管径、阀门压力损失计算

管径、阀门压力损失计算

管径、阀门压力损失计算

注:1、当量长度的数值为管径的倍数,当量长度乘以管径所得的数值相当直管的长度。

2、球阀的压力损失可以忽略不计。

阀门流量计算

阀门流量计算方法 发表于: 2010-1-29 9:39:55 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C 的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 12.DN350 x DN300 x DN350,压力等级Class 900缩喉 管压力密封闸阀,其它条件与例1相同,求压降。 What is the pressure drop through a 14"x12"x14" Class 900 Venturi pressure seal gate valve with the same conditions as example 1. 解:采用公式1 Solution: Use formula 1. Cv = 6285 (来自本页) Cv = 6285 (from page 26) 3.温度900o F, 压力1200 PSI,流速500,000磅/小时的 蒸汽应用中压降小于5 PSI的压力等级Class 2500 闸阀的最小通径是多少? What is the smallest Class 2500 gate valve that will have less than a 5 PSI pressure drop in 900o F, 1200 PSI steam service at a flow rate of 500,000 lbs/hr? 解:采用公式1 Solution: Use formula 1. F = 500,000 = 0.785 (来自900o F, 1200 PSIG蒸汽表 )

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

水泵管道压力损失计算公式

水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损 失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头 损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式

Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数;S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数; S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能 量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; H st--水泵运行时的净扬程,m; v2出-v2进/2g --进、出水的流速水头差,m; Σh--管路水头损失,m。 若进、出水池的流速水头差较小可忽略不计,则式(3-3)可简化为 H需=H st+Σh=H st=SQ2 (3-4) 利用式(3-4)可以画出如图3-2所示的二次抛物线,该曲线上任意一点表示水泵输送某一流量并将其提升H st高度时,管道中每位重力的液体所消耗的能量。因此,称该曲线为水泵装置的需要扬程或管路系统特性曲线。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

阀门弯头法兰表面积计算公式

阀门弯头法兰表面积计 算公式 Document number:BGCG-0857-BTDO-0089-2022

阀门、弯头、法兰表面积计算公式【】 阀门按下面的公式计算:1.V体积(m3)=π(D=1.033δ) *2.5D*1.033δ*1.05*N D:公称直径δ:保温层厚度 N:阀门个数 和就折合到管道里面计算了 11.什么是阀们、弯头和法兰?如何计算其防腐蚀工程量? 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°,180°弯头也https://www.360docs.net/doc/0e12421629.html,/santong.html称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积: S=πD×2.5DKN (1-3) 式中 D——直径; K一一系数,取1.05;

N——阀门个数。 (2)弯头表面积: S=πD×1.5DK×2π/B×N (1-4) 式中 D——直径; K——系数,取1.05 N——弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积: S=πD×1.5DKN (1-5) 式中 D——直径; K——系数,取1.05; N——法兰个数。 (4)设备和管道法兰翻边防腐蚀工程量计算式。 S=π(D+A)A (1-6) 式中D——直径; A——法兰翻边宽。 12.如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式:

水泵管道压力损失计算公式资料

水泵管道压力损失计 算公式

精品资料 水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式 Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中 S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数; S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数;S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; 仅供学习与交流,如有侵权请联系网站删除谢谢2

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

管径和压力损失计算

管径和压力损失计算 一、管径计算 1、管径计算 蒸汽、热水、压缩空气、氮气、氧气、乙炔按下述三式计算: 按体积流量计算 按质量流量计算 按允许压降计算 式中—管道内径(mm); —在工作状态下的体积流量(m3/h); —在工作状态下的质量流量(t/h); —在工作状态下的流速(m/s); —在工作状态下的密度(kg/m3); —摩擦阻力系数; —允许比压降(Pa/m)。 压缩空气、氮气、氧气、乙炔等气体工作状态下的体积流量可由标准状态(0℃,绝对压力0.1013MPa)下的体积流量换算而得 式中—标准状态下气体体积流量(m3/h); —气体工作温度(℃); —气体绝对工作压力(MPa)。 二、管道压力损失计算 管道中介质流动产生的总压差包括直管段的摩擦阻力压降和管道附件的局部阻力压降,以及管内介质的静压差。 管内介质的总静压差:; 直管的摩擦阻力压降:; 管道附件的局部阻力压降:; 管内介质的静压差:。 式中Δp—管内介质的总静压差(Pa); Δpm—直管的摩擦阻力压降(Pa); Δpd—管道附件的局部阻力压降(Pa); Δpz—管内介质的静压差(Pa); ∑ξ—管件局部阻力系数之和; ∑Ld—管道局部阻力当量长度之和(m); H1—管段始点标高(m); H2—管段终点标高(m); 对液体,因其密度大,计算中应计入介质静压差。对蒸汽或气体,其静压差可以忽略不计。 三、允许比压降计算 对各种压力管路的计算公式为 式中—单位压力降(Pa/m); 、—起点、终点压力(MPa); —管道直管段总长度(m);

—管道局部阻力当量长度(m)。 在做近似估算时,对厂区管路可取=(0.1-0.15);对车间的蒸汽、压缩空气、热水管路,取=(0.3-0.5);对车间氧气管路去=(0.15-0.20) 看见公式,写上自己知道的公式吧。 管径计算公式。 d=18.8乘以(Q/u)的开平方,其中Q=Qz(273+t)/(293*P),其中,Qz为标准状态下的压力,P为绝对压力。 对于u的确定,p=0.3~0.6MPa时,u=10~20s; p=0.6~1MPa时,u=10~15s; p=1~2MPa时,u=8~12s; p=2~3MPa时,u=3~6s; p>3MPa时,u=0~3s

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

调节阀流量系数计算公式与选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判不式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流

量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 关于只有一个流路的调节阀, 如单座阀、套筒阀,球阀等: 关于有五个平行流路调节阀, 如双座阀、蝶阀、偏心施转阀 等 文字符号讲明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临 界压力比系数, F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判不式(气体、蒸气)表1-2 文字符号讲明: X-压差与入口绝对压力之比(△P/P1);X T- 压差比系数; K-比热比; Qg-体积流量,Nm3/h

阀门保温计算公式

有换算表,用广联达软件套价时,可以选择计算公式,里边有阀门的保温计算公式,自动计算。 或你打开软件看看公式,然后手动计算。 v=3.1415926×(D+1.033×δ)×2.5×D×1.033×δ×K×N/1000000000 V-体积 D-阀门公称直径mm K=1.05 N-阀门个数 δ-保温厚度mm 例如:保温厚度40mm,直径100的阀门20个,那么保温体积为: V=3.1415926*(100+1.033*40)*2.5*100*1.033*40*1.05*20/1000000000=0.0963 立方 V=π×(D+1.033δ)×2.5D×1.033δ×1.05×N(m3) S=π×(D+2.1δ)×2.5D×1.05×N(m2) (4)阀门绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×2.5D×1.033δ×1.05×N S=π(D+2.1δ)×2.5D×1.05×N 若设计要求阀门保温时,其绝热工程量和外扎保护层工程量计算公式为: V阀门=2.712*3.14*D2*δ*N S阀门=3.14(D+2.12δ)*2.5D*1.05*N V-体积 D-阀门公称直径mm K=1.05 N-阀门个数 δ-保温厚度mm 若设计文件要求法兰保温,则 V法兰=1.627*3.14*D2*δ*N S法兰=3.14(D+2.1δ)*1.5D*1.05*N 管道、阀门绝热保温工程量计算公式(含个人理解) 绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ 个人理解上述体积公式的含义: D+1.033δ表示:保温层中心到中心的长度+ 单根的扎带厚度(0.033δ)= 调整后的保温层中心线长度 π×(D+1.033δ)表示:保温层中心圆的周长(可想象成长度,仅管是圆形) 1.033δ表示:保温层调整过系数的厚度(可想象成宽度) π×(D+1.033δ)×1.033δ表示:长度*宽度 S=π×(D+2.1δ+0.0082)×L 个人理解:D+2.1δ+0.0082表示:(直径+ 保温层厚度* 2.1)+0.0082 = 外表层实际直径+扎带厚度

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。(引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算

其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么 1mm水柱=10pa 10m=100000pa= 1毫米汞柱(mmHg)=帕(Pa) 1工程大气压=千帕(kPa) 对静止液体,就是初中的公式 压强P=ρgh 压力F=PS 如果受力表面不规则,需要积分计算 常用两种方法计算: 1.液体在柱形器具中,且放在水平面上,此时: F=G液=m液g=ρ液gV液

系统压力损失及流量平衡

管道系统的压力损失和流量平衡 意大利卡莱菲公司北京办事处舒雪松 一、平衡流量 指系统的压头(扬程)改变后随之改变的新流量。它可以通过以下公式计算: G1 = G ×(H1/H)0.525公式(1) 其中:G1=系统平衡后流量(新流量) H1=系统新的压头 G=系统原流量 H=系统原压头 注:G1,G,H1,H的单位应该一致。比如G用m3/h为单位,则G1也应该是m3/h。 以上公式根据流体动力学的理论衍变出来,它假设在水循环系统中,压力损失的总和与流量的指数为1.9的关系,即Z=ΔP X G 1.9, Z就是系统流量曲线的特征系数。这个公式适合于我们在上一个章节里讲到的高、中、低粗糙度管道。 新流量与原流量的关系通过倍率F表述: F = G1 / G公式(2) 这个倍率用于确定系统经过平衡后每个支路、末端的新流量。 范例(1)一个传统双管系统的平衡流量计算方式 回路A 回路B 汇合点N 图1

如图1所示: 循环回路A有四个末端,其特征为: HA=980mm水柱(扬程) GA=550 l/h(流量) G1=160 l/h , G2=140 l/h, G3=140 l/h, G4=110 l/h 循环回路B有3个末端,其特征为: HB=700mm水柱(扬程) GB=360 l/h (流量) G5=140 l/h ,G6=120 l/h,G7=100 l/h 现在,如果A、B回路汇合到一起,其流量及压损特征都会产生变化。以下我们将用3种方式进行计算。 在AB汇合后,其汇合点的压差一致。这个压差值可以选择其中一个回路的压差值或者重新设定一个压差值。 A,按压差值大的回路A为标准计算: 即Hn=HA=980mm水柱,因此只需要平衡回路B的流量。通过公式(1)计算B回路的新流量,得出: GBn=GB×(Hn/HB) 0.525=360×(980/700) 0.525 = 429.5 l/h 通过公式(2)得到倍率F=429.5/360=1.193 因此,B回路每个末端新的流量就变为: G5=140×F=167 l/h,G6=120×F =143 l/h,G7=100×F=119 l/h B,按压差值小的回路B为标准计算: 即Hn=HB=700mm水柱,因此只需要平衡回路A的流量,通过公式(1)计算A回路新流量,得出: GAn=GA×(Hn/HA) 0.525=550×(700/980) 0.525 = 460.9 l/h 通过公式(2)得到倍率F=460.9/550=0.838 因此可以计算出A回路每个末端的新流量: G1=160×F=134 l/h,G2=140 ×F =117 l/h,G3=140 ×F =117 l/h,G4=110×F=92 l/h C,按平均压差值为标准计算: 即Hn =(HB+HA)/2 = 840mm水柱,因此A,B回路流量却需要进行平衡,通过公式

压力损失的计算

压力损失的计算 管道1:据Q=4284m3/h ,v=14.80m/s ,查阅《工业通风》孙一坚附表,我们选定管段直径D=320mm 局部压力损失:集气罩1:ξ=0.16,90°弯头R d =1.5,ξ=0.17, ξ=0.27+0.17+0.17+0.21=0.82 ∴?p 1局部=ξ× ρ×v2 =0.82×169.24=138.78p a 沿程压力损失: l 垂直 =4?0.8?0.2?0.537?0.233=2.23m, ∴l 总 =2.23+1+7=10.23m 查表可知:R m=15.43P a·m?1 ∴?p 1沿程=R m×l 总 =157.85P a ∴?p 1总 =157.85+138.78=296.63P a 管道2:局部压力损失:集气罩1: ξ=0.27,90°弯头R d =1.5,ξ=0.17,45°合流三通,F2 F1 =0.5,F3 F1 =0.5,L3 L2 = 1,ξ=0.88 ξ=0.27+0.17+0.88=1.32 ∴?p 2局部=ξ× ρ×v2 =1.32×169.24=223.40p a 沿程压力损失: l 垂直 =4?0.8?0.2?0.537?0.233=2.23m, ∴l 总 =2.23+1.41=3.64m ∴?p 2沿程=R m×l 总 =56.17P a ∴?p 2总 =157.85+138.78=279.5P a 管道3:总流量q v=5927.04m3/h,v=16.16m/s 局部压力损失:90°弯头R d =1.5,ξ=0.17 ∴ξ=0.17×3=0.51,除尘器压力损失为1100Pa ∴?p 3局部=ξ× ρ×v2 +1100=0.51×169.24=1186.31p a 沿程压力损失: l 总 =1.9+4.4+3.5+0.975=10.775m

阀门流量系数的速算方法

流量系数的速算方法 在我们的设计工作中经常要进行各式各样的计算,流量系数正是其中之一。阀门的流量系数Cv和Kv值是衡量阀门流动能力的重要参数之一,流量系数的大与小,说明了流体通过阀门时其压力损失的大与小,流量系数越大则压力损失越小阀门的流通能力也就越好。国外的阀门厂通常都把不同类型、不同口径的阀门Cv值列入产品样本中。在我国,许多用户都要求制造方在样图中例明产品的流量系数Cv值或Kv值。在新的API规范6D《管线阀门》第22版明确规定:“制造厂(商)应为买方提供流量系数Kv值”。显然流量系数对管道和阀门设计过程来说是一个非常重要的参数。 阀门的流量系数Cv值最早是由美国流体控制协会在1952年提出的,它的定义是:在通过阀门的压力降每平方英寸1磅(1bf/in2)的标准条件下,温度为15.6℃的水,每分钟流过的美制加仑数(Usgal/min)。 阀门的流量系数Cv随阀门的尺寸、形式、结构而变化,这些变化最终与阀门的压力降有关。 Cv值的计算公式为: Cv=Q(G/ΔP)0.5(1) 式中Cv——流量系数 Q——体积流量(Usgal/min) ΔP——阀门的压力降(1bf/in2) G——水的密度G=1 阀门的流量系数Cv值取决于阀门的结构,而且必须由自身的实际试 验来确定。

DN50阀门的典型流量系数 (表一) 流量系数Cv 值是“英制”的计量单位,人们依据Cv 值的技术定义制定了“米制”计量单位的阀门流量系数Kv 值。Kv 值的定义是:在通过阀门的压力降为1巴(bar )的标准条件下,温度为5-40℃的水每小时流过阀门的立方米体积流量(m 3/h ) Kv 值的计算公式: 形式Cv 截止阀40-60角式截止阀 47Y 形阀门 阀杆与管道中心线夹角为45°72阀杆与管道中心线夹角为60° 65V 形孔旋塞阀 60-80蝶阀 蝶板厚度为通道直径的7%333蝶板厚度为通道直径的35% 154常规闸阀300-310夹管阀360旋启式止回阀76隐蔽式止回阀123球阀(缩径)131球阀(全径) 440

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

管道压头损失计算式

管道阻力损失计算式 一、雷若数Re 的计算 Re =d u ρ/μ =(m )(m/s )(kg/m 3)/(N.s/m 2)=m 0kg 0s 0 式中:d 管径,u 流速,μ流体粘度,ρ流体密度。 流体粘度μ的计算式: μ=469 .0R (00158.0460.0s 11 ) φη-- = (mPa.s ) 式中:溶剂(水)密度η1(g/cm 3),纯溶质密度η2(g/cm 3 ), R =η1/η2 , 固体体积分率Φs 。 (备注:20℃时,水密度η1=1g/cm 3 ,石灰密度η2=0.64g/cm 3 , 石灰浆液中质量浓度为5%,8%,10%,15%,20%的石灰浆液密度ρ(g/cm 3 )和固体体积分率 Φs 分别为:1.031,1.055,1.061,1.093,1.126;0.05,0.08,0.1,0.15,0.2。) 二、湍流时的摩擦损失因数 λ (一)光滑管 1. 柏拉修斯式: λ=0.316/Re 0.25 其适用范围为Re =5×103~105 2. 顾袖珍式: λ=0.0056+0.5/ Re 0.32 其适用范围为Re =3×103~3×106 3. 尼库拉则与卡门式 1/λ 0.5 =2 logRe λ 0.5 -0.8 此式可用于更广的湍流范围,但由于式两边都含有待求的λ,计算较为不便。 (二)粗糙管 1. 顾袖珍式: λ=0.01227+0.7543/ Re 0.38 上式适用范围为Re =3×103~3×106。此式所指的粗糙管为内径50~200mm 的新钢铁管。 2. 柯尔布鲁克式: 1/λ 0.5 =1.14-2 log[ e/d + 9.35/ (Re λ 0.5 )] 其适用范围甚广(Re =4×103~108,e/d =5×10-2~10-6),但由于算式两边都含

管道阻力损失计算(终审稿)

管道阻力损失计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 ? 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:

(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm;

D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力 B0=、温度t0=20℃、宽气密度ρ0=m3、运动粘度v0=×10-6m2/s、管壁粗糙度K=、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中 Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。 (2)空气温度和大气压力的修正 (6-1-6) 式中 Kt——温度修正系数。 KB——大气压力修正系数。 (6-1-7) 式中 t——实际的空气温度,℃。 (6-1-8) 式中 B——实际的大气压力,kPa。

管道保温的计算公式

绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ S=π×(D+2.1δ+0.0082)×L 式中D——直径 1.033、 2.1——调整系数; δ——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: ①单管伴热或双管伴热(管径相同,夹角小于90°时)。D′=D1+D2 +(10~20mm) 式中D′——伴热管道综合值; D1 ——主管道直径; D2 ——伴热管道直径;

(10~20mm)——主管道与伴热管道之间的间隙。 ②双管伴热(管径相同,夹角大于90°时)。 D′=D1+1.5D2 +(10~20mm) ③双管伴热(管径不同,夹角小于90°时)。 D′=D1 +D伴大+(10~20mm) 式中D′——伴热管道综合值; D1 ——主管道直径。 将上述D′计算结果分别代入相应公式计算出伴热管道的绝热层、防潮层和保护层工程量。 (3)设备封头绝热、防潮和保护层工程量计算式。 V=\[(D+1.033δ)/2\]2 π×1.033δ×1.5×N S=\[(D+2.1δ)/2\]2 ×π×1.5×N (4)阀门绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×2.5D×1.033δ×1.05×N S=π(D+2.1δ)×2.5D×1.05×N (5)法兰绝热、防潮和保护层计算公式。

V=π(D+1.033δ)×1.5D×1.033δ×1.05×N S=π×(D+2.1δ)×1.5D×1.05×N (6)弯头绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×1.5D×2π×1.033δ× N/B S=π×(D+2.1δ)×1.5D×2π×N/B (7)拱顶罐封头绝热、防潮和保护层计算公式。V=2πr×(h+1.033δ)×1.033δ S=2πr×(h+2.1δ)

管道内压力损失的计算

管道内压力损失的计算 一、液体在直管中流动时的压力损失 液体在直管中流动时的压力损失是由液体流动时的摩擦引起的,称之为沿程压力损失,它主要取决于管路的长度、内径、液体的流速和粘度等。液体的流态不同,沿程压力损失也不同。液体在圆管中层流流动在液压传动中最为常见,因此,在设计液压系统时,常希望管道中的液流保持层流流动的状态。 1.层流时的压力损失 在液压传动中,液体的流动状态多数是层流流动,在这种状态下液体流经直管的压力损失可以通过理论计算求得。 圆管中的层流 (1)液体在流通截面上的速度分布规律。如图所示,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,则 其受力平衡方程式为: 122()0 f p p r F π--= ( 由式(2-6)可知: 式中:μ 因为速度增量du 与半径增量dr 符号相反,则在式中加一负号。 Δp =p 1- p 2 Δp 、式(2-45)代入式(2-44),则得: 对式积分得: 当r =R 时,u =0,代入(2-47)式得: 则 22()4p u R r l μ?= - 由式可知管内流速u 沿半径方向按抛物线规律分布,最大流速在轴线上,其值为:

2max 4pR u l μ? = (1) (1)? 管路中的流量。图(b)所示抛物体体积,是液体单位时间内流过通流截面的体积即 流量。为计算其体积,可在半径为r 处取一层厚度为 的微小圆环面积,通过此环 形面积的流量为: 对式积分,即可得流量q : (2) (2)? 平均流速。设管内平均流速为 υ 对比可得平均流速与最大流速的关系: υ=max 2 u (4)沿程压力损失。层流状态时,液体流经直管的沿程压力损失可从式求得: 232lv p d μ?= 由式可看出,层流状态时,液体流经直管的压力损失与动力粘度、管长、流速成正比,与管径平方成反比。 在实际计算压力损失时,为了简化计算,得μ=υd ρ/Re ,并把 μ=υd ρ/Re 代入,且分子分母同乘以2g 得 : 2 64...Re 2l l v p g d g ρ?= 式中:λ为沿程阻力系数。它的理论值为λ=64/Re ,而实际由于各种因素的影响,对光滑金属管取λ=75/Re ,对橡胶管取λ=80/Re 。 2.紊流时的压力损失层流流动中各质点有沿轴向的规则运动。而无横向运动。紊流的重要特性之一是液体各质点不再是有规则的轴向运动,而是在运动过程中互相渗混和脉动。这种极不规则的运动,引起质点间的碰撞,并形成旋涡,使紊流能量损失比层流大得多。 由于紊流流动现象的复杂性,完全用理论方法加以研究至今,尚未获得令人满意的成果,故仍用实验的方法加以研究,再辅以理论解释,因而紊流状态下液体流动的压力损失仍用式来计算,式中的λ值不仅与雷诺数Re 有关,而且与管壁表面粗糙度Δ 有关,具体的 λ值见表2-5。 表2-5圆管紊流时的λ值 2.局部压力损失 局部压力损失是液体流经阀口、弯管、通流截面变化等所引起的压力损失。液流通过这些地方时,由于液流方向和速度均发生变化,形成旋涡,使液体的质点间相互撞击,从而产生较大的能量损耗。 突然扩大处的局部损失

相关文档
最新文档