡沫、高水量低密度高回弹聚氨酯泡沫塑料和全水发泡硬质聚氨酯泡沫塑料这几个方面详细论述了全水发泡的工艺特点,并列举了几个实例。 关键词:全水发泡;聚氨酯;泡沫塑料;CFC替代 1 前言 聚氨酯泡沫塑料是聚氨酯合成材料中占主要地位的大品种。2002年全球聚氨酯产量为860万吨;国内聚氨酯合成材料总计100多万吨,其中泡沫塑料占50%左右,以2000年统计,软质泡沫塑料约26万吨占泡沫塑料的60%,硬质泡沫塑料约18万吨占泡沫总量的40%。所以说,聚氨酯泡沫塑料是消耗CFC 和HCFC系列发泡剂的大户。 众所周知,CFC系列产品对大气臭氧层具破坏作用,形成温室效应,使全球气温回暖、皮肤癌患者增多,所以保护人类赖以生存的臭氧层已刻不容缓。 1991年我国参与了国际蒙特利尔公约,限制及禁止使用CFC-11成为我国一项政策性措施。计划到2005年,CFC-11消费减少50%,2008年削减85%,2010年实现CFC-11零消费。2001年12月我国又获蒙特利尔多边基金赠款,作为泡沫行业ODS整体淘汰计划的费用,确保2010年以前全面淘汰CFC。这是一个利好消息,将促进我国PU工业的发展,并能达到与国外先进水平接轨。 PUF用CFC-11的替代品或发泡体系新技术的开发,已成为当今世界聚氨酯工业界进行技术创新的主潮流。 归纳起来有如下几个开发研究领域: 1)HFC系列化学品的开发研究 可用于PU泡沫塑料发泡剂的HFC产品物性见表1。其中被人们看好的是HFC-245fa(1,1,1,3,5-五氟丙烷),HFC-365mfc(1,1,1,3,3-五氟丁烷)及HFC-356(1,1,1,4,4,4-六氟丁烷)三个品种。 表1 可用于PU泡沫塑料发泡剂的HFC产品物性 HFC-152a HFC-134a HFC-365mfc HFC-245fa HFC-356 分子式CH3CHF3 CH2FCF3 CH3CF2CH2CF 3 CF3CH2CHF CF3(CH2)2CF 3 相对分子质量66.05 102.0 148 134 166 沸点/℃-24.7 -26.5 40.2 15.2 24.6 20℃蒸汽压/Pa 5.15 5.72 0.47 1.24 84.1 λ(25℃) /mW·(m·K)-114.3 13.7 10.6 12.2 9.5(20℃) 爆炸极限(V/V)/% 3.8~21.8 无 3.5~9 无无 GWP(CO2=1) 140 1300 840 820 530 大气层中寿命 1.5年14天10.8年7.4年154天 HFC化合物的ODP值为零,GWP值比CFC-11的小得多,且不燃、低毒,在PUF中有较低的气体扩散速度,确保了聚氨酯泡沫塑料的导热系数λ值耐老化性好。但是其成本高,目前靠进口,业界人士难以接受。

聚氨酯黑白料制作工艺

聚氨酯黑白料制作工艺 聚氨酯保温材料的主要原料之一是聚氨酯硬泡组合聚合MDI。聚氨酯硬泡组合聚合MDI又称黑料,与聚醚组合共称黑白料。适用于建筑保温、保冷、太阳能、热水器、冷库、恒温库、啤酒罐、冷藏等需要保温保冷的各种场合。 通常聚醚组合料呈浅黄色或棕红色粘稠状透明液体,无凝固物和稀稠物及不均匀现象,无机械杂质。 聚氨脂黑白料制作工艺: 一、手工发泡及机械发泡 在不具备发泡机,模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型。手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上。成品率也较低,开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进行小试,即进行手工发泡试验。在生产中,这种方法只适用于小规模现场临时施工,生产少量不定型产品或制作一些泡沫塑料样品。 手工发泡大致分几步: (1) 确定配方;计算制品的体积;根据密度计算用料量;根据制品总用料量一般要求过量5%~15%。 (2) 清理模具,涂脱模剂,模具预热 (3) 称料,搅拌混合,浇注,熟化,脱模。手工浇注的混合步骤:将各种原料精确称量后,将多元醇及助剂预混合,多元醇

预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料。 二、一步法及预聚法工艺 目前硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型。 三、浇注成型工艺 浇注发泡是聚氨酯硬泡常用的成型方法,即就是将各种原料混合均匀后注入模具或制件的空腔内发泡成型。聚氨酯硬泡的浇注成型可采用手工发泡或机械发泡,机械发泡可采用间歇法及连续法发泡方式。 天江化工新材料也整理了聚氨脂黑白料制作工艺中的工艺参数: 乳白时间:s ≥20 7~14 2~4 凝胶时间:s 70~120 30~50 8~12 固化时间:min ≤5 整体密度:kg/m3 35~50 35~50 32~50 阻燃自熄性:B2级 注:据现场不同情况和要求以上参数可调。 参考性能指标:压缩强度(10%):≥140kpa 吸水率:≤3% 形稳性(70℃,48h):ΔV≤2% 导热系数:≤0.023w/m.k

聚氨酯发泡工艺简介

聚氨酯发泡工艺简介 聚氨酯硬泡生产工艺硬泡成型工艺聚氨酯硬泡的基本生产方法聚氨酯硬泡一般为室温发泡,成型工艺比较简单。按施工机械化程度可分为手工发泡和机械发泡。根据发泡时的压力,可分为高压发泡和低压发泡。按成型方式可分为浇注发泡和喷涂发泡。浇注发泡按具体应用领域、制品形状又可分为块状发泡、模塑发泡、保温壳体浇注等。根据发泡体系可发为HCFC 发泡体系、戊烷发泡体系和水发泡体系等,不同的发泡体系对设备的要求不一样。按是否连续化生产可分为间歇法和连续法。间歇法适合于小批量生产。连续法适合于大规模生产,采用流水线生产方法,效率高。按操作步骤中是否需预聚可分为一步法和预聚法(或半预聚法)。1.手工发泡及机械发泡在不具备发泡机、模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型。手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上。成品率也较低。开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进行小试,即进行手工发泡试验。在生产中,这种方法只适用于小规模现场临时施工、生产少量不定型产品或制作一些泡沫塑料样品。手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量,根据制品总用料量一般要求过量5%~15%。(2) 清理模具、涂脱模剂、模

具预热。(3) 称料,搅拌混合,浇注,熟化,脱模。手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料。在我国,一些中小型工厂中手工发泡仍占有重要的地位。手工浇注也是机械浇注的基础。但在批量大、模具多的情况下手工浇注是不合适的。批量生产、规模化施工,一般采用发泡机机械化操作,效率高。2.一步法及预聚法目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型。为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇、催化剂、泡沫稳定剂、发泡剂等原料预混在一起,称之为“ 白料”,使用时与粗MDI(俗称“ 黑料” )以双组分形式混合发泡,仍属于“ 一步法”,因为在混合发泡之前没有发生化学反应。早期的聚氨酯硬泡采用预聚法生产。这是因为当时所用的多异氰酸酯原料为TDI-80。由于TDI 粘度小,与多元醇的粘度不匹配;TDI 在高温下挥发性大;且与多元醇、水等反应放热量大,若用一步法生产操作困难,故当时多用预聚法。若把全部TDI 和多元醇反应,制得的端异氰酸酯基预聚体粘度很高,使用不便。硬泡生产中所指的预聚法实际上是“ 半预聚法”。即首先TDI与部分多元醇反应,制成的预聚体中

聚苯保温板及聚氨脂硬泡材料安全性对比

聚苯保温板及聚氨脂硬泡材料安全性分析 目前我国建筑使用较多的有机保温材料是聚苯乙烯和聚氨脂硬泡材料。他们最大优点是质量轻、保温和隔热性好,最大缺陷是防火安全性差。 1、聚苯保温板 聚苯乙烯泡沫塑料又分为模塑聚苯乙烯泡沫塑料(EPS)、挤塑聚苯乙烯泡沫塑料(XPS),其中EPS价格由于相对便宜,目前应用最为广泛。然而这些材料虽然均要求其为阻燃型,但其材料本身的燃烧性能仍属B2级可燃产品,材料无法做到不燃烧、不爆裂、不蔓延、不流淌、无毒气,因此存在明显的火灾隐患。其危险性在于: (1)聚苯板受热是发生熔融和滴落,并沿着墙根形成一条熔融带,遇到明火就会燃烧,燃烧会沿着这条熔融带迅速蔓延,造成火势增大; (2)一旦火灾发生,有机保温材料燃烧会产生大量的有毒气体和烟雾会给逃生者带来巨大危险。毒气和烟雾,一直被消防界称为“火灾头号杀手”。在我国以往火灾中,近八成的伤亡是因建筑材料燃烧释放的有毒气体和浓烟所致; (3)因聚苯板受热产生的热熔缩变形以及网格布过热折断而导致瓷砖坠落,会造成人员伤亡以及救援人员不易展开内攻和搜救; (4)当墙体保温材料表面砂浆龟裂、脱落后,也很快会引燃保温材料,火灾迅速向大范围蔓延; (5)外墙着火之后,由于室内的自动消防设施不能覆盖外墙,特别是当高层建筑外墙

外保温材料着火后,更是无计可施。 2、聚氨脂硬泡材料(PU) PU是目前世界公认的最佳保温绝热材料,导热系数仅为0.018~0.023w/mk.聚氨酯泡沫塑料毕竟是一种有机高分子可燃材料,在生产、储存以及使用过程中都有可能引发火灾事故。然而生产单位对火灾隐患视而不见,利用国家外墙保温市场不规范和标准不健全的现状,仍然在一些场合使用不达标的聚氨脂硬泡材料。其具有危险性在于:(1)硬质聚氨酯泡沫成品是多孔性的固体,导热性极差,容易造成热量积聚,一旦着火,材料的燃烧速度非常快; (2)聚氨酯泡沫塑料在燃烧时多为不完全燃烧,这种不完全燃烧在火灾中表现为很浓很黑的烟气,包括大量的CO、CO,并释放出大量的高温和有毒气体,包括剧毒气体氰化氢、氰化苯; (3)大量的浓烟造成火场中的消防人员视线受到影响,不容易观察到火点,以及无法进行人员搜救。

聚氨酯硬泡沫配方及计算

聚氨酯硬泡配方及计算方法 一、硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”是否合理,翻译成土话就是“按重量比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在内。理论各组分消耗的-NCO 摩尔量计算如下 ㈠主料:聚醚、聚酯、硅油(普通硬泡硅油都有羟值,因为加了二甘醇之类的稀释,部分泡沫稳定剂型硅油还含有氨基)配方数乘以各自的羟值,然后相加得数Q,S1 = Q÷56100 ㈡水:水的配方量W S2 = W÷9 ㈢参与消耗-NCO的小分子物:配方量为K,其分子量为M,官能度为N S3 =K× N/M(用了两种以上小分子的需要各自计算再相加) S = S1+S2+S3 基础配方所需粗MDI份量[(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.05) 其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO消耗量肯定不止这个数,比如有三聚催化剂的情况,到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就很严重;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真! [试验设计]之“冰箱、冷柜”类 本组合料体系重要要求及说明 1、流动性要好,密度分布“尽量”均匀。首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。 2、泡孔细密,导热系数要低。不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与-NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而使泡孔细密)其次聚醚本身单独发泡其泡孔结构要好(例如以山梨醇为起始的635SA比蔗糖为起始的1050泡孔要细密均匀得多,还有含有甘油为起始剂的835比1050细密,即便是所谓的4110牌号的聚醚,含丙二醇起始的比二甘醇的好。聚醚生产的聚合催化剂不同,所生产出的聚醚性状也有差异:氢氧化钾催化的聚醚分子量分布比二甲胺催化的要窄。另外:聚醚生产时的工艺控制-----温控、抽真空、PO--也就是环氧丙烷流量控制、PO原料质量、后处理等等-----也都会直接影响聚醚发泡的泡孔结构)第三,可以考虑加入一些可以改善泡孔细密度的聚酯成份。第四,适当加入低粘度物调整总体粘度(如210聚醚) 3、耐低温抗收缩性要好。这个无须赘言。一是官能度,总体平均要4以上。其次是发泡体成型后空间交联点分布均匀(直观解释是:主聚醚反应活性尽量相差不大,连续的近似的空间结构要稳定得多。) 4、粘结性好。所谓粘结性表面上是指泡沫体与冰箱、冷柜外壳和内胆之间的粘合,其实是指泡体柔韧性,以及抗收缩性,(水份用量、降低总体羟值,添加柔性结构成分,如210、330N 之类都可以改进泡沫对壳体的粘附性) 5、成本较低。目前冰箱、冷柜行业竞争白热化,性能极佳价格昂贵的组合料没人用的起,所以我们必须为成本考虑(比如芳香聚酯价位要比聚醚的低,可以加一些。) 6、安全性。这是对环戊烷体系的特别要求(至少环戊烷不象F11那样想加多少就加多少,不难理解加多环戊烷的更具有安全隐患)

屋面硬质聚氨酯泡沫保温施工工艺

屋面硬质聚氨酯泡沫保温施工工艺 1前言 硬质聚氨酯泡沫(PUF)是一种具有保温隔热和一定防水功能的新型合成高分子材料,由异氰酸酯和聚醚多元醇在催化剂、匀泡剂、发泡剂等多种助剂的相互作用下反应而成。该泡沫具有良好的保温、隔热功能,导热系数为0.22 W/(m?k),非常有利于建筑节能,且不透水、不吸湿、绝缘、吸音、耐油、耐化学腐蚀等。与其他泡沫塑料相比,还具有无毒、无异味、耐温等特性。它对金属、砼、砖、石、木材、玻璃等有很强的黏结性。添加阻燃剂的制品具有远火自熄性,能根据用户需要达到国家一级消防要求。本材料施工简便、技术性能可靠、质量易保证,是建筑上重点推广的十项新技术之一,适用于各类工业与民用建筑的屋面、墙体、楼面的保温、隔热、防水。目前,随着我们建筑节能事业的发展,被建筑业称为“新世代保温材料”的聚氨酯已开始在建筑节能领域展露其优越的性能和良好的发展潜力,为了使这种新材料新技术在建筑节能工程中得到广泛推广和应用,本文将主要谈谈硬质聚氨酯泡沫在屋面防水保温工程中的应用,以供参考。 2硬质聚氨酯泡沫的技术优点 硬质聚氨酯泡沬是一种综合性能优良的建筑节能绝热、保温材料,适用于各种类型新建建筑及既有屋面防水与保温(含金属基层屋面),其主要优点为: (1)由于聚氨酯发泡时闭孔率高(可达95 %以上),所以当聚氨酯硬泡密度为35 kg/m3~40 kg/m3时,其导热系数低,仅为0.018 W/(m?K)~0.024 W/(m?K),相当于EPS(聚苯乙烯泡沫塑料0.041 W/(m?K))的一半,是目前所有保温材料中导热系数最低的;保温隔热层厚度少,具有一定的结构优势,可使建筑物围护结构更薄、更轻,从而增加室内的可用面积;具有优良的热工性能,可以达到节能65 %以上的要求。 (2)现场喷涂硬泡聚氨酯与建筑物混凝土等基面的黏结性好,抗风揭,能与金属、木材、水泥等多种材料牢固黏结,从而使硬泡层与作用面基层成为一体,不易发生脱层,适宜于旧建筑物的节能改造。 (3)聚氨酯硬泡吸水率低(<3 %),抗水蒸气渗透好,且防水性能可靠,真正实现了保温节能一体化。 (4)聚氨酯体积密度小,约为35 kg/m3~40 kg/m3,抗压强度>0.2 MPa;其质量轻,但仍能承受一定的机械荷载且硬度很高,因此在坚固抗压结构建筑中是一种比较理想的材料。 (5)聚氨酯硬泡采用现场喷涂或浇注施工,施工具有连续性,施工后形成整体的无接缝的连续泡壳体,在易渗漏的细部节点构造部位喷涂,防水效果显著。 (6)与EPS、XPS等有机保温材料相比,聚氨酯还具有耐老化阻燃,化学稳定性好等优点,非常耐用,可确保长远的经济效益与投资收益。 (7)聚氨酯可承受熔融沥青的高温(短时温度可高达250 ℃);具有很高的压缩强度和尺寸稳定性、低可燃性,不会熔化也不会形成燃烧熔融滴落物,比较安全。 (8)喷涂聚氨酯,施工简便,质量可靠,寿命可达25年,价格低廉,节省了工程造价及施工时间,符合安全环保要求。 (9)聚氨酯性能稳定,抗老化能力强,且不含甲醛,不含氯氟烃,无需修补,可循环使用。 3工艺原理及流程 3.1工艺原理 以含有羟基的聚醚树脂与异氰酸酯反应生产的聚氨基甲酸酯为主体,以异氰酸酯与水反应生成的二氧化碳为发泡剂制成的泡沫塑料,直接喷涂在屋面找平层上作为保温防水层。 3.2工艺流程 屋面找坡→水泥砂浆找平→聚氨酯混合料配制→喷涂发泡成型→涂刷防水浆料→细石

聚氨酯硬泡使用说明

聚氨酯硬泡使用说明 ―――手工浇注料 聚氨酯保温材料一大优异之处在于其现场施工的方便性。除了采用发泡设备注射、喷涂外,手工浇注也是常采用的发泡成型方式。 手工浇注,即采用简易容器和设备,用手工方式或机械搅拌把一定比例、一定数量的发泡原料混合均匀并转移到待发泡的腔体中。 1.设备(工具): 容器:计量、混合用,共计三个,常用塑料质或铁/钢质,大小与其工作负荷相称。 搅拌器:一般采用通用手电钻,转速在1200r/min以上,搅拌头为环形或风翅形叶轮,其大小及手电钻功率可据工作负荷(混料量)而定。 清理器具:一般为铁质条、片状物或刀具,清理搅拌头、混合器具残留的泡沫。2.基本工艺:按原料厂家所提供的材料配比计量所需量的黑白料,转移到混合容器中,然后开启搅拌器对其进行搅拌混合;经充分混合将物料及时转移到待发泡腔体中,闭合模具(注意在发泡过程中适当的排气)。待泡沫固化完成后,打开模具取出已完成的工件。 在泡沫不再软、粘时将混合容器中及搅拌头上的泡沫清理干净以预备进入下一生产周期。 3.需要注意的几个工艺参数 (1)温度。一般来说手工浇注型工艺对料温缺乏相应的控制手段,多为自然温度。但由于聚氨酯成形过程易受温度影响,故常常需控制一定的料温以期得到较好的发泡效果。一般的,料温低时泡沫易酥脆且发方率较低,固化缓慢,延长生产周期和多耗材料的同时还得不到较好的发泡效果,故冬季一般采用外加热方式保证材料温度不要低于15℃;另一方面,料温过高时会导致白料中的发泡剂成分较多挥发而降低发方率,同时料温高使得反应过快不易操作、控制,在夏季可采用外辅助冷水强制降温方式来控制黑白料温度使其最好不要超过30℃(注意:小心不要使水进入黑白料中)。 (2)可操作时间。聚氨酯泡沫成型过程是化学反应过程。一般认为化学反应开始后(乳白时间)不宜再过多的对其进行操作,故而计量后混合、搅拌、转移工序应在乳白时间到来前完成。只有这样才能保证泡沫体在腔体中填充的均匀性。对配料厂家来说乳白时间具有可调性,可根据使用时混合总量、搅拌时间、转移效率等情况来确定。 温度对可操作时间有较大的影响,温度高时同一物料的可操作时间将变短。 (3)脱模时间。泡沫发起后须经一定熟化后方能稳定,即达到固化。该时间受材料本身因素的制约同时又受工艺性的影响。一般来说同一材料料温高、环境温度高、工件温度高时固化较快,反之则慢。 过早的脱模会因泡沫固化效果不好而影响工件的质量,须根据材料本性适时脱模(需要高速时可通过白料厂家来调整完成)。 4.用料量计算。 在高于自由泡密度的条件填充下,设计填充密度和待填充腔体的空间大小是决定用料量的两个主要因素,又因表皮比重大、物料损耗、气体挥发等因素势必要求有一定的过量填充。由此用料量可由下式计算: 用料量=待填充体积×设计填充密度×(1+过量填充系数) 一般过量填充系数为10-15%,温度低时表皮层较厚使该系数大一些。 低于自由泡芯密度的设计填充密度是不可能的,故最低用量是自由泡的填充。为

聚氨酯硬泡、聚氨酯软泡基础知识

聚氨酯硬泡、聚氨酯软泡基础知识 聚氨酯硬泡基础知识 硬质聚氨酯泡沫塑料,简称聚氨酯硬泡,它在聚氨酯制品中的用量仅次于聚氨酯软泡。 聚氨酯硬泡多为闭孔结构,具有绝热效果好、重量轻、比强度大、施工方便等优良特性,同时还具有隔音、防震、电绝缘、耐热、耐寒、耐溶剂等特点,广泛用于冰箱、冰柜的箱体绝热层、冷库、冷藏车等绝热材料,建筑物、储罐及管道保温材料,少量用于非绝热场合,如仿木材、包装材料等。一般而言,较低密度的聚氨酯硬泡主要用作隔热(保温)材料,较高密度的聚氨酯硬泡可用作结构材料(仿木材)。 聚氨酯硬泡一般为室温发泡,成型工艺比较简单。按施工机械化程度可分为手工发泡及机械发泡;按发泡时的压力可分为高压发泡及低压发泡;按成型方式可分为浇注发泡及喷涂发泡。 聚氨酯硬泡主要用途有以下方面: 1、食品等行业冷冻冷藏设备:如冰箱、冰柜、冷库、冷藏车等,聚氨酯硬泡是冷冻冷藏设备的最理想的绝热材料。 2、工业设备保温:如储罐、管道等。 3、建筑材料:在欧美发达国家,建筑用聚氨酯硬泡占硬泡总消耗量的一半左右,是冰箱、冰柜等硬泡用量的一倍以上;在中国,硬泡在建筑业的应用还不像西方发达国家那样普遍,所以发展的潜力非常大。 4、交通运输业:如汽车顶篷、内饰件等。 5、仿木材:高密度(密度300~700kg/m3)聚氨酯硬泡或玻璃纤维增强硬泡是结构泡沫塑料,又称仿木材,具有强度高、韧性好、结皮致密坚韧、成型工艺简单、生产效率高等特点,强度可比天然木材高,密度可比天然木材低,可替代木材用作各类高档制品。 6、灌封材料,等等。 聚氨酯软泡基础知识 软质聚氨酯泡沫塑料,简称聚氨酯软泡,是一种具有一定弹性的柔软性聚氨酯泡沫塑料,它是聚氨酯制品中用量最大的一种聚氨酯产品。 聚氨酯软泡多为开孔结构,具有密度低、弹性回复好、吸音、透气、保温等性能,主要用作家具垫材、床垫、交通工具座椅坐垫等垫材,工业和民用上也把软泡用作过滤材料、隔音材料、防震材料、装饰材料、包装材料及隔热材料等。 按软硬程度,即耐负荷性能的不同,聚氨酯软泡可以分为普通软泡、超柔软泡、高承载软泡、高回弹软泡等,其中高回弹软泡、高承载软泡一般用于制造座垫、床垫。按生产工艺的不同,聚氨酯软泡又可分为块状软泡和模塑软泡,块状软泡是通过连续法工艺生产出大体积泡沫再切割成所需形状的泡沫制品,模塑软泡是通过间隙法工艺直接将原料混合后注入模具发泡成所需形状的泡沫制品。 聚氨酯软泡的主要用途包括以下几个方面: 垫材:如座椅、沙发、床垫等,聚氨酯软泡是一种非常理想的垫材材料,垫材也是软泡用量最大的应用领域。 吸音材料:开孔的聚氨酯软泡具有良好的吸声消震功能,可用作室内隔音材料。

聚氨酯硬泡配方设计说明书

组合料配比之设计、计算、试验、试料 1 关于计算 硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”合理,翻译成土话就是:“按比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在内。 理论各组分消耗的-NCO摩尔量计算如下 1.1 主料 聚醚、聚酯、硅油(普通硬泡硅油都有羟值,据说是因为加了二甘醇之类的)配方数乘以各自的羟值,然后相加得数Q S1 = Q÷56100 1.2 水 水的配方量w S2 = W÷9 1.3与消耗-NCO的小分子物: 配方量为K,其分子量为M,官能度为N K × N S3 = ————————(用了两种以上小分子的需要各自计算再相加)

M S = S1+S2+S3 基础配方所需粗MDI份量[(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.0) 其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO消耗量肯定不止这个数,比如有三聚催化剂的情况下到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就好严重的;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真! 2 试验设计之“冰箱、冷柜”类 2.1 本组合料体系重要要求及说明 2.1.1 流动性要好,密度分布“尽量”均匀 首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。 2.1.2 泡孔细密,导热系数要低 不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某

聚氨酯硬泡外墙外保温体系

聚氨酯硬泡外墙外保温体系《硬质聚氨酯泡沫塑料》在建筑外墙外保温系统的优势随着国内建筑市场的蓬勃发展,建筑外墙保温正在全国范围内全面展开,在国家节能政策引导下,各地相继出台了建筑节能的地方法规,促进了外墙保温技术在全国的推广应用。在我国目前外墙外保温系统大体有以下几种较为成熟的形式: 1.聚苯板薄抹灰(EPS)保温体系 2.胶粉聚苯颗粒保温体系 3.挤塑聚苯板(XPS)保温体系 4.聚氨酯(PUF)保温体系。 一.硬质聚氨酯泡沫塑料外墙保温系统及特性(PUF-1) 聚氨酯是一种性能优良的高分子热固型保温耐热合成材料,为目前市场保温效果最好的保温材料,导热系数低,保温效果好,施工便捷,其在建筑节能应用方面具有以下主要特征: (一)聚氨酯外墙外保温体系的特征 1、较低的导热系数(0.019~0.027),在所有有机保温材料中是最低的(20mm厚的聚氨酯硬泡相当于50mm苯板),由于采用现场

喷涂施工,能形成连续保温层,即使节点等复杂部位也不会有冷桥产生。 2、独特的施工方法,液体喷涂于基体,可进入基层孔隙中发泡,堵塞缝隙,起到封闭孔隙的作用,形成连续无接缝保温层,从而很好的避免冷热桥现象。 3、聚氨酯本身是一种胶粘剂,故其具有很好的粘接性,它可以实现与墙体等建筑结构材料形成很好的粘结效果,整体性很强。即使在最不利的温度和湿度下,承受风力、自重以及正常碰撞等各种内外力相结合的负载,保温层仍不与基层分离、脱落。 4、聚氨酯硬泡具有良好的防火耐温性能,是一种比较安全的保温材料,通过调整方,可以满足国内及国际上对建筑保温材料较高的防火要求,并且能用于较高的温度环境下做保温材料,因为pu材料可以长期经受从40℃~90℃的考验,改性异氰脲酸酯泡沫材料能在120℃~150℃的高温条件下长期使用。虽然聚氨酯硬泡是聚合物,但它是热固性材料,在燃烧中呈惰性,不会产生熔融的燃烧性火焰滴落物,而只形成一个焦化的保护层,它阻止氧气进入体保温层内部,有效抑制了熔融导致火焰蔓延的危险,因而不会引起芯材的直接燃烧,能够保证建筑的完整性。同EPS、XPS泡沫保温系统相比,由于EPS/XPS泡沫是热塑材料,着火时先软化变型,然后伴随燃烧发生熔化收缩,并会有非常灼热的液体滴落或流下,使火势进一步蔓延,加重火灾的灾情,燃烧到一定程度,整个保温结构系统坍塌。

聚氨酯硬泡生产工艺

第五章聚氨酯硬泡生产工艺 5.1 硬泡成型工艺 5.1.1 聚氨酯硬泡的基本生产方法 聚氨酯硬泡一般为室温发泡,成型工艺比较简单.按施工机械化程度可分为手工发泡和 机械发泡.根据发泡时的压力,可分为高压发泡和低压发泡. 按成型方式可分为浇注发泡和喷涂发泡.浇注发泡按具体应用领域,制品形状又可分为 块状发泡,模塑发泡,保温壳体浇注等. 根据发泡体系可发为HCFC发泡体系,戊烷发泡体系和水发泡体系等,不同的发泡体系对设备的要求不一样. 按是否连续化生产可分为间歇法和连续法.间歇法适合于小批量生产.连续法适合于大 规模生产,采用流水线生产方法,效率高. 按操作步骤中是否需预聚可分为一步法和预聚法(或半预聚法). 1.手工发泡及机械发泡 在不具备发泡机,模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型. 手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上.成品率也较低. 开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进 行小试,即进行手工发泡试验. 在生产中,这种方法只适用于小规模现场临时施工,生产少量不定型产品或制作一些泡 沫塑料样品.手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量, 根据制品总用料量一般要求过量5%~15%.(2) 清理模具,涂脱模剂,模具预热.(3) 称料,搅拌混合,浇注,熟化,脱模. 手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充 填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料. 在我国,一些中小型工厂中手工发泡仍占有重要的地位.手工浇注也是机械浇注的基础. 但在批量大,模具多的情况下手工浇注是不合适的. 批量生产,规模化施工,一般采用发泡机机械化操作,效率高. 2.一步法及预聚法 目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型. 为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇,催化剂,泡沫稳定剂,发 泡剂等原料预混在一起,称之为"白料",使用时与粗MDI(俗称"黑料")以双组分形式混合发泡,仍属于"一步法",因为在混合发泡之前没有发生化学反应.

聚氨酯硬泡生产工艺

聚氨酯硬泡生产工艺 5.1 硬泡成型工艺 5.1.1 聚氨酯硬泡的基本生产方法聚氨酯硬泡一般为室温发泡,成型工艺比较简单.按施工机械化程度可分为手工发泡和 机械发泡.根据发泡时的压力,可分为高压发泡和低压发泡. 按成型方式可分为浇注发泡和喷涂发泡.浇注发泡按具体应用领域,制品形状又可分 为 块状发泡,模塑发泡,保温壳体浇注等. 根据发泡体系可发为HCFC 发泡体系, 戊烷发泡体系和水发泡体系等, 不同的发泡体系对设备的要求不一样. 按是否连续化生产可分为间歇法和连续法. 间歇法适合于小批量生产.连续法适合于大 规模生产,采用流水线生产方法,效率高. 按操作步骤中是否需预聚可分为一步法和预聚法 (或半预聚法). 1.手工发泡及机械发泡 在不具备发泡机,模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型. 手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上.成品率也较低. 开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室 进 行小试,即进行手工发泡试验. 在生产中,这种方法只适用于小规模现场临时施工,生产少量不定型产品或制作一些 泡 沫塑料样品.手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量,根据制品总用料量一般要求过量5%?15%.(2)清理模具,涂脱模剂,模具预热.(3)称料,搅拌混合,浇注,熟化,脱模. 手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充 填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料. 在我国,一些中小型工厂中手工发泡仍占有重要的地位.手工浇注也是机械浇注的基础. 但在批量大,模具多的情况下手工浇注是不合适的. 批量生产,规模化施工,一般采用发泡机机械化操作,效率高. 2.一步法及预聚法目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成 型. 为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇,催化剂,泡沫稳定剂, 发泡剂等原料预混在一起,称之为"白料",使用时与粗MDI( 俗称"黑料")以双组分形式混合发泡,仍属于"一步法",因为在混合发泡之前没有发生化学反应. 早期的聚氨酯硬泡采用预聚法生产.这是因为当时所用的多异氰酸酯原料为TDI-80. 由于TDI粘度小,与多元醇的粘度不匹配;TDI在高温下挥发性大;且与多元醇,水等反应放热量大,若用一步法生产操作困难,故当时多用预聚法. 若把全部TDI 和多元醇反应,制得的端异氰酸酯基预聚体粘度很高,使用不便.硬泡生产中所指的预聚法实际上是"半预聚法".即首先TDI 与部分多元醇反应,制成的预聚体 中NCO的质量分数一般为20%?25%?由于TDI大大过量,预聚体的粘度较低?预聚体再和聚酯或聚醚多元醇,发泡剂,表面活性剂,催化剂等混合,经过发泡反应而制得硬质泡沫

聚氨酯发泡流程

聚氨酯发泡流程(试行) 1开机前准备 1.1检查 1.1.1根据小试的试验结果确定是否发泡; 1.1.2检查氧气压力3bar以上,检查氧气流量计是否堵塞,检查气泵压力在5bar以上; 1.1.3检查料罐内原料量是否满足发泡需求,TDI、PDG温度是否符合工艺参数; 1.1.4检查操作柜控制面板、原料泵、摆头(溢流槽)、箱板、输送链板、照明、通风等设施是否正常; 1.2校准辅料流量,使用指定容器在一定时间内接取辅料,称量辅料重量,计算一分钟流量,与理论流量进行对比,如有误差重新设定辅料泵转速,重新测定直至误差在3%以内; 1.3校准PPG流量 1.3.1测试前冲洗混合头,打开混合头开关,点击混合头开启键,低转数启动PPG循环泵,调节PPG泵为手动,点击PPG键,反复调整混合头压力数次,打开PPG、TDI压缩空气清洗混合头,点击关闭混合头启动键(市场绵生产线不需要此步骤); 1.3.2测试PPG流量,依照工艺参数设定PPG转速,点击开启PPG键,调节混合头压力到标准工艺数值,测量一定时间内PPG流量,计算一分钟流量与理论值对比,如有误差重新设定PPG泵转速,重新

测定直至误差在3%以内,打开PPG、TDI压缩空气清洗混合头; 1.4根据生产海绵尺寸调节箱板宽度,铺设箱板低纸和侧面塑料膜,调整跌落板角度、边纸位置等; 1.5抽取二氯甲烷,放出罐内空气,关闭输出阀门,打开抽料管路阀门,开启二氯甲烷泵,抽取完毕后,关闭抽料管路阀门,关闭罐排气阀门,打开压缩空气阀门;(市场绵生产线直接将二氯甲烷倒入罐内) 2开机发泡 2.1根据产品和工艺要求设定各段链板速度、混合头搅拌频率、各原料泵转速、TDI流量、水流量; 2.2打开氧气阀门,调节氧气流量计至工艺值; 2.3打开各组分原料控制键调到自动位置,调节混合头压力,待压力稳定后,打开“发泡开”键(市场绵生产线开“气动总开”); 2.4打开“链板输送”键,启动输送设备; 2.5根据发泡情况,调节水和TDI用量,适当调节跌落板、边纸、箱板位置; 2.6待海绵出箱板后,测量海绵高度、检查海绵透气性和弹性,若质量差则予以调节; 3停机 3.1关闭PPG搅拌,按“发泡停”键,关闭发泡设备(市场绵生产线先将“气动总停”关闭,逐个停止各原料泵,再将所有泵关闭); 3.2同时清洗混合头,打开二氯甲烷阀门,缓慢打开TDI、PPG压

施工方案-现喷聚氨酯硬性发泡施工方案

青岛海信四姜片区工程 屋面(现喷硬质聚氨酯发泡)保温 施工方案 编制单位:青岛环海工程贸易发展有限公司 编制人:付振波 审核人:李浩 编制日期: 2015年1月23日

目录 一、编制依据 (3) 二、工程概况 (3) 三、施工部署 (4) 四、施工准备 (5) 五、施工工艺 (6) 六、技术质量保证措施 (7) 七、安全文明施工保证措施 (9) 八、材料技术数据及执行标准 (10)

一、编制依据 1、本工程文件 2、本工程施工图纸 3、工程施工合同 4、《屋面工程技术规程》GB50345-2012 5、《民用建筑节能设计标准》 6、《山东省居住建筑节能设计标准》 7、《建筑物隔热用硬泡聚氨酯泡沫塑料》 8、《喷涂硬泡聚氨酯保温防水技术规范》 5、青岛市质量通病防治措施手册 6、其它现行的施工验收规范、标准、技术规程、各级主管部门 的有关文件。 二、工程概况 工程地点:青岛市崂山区 建设单位:青岛中宇置业有限公司 监理单位:青岛雍达建设监理有限公司 合同质量目标:一次性验收合格。 本工程为4个单体楼,斜屋面外装饰用装饰瓦片,平屋面采用装饰地砖。 斜屋面用90mm现喷聚氨酯硬泡。 平屋面用聚氨酯发泡找坡2%,(最薄处不小于90mm)。平屋面与垂直墙面的上返高度为300mm,上返部位用水泥砂浆罩面。

三、施工部署 1.施工进度计划 基层处理计划 3 天时间 屋面喷涂硬泡聚氨酯保温计划 8天时间。 主要劳动力安排 专业现喷硬质聚氨酯发泡保温施工人员3人。 2.施工机械、设备准备 四、施工准备 (一)屋面保温施工 1、屋面保温(现喷聚氨酯发泡)在经监理验收合格办理隐检手续后方可施工。基层应干燥,且伸出屋面的设备、管道,泄水口已安装完毕。 2、清除基层表面浮灰、空鼓等影响粘接强度的材料。 3、施工中风速小于5m/s,相对湿度小于60%时为最佳施工环境,

聚氨酯计算公式中有关术语及计算方法

PU 资料 聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为,水份含量%,酸值12,求聚酯羟值 羟值校正 = + + = 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (为氢氧化钾的分子量) 羟值 官能度分子量1000 1.56??=

例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 如二乙醇胺,其结构式如下: CH 2CH 2OH HN < CH 2CH 2OH 分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105 5. 异氰酸基百分含量 异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。 式中42为NCO 的分子量 对预聚体及各种改性TDI 、MDI ,则是通过化学分析方法测得。 有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的脲时,1克分子胺消耗的异氰酸酯的克数。 胺当量和异氰酸酯百分含量的关系是: 6. 当量值和当量数 当量值是指每一个化合物分子中单位官能度所相应的分子量。 如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值 在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。 7. 异氰酸酯指数 3366 50 1000 31.56=??= 分子量%48174 2 42%=?=NCO TDI 的%6.33250 2 42%=?= NCO MDI 的官能度 数均分子量当量值=

相关文档
最新文档