函数导数公式及证明

函数导数公式及证明
函数导数公式及证明

函数导数公式及证明

复合函数导数公式

)

),

()0g x ≠'

''2

)()()()()

()()f x g x f x g x g x g x ?-=??

())()

x g x ,

1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -==

证:

'

00()()()()lim lim n n

x x f x x f x x x x f x x x

→→+-+-==

根据二项式定理展开()n

x x +

011222110(...)lim n n n n n n n n

n n n n n x C x C x x C x x C x x C x x x

----→+++++-= 消去0n n

n C x x -

11222110...lim n n n n n n

n n n n x C x x C x x C x x C x x

----→++++= 分式上下约去x

112211210

lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项

111

n n n C x

nx

--==

12210()[()()...()]lim n n n n x x x x x x x x x x x x x x

----→+-+++++++=

12210

lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++

1221...n n n n x x x x x x ----=++++ 1n n x -=

2.证明指数函数()x f x a =的导数为'ln ()x x a a a =

证:

'

00()()()lim lim x x x

x x f x x f x a a f x x x

+→→+--==

0(1)lim x x x a a x

→-= 令1x

a

m -=,则有log (1)a x m =-,代入上式

00(1)lim lim

log (1)x x x x x a

a a a m

x m →→-==+

1000

ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m

a m a a a a m m m a m

→→→===+++ 根据e 的定义1lim(1)x

x e x

→∞

=+ ,则1

0lim(1)m x m e →+=,于是

1

ln ln lim

ln ln ln(1)

x x x x m

a a a a a a e

m →===+

3.证明对数函数()log a f x x =的导数为''1

()(log )ln a f x x x a

==

证:

'0

0log ()log ()()

()lim

lim a a x x x x x f x x f x f x x x →→+-+-==

00log log (1)ln(1)

lim

lim lim ln a

a x x x x x x x x x x x x x a

→→→+++===

00ln(1)ln(1)

lim lim ln ln x

x

x x x x x x

x x x a x a

→→++==

根据e 的定义1lim(1)x

x e x

→∞=+ ,则0lim ln(1)x x x x e x →+

=,于是 0ln(1)

ln 1

lim

ln ln ln x

x

x x e x x a

x a x a

→+==

=

4.证明正弦函数()sin f x x =的导数为''()(sin )cos f x x x ==

证:

'0

0()()sin()sin ()lim

lim x x f x x f x x x x

f x x x

→→+-+-== 根据两角和差公式sin()sin cos cos sin x x x x x x +=+

00sin()sin sin cos cos sin sin lim

lim x x x x x x x x x x x x

→→+-+-==

因0

lim(sin cos )sin x x x x →=,约去sin cos sin x x x -,于是

0cos sin lim

x x x

x

→=

因0sin lim

1x x

x →=,于是

sin lim(cos )cos x x

x

x x

→==

5.证明余弦函数()cos f x x =的导数为''()(cos )sin f x x x ==-

证:

'0

0()()cos()cos ()lim

lim x x f x x f x x x x

f x x x

→→+-+-== 根据两角和差公式cos()cos cos sin sin x x x x x x +=-

00cos()cos cos cos sin sin cos lim

lim x x x x x x x x x x

x x

→→+---==

因0

lim(cos cos )cos x x x x →=,约去cos cos cos x x x -,于是

0sin sin lim

x x x

x

→-=

因0sin lim

1x x

x →=,于是

sin sin lim()sin x x x

x x

→=-

=-

6.证明正切函数()tan f x x =的导数为''21

()(tan )cos f x x x

==

证:

'0

0()()tan()tan ()lim

lim x x f x x f x x x x

f x x x

→→+-+-==

00sin()sin sin()cos sin cos()cos()cos lim lim cos()cos x x x x x

x x x x x x x x x

x x x x x →→+-

+-++==+

根据两角和差公式

sin()sin cos cos sin x x x x x x +=+, cos()cos cos sin sin x x x x x x +=-

代入上式

0(sin cos cos sin )cos sin (cos cos sin sin )

lim

cos()cos x x x x x x x x x x x x x x x

→+--=+

00cos cos sin (sin sin sin )sin (cos cos sin sin )

lim

lim cos()cos cos()cos x x x x x x x x x x x x x x x x x x x x x

→→--+==++ 因2

2

cos sin 1x x +=

sin lim

cos()cos x x

x x x x →=+

因0sin lim

1x x

x

→=,0lim cos()cos x x x x →+=,上式为

20sin 11lim cos()cos cos x x x x x x x →??==??+??

7.证明余切函数()cot f x x =的导数为''21

()(cot )sin f x x x

==-

证:

'0

0()()cot()cot ()lim

lim x x f x x f x x x x

f x x x

→→+-+-==

00cos()cos cos()sin cos sin()sin()sin lim lim sin()sin x x x x x

x x x x x x x x x

x x x x x →→+-

+-++==+

根据两角和差公式

sin()sin cos cos sin x x x x x x +=+, cos()cos cos sin sin x x x x x x +=-

代入上式

0(cos cos sin sin )sin cos (sin cos cos sin )

lim

sin()sin x x x x x x x x x x x x x x x

→--+=+

222200sin sin cos sin sin (sin cos )lim lim sin()sin sin()sin x x x x x x x x x x x x x x x x x

→→---+==++ 因2

2

sin cos 1x x +=,且0sin lim

1x x

x

→=,0lim sin()sin x x x x →+=,代入上式

20sin 11lim sin()sin sin x x x x x x x →??=-=-??+??

8.证明复合函数()()f x g x +的导数为[]'

''()()()()f x g x f x g x +=+

证:

[]'

0()()()()()()lim x f x x g x x f x g x f x g x x →+++--?

?

+=?

???

0()()()()lim x f x x f x g x x g x x x →+-+-??

=+????

''()()f x g x =+

9.证明复合函数()()f x g x 的导数为[]'

''()()()()()()f x g x f x g x f x g x =+

证:

[]'

0()()()()()()lim x f x x g x x f x g x f x g x x →++-??

=?

???

[][]0

()()()()()()()()lim x f x x f x f x g x x f x g x x g x x g x x →??

++-+++-+-=?

???

[][]0()()()()()()()()()()lim x f x x f x g x x f x g x x f x g x x f x g x x g x x →??

+-+++-+++-=????[][]0()()()()()()lim x f x x f x g x x f x g x x g x x →??+-+++-=????

0()()()()lim ()()x f x x f x g x x g x g x x f x x x →+-+-??=++????

''()()()()f x g x f x g x =+

10.证明复合函数()()f x g x 的导数为'

''2

()()()()()()()f x f x g x f x g x g x g x ??-=????

证:

'

0()()()()()lim ()x f x x f x f x g x x g x g x x →+??

-????

+=????????

????

0()()()()lim ()()x f x x g x f x g x x xg x g x x →??

+-+=??+??

[][]0()()()()()()()()lim ()()x f x x f x f x g x f x g x x g x g x xg x g x x →??+-+-+-+=??+??

[][]0()()()()()()()()()()lim ()()x f x x f x g x f x g x f x g x x g x f x g x xg x g x x →??+-+-+--=??+??

[][]0()()()()()()lim ()()x f x x f x g x f x g x x g x xg x g x x →??+--+-=??+??

[][]0()()()()()()lim ()()x f x x f x g x x g x g x f x x x g x g x x →??+-+--??

=??+??

????

'''

2()()()()()

f x

g x f x g x g x -= 11.证明复合函数[]()f g x 的导数为[]'''()(())()f g x f g x g x =

证:

[]'0(())(())(())lim x f g x x f g x f g x x →+-??=????

令()u g x = ,则有()()u g x x g x =+-

0())()lim x f u u f u x →+-??=???? 0())()lim x f u u f u u u x →+-??=????

0())()()()lim x f u u f u g x x g x u x →+-+-??=???? ''()()f u g x =

''(())()f g x g x =

12.证明复合函数[]ln ()f x 的导数为[]''

()ln ()()

f x f x f x =

证:

令()u f x =,

[][]''

'ln ()ln f x u u =

''1()()

f x u u f x == 13.求复合函数x x 的导数

解: 令x

u x =

ln ln u x x =

等式左边求导为()'

'

ln u u u

=

等式右边求导为

()'

''

1

ln ln (ln )ln ln 1x x x x x x x x x x

=+=+=+ 于是有'

ln 1u x u

=+,

'(ln 1)u x u =+

则'

()(ln 1)x x

x x x =+

14. 证明反三角函数arcsin x 的导数为'

(arcsin )x =

证:

令arcsin y x =,则

sin y x =

对上式两边求导,等式右边'

1x =

等式左边(根据复合函数求导公式),其导数为'

'

(sin )(cos )y y y = 于是有'

(cos )1y y =

'

1(cos )y y =

=

再将arcsin y x =代入上式

'

(arcsin )x =

=

15. 证明反三角函数arccos x 的导数为'

(arccos )x =证:

令arccos y x =,则

cos y x =

对上式两边求导,等式右边'

1x =

等式右边(根据复合函数求导公式),其导数为()'

'cos (sin )y y y =-

于是有'

(sin )1y y -=,整理后如下:

'

1(sin )y y =-

= 再将arccos y x =代入上式

'

(arccos )x ==

16. 证明反三角函数arctan x 的导数为'2

1

(arctan )1x x =

+ 证:

令arctan y x =,则

tan y x =

对上式两边求导,等式右边'

1x =

等式右边(根据复合函数求导公式),其导数为()'

2'tan (1tan )y y y =+

于是有2

'

(1tan )1y y +=,整理后如下:

'2

1

1tan y y

=

+ 再将arctan y x =代入上式

'22

11

(arctan )1tan arctan 1x x x =

=++

17. 证明:反函数的导数为原函数导数的倒数'1

''1(),(()0)()

f y f x f x -??=≠??

如果函数()x y ?= 在某区间y I 内单调、可导且'

()0y ?≠ ,那么它的反函数()y f x =在对应区间 x I 内也可导,并且'

'1

()()

f x y ?=。 证:

因为()y f x =连续,所以当0x →时,0y →

''0

011()lim

lim ()

x x y f x x x y y

?→→=== 即'

'

1

()()

f x y ?= 举例:

'

'11(arcsin )(sin )cos x y y =

====

基本初等函数的导数公式的推导过程

基本初等函数的导数公 式的推导过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααα ααααααααααααααααααα αααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++()1111 C x x x ααααα αα---?== 所以原命题得证.

命题 若()sin f x x =,则()cos f x x '=. 推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证.

导数公式的证明(最全版)

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) For personal use only in study and research; not for commercial use f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx For personal use only in study and research; not for commercial use =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)]

=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) For personal use only in study and research; not for commercial use 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

反角函数求导公式的证明

反三角函数求导公式的证明 §2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可 导,而且0)(≠'y ?,则反函数)(x f y =在间},)(|{y x I y y x x I ∈==?内也是单调、可 导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'=

证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= ' 类似地,我们可以证明下列导数公式:

导数公式及证明

编辑本段导数公式及证明 这里将列举五类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来): 基本导数公式 1.y=c(c为常数) y'=0 2幂函数。y=x^n, y'=nx^(n-1)(n∈Q*) 熟记1/X的导数 3.(1)y=a^x ,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数 4.(1)y=logaX, y'=1/xlna (a>0且a不等于1,x>0) ;熟记 y=lnx ,y'=1/x 5.y=(sinx )y'=cosx 6.y=(cosx) y'=-sinx 7.y=(tanx) y'=1/(cosx)^2 8.y=(cotx) y'=-1/(sinx)^2 9.y=(arcsinx)y'=1/√1-x^2 10.y=(arccosx) y'=-1/√1-x^2 11.y=(arctanx) y'=1/(1+x^2) 12.y=(arccotx) y'=-1/(1+x^2) 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的): y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的: y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。主要应用导数定义与

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

反三角函数求导公式证明

§ 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(ππ-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= '

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

导数证明

3 利用导数证明不等式 ① 函数不等式的证明 a. 构造辅助函数 1 移项构造 例10 ()x x <+1ln ,()0>x 经典不等式 2 变形构造 例11 已知()()x a ax x x f ln 12 12-+-= ,51<--x x x f x f 3 换元构造 4 控制变量构造 例12 若()2ln 2x mx x x f -+=有两个零点1x ,2x ()21x x <,且2210x x x +=。求证()00<'x f 例13 已知()x e x f =,设b a <,试比较?? ? ??+2b a f 与()()a b a f b f --的大小,并说明理由. b. 利用充分性证明 例14 证明0>x 时,ex e x x 21ln -> 例15 已知函数()x x x f ln -=,()x x x g ln = ,证明()()21+>x g x f . 正整数不等式的证明 1 直接构造函数证明 例16 证明*∈N n ,n n n n +<+11ln 2 比较通项构造证明 例17 证明*∈N n ,2≥n 时,n n ln 13121<+++

例18 证明()1 1ln 13ln 12ln 1+>++++n n n 例19 证明()1 11ln 43ln 32ln 2+-<++++n n n n 例20 证明()()() 12121ln 33ln 22ln 222222++-<+++n n n n n 3 利用经典不等式证明 例21 求证e n ?x ,()0

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、"0 2、 (乂7二心I (n 为正整数) 3、 Ca x y=a x \na Ce x y=e x (long a xy=-^— 4、 xina (lnxX=- 5、 x 6、 (sin Q 二 cos x 7 (cos x )‘二-sin x '(ly=-± 8. x 对 知识点二:导数的四则运算法则 1、 ("土 v y=u ± v r 2、 (nv )r =u F v + //v r 3、 (Cu7=Cu 4、 v 知识点三:利用函数导数判断函数单调性的法则 1. 如果在广(力>°,则/a )在此区间是增区间,为/(X )的单调增区间。 2、如果在(""),广(x )v0,则/(x )在此区间是减区间,(心)为/(X )的单调减区 间。 一、计算题 1. 计算下列函数的导数: (1) y = x 15 (2) y = x* (XH O) (3) 5 y = x 4 (x a 0) (4) 2 y = x^ (XA O) (5) 2 y = x 3 (X A 0) (6) y = x 5

(7) >,=v2 , 24) (7) y = sin x (8) y = cos x (9) y=r (10) y = In x (11) y = e x 2、求下列函数在给泄点的导数: 2 (1)尸存,“16 7T . X =— (4) y = xsinx , 4 x y = --- (6) 1+F ,兀=1 (2) y = sinx (3)y = cosx x = 2TT 3 (5) >,=v

基本初等函数及常数的导数公式

()()()()()()()( )( )()()1 222 2 ()'0 ()'()'ln '1 (log )'ln 1ln '(sin )'cos cos 'sin tan 'sec cot 'csc sec 'sec tan csc 'csc cot arcsin 'arccos '1arctan '11cot '1a a x x x x a c x ax a a a e e x x a x x x x x x x x x x x x x x x x x x x x arc x x -========-==-==-= ==+-=+ 导数运算法则 ()()()()()()()()()()()()()()()()()()()2'''''''''u x v x u x v x u x v x u x v x u x v x v x u x v x u x v x u x u x ±=±=+??-= ? ???????

1220 ln 1ln 1log ln sin cos cos sin tan sec cot csc sec sec tan csc csc cot arcsin arccos 1arctan 1arc cot u u x x x x a dc dx ux dx de e dx da a adx d x dx x d x dx x a d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx d x dx d x dx x d x -========-==-==-= ==+-=211dx x + 微分的四则运算: ()()2()0d u v du dv d uv udv vdu v udv vdu d u u u ±=±=+-??=≠ ???

反三角函数求导公式证明

§2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1 因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(lo g )ln 11121131 2 2x x a rctg x x a x a x '= -'= +'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,2 21sin 1cos x y y -=-= 因此, 211 )arcsin (x x -=' 证2 设 x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 22211 11 cos )(1)(x y tg y tgy arctgx +=+=='=' 证3 a x a a a a y y x ln 1ln 1)(1 )log (=='='

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

函数导数公式及证明.doc

函数导数公式及证明 函数类型常量函数 幂函数 指数函数 对数函数 三角函数 原函数 f (x) C ,C为常量 f (x)x a f (x)x m f (x)a x f (x)e x f ( x)lo g a x f (x) ln x f (x)sin x f (x)cosx 求导公式 f ' ( x)0 ( x a )'ax a 1 ( x a )( n)a(a 1)...(a n1)x a n ( a 0,1,2..., n1) ( x m )( n) m! x m n, (n m) (m n)! ( a x )' a xln a ( a x )( n) a x ln n a , (0 a 1) (e x )'e x (e x )(n ) e x (log a x)' 1 x ln a (log a x)(n ) ( 1)n 1 (n 1)! ,(0 a 1) x n ln a (ln x)' 1 x (ln x) (n ) ( 1)n 1 (n 1)! x n (sin x)' cosx (sin x)( n) sin(x n ) 2 (cosx)' sin x

反三角函数双曲函数反双曲函数f (x)tan x f (x)cot x f (x) arcsinx f (x)arccosx f (x) arctanx f (x)arccot x f ( x)sinh x f ( x) coshx f (x)tanh x f ( x)coth x f (x)arsinh x f (x) arcoshx f (x)ar tanh x (cosx)( n) cos(x n ) 2 (tan x)' sec2 x 1 x 1 (tan x)2 cos2 (cot x)' csc2 x 1 1 (cot x)2 sin2 x (arcsin x) ' 1 1 x2 (arccos x)' 1 1 x2 (arctan x)' 1 1 x2 (arccot x)' 1 1 x2 (sinh x)' coshx (cosh x)' sinh x (tanh x)' 1 cosh2 x (coth x)' 1 x sinh2 ( ar sinh x)' 1 x2 1 ( ar cosh x) ' 1 x2 1 (ar tanh x)' 1 1 x2 复合函数导数公式 复合函数求导公式

基本初等函数导数公式附导数运算法则

1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。 2掌握导数的四则运算法则; 3能利用给出的公式和法则求解函数的导数。 教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点:基本初等函数的导数公式和导数的四则运算法则的应用 教学安排:两课时 教学过程: 引入:复习巩固导数的基本公式,及其基本运算规律。 且 知识讲解: 一:基本初等函数的导数公式 为了方便我们将可以直接使用的基本初等函数的导数公式表如下:

关于表特别说明:1 常数函数 的导 数是 0; 2幂函数 导数是以对应幂函数的指数为系数 3 余弦函 数的导数是正弦函数的相反 数。 从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正, 和余弦函数在该区间的正负是一致的, 余弦函数在区间上是单调递减,瞬时变化率为负, 和正弦函数在该区间的正负是相反的,故 有一个负号。 4

的导数是它自身。 5 例1计算下列函数的导数 强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的 位置是在底数上还是在指数上。 2 导函数的定义域决定于原函数的定义域。 练习:求下列函数的导数。 例 2.(课本P14例1)假设某国家在20 那么在第10个年头,这种商品的价格上涨的速度大约 是多少(精确到0.01 )? /年) 在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

提出问题: 10个年头,这种 0.01)? 二导数的计算法则 推论1 导数不变) 2 (常数与函数的积的导数,等于常数乘函数 的导数) 3 解决问题: 公式和求导法则,有 /年) 0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。

导数公式的证明最全

导数公式的证明(最全版)

————————————————————————————————作者:————————————————————————————————日期:

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) 证法二:(n为任意实数) f(x)=x^n

lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx

(3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)

导数公式证明大全

导数的定义::(x)=lim △ y/A x △ x—0 (下面就不再标明A x—0 了) 用定义求导数公式 1)f(x)=x A n 证法一:n为自然数) f'(x) =lim [(x+A x)An-xAn]/A x =lim (x+ A x-x)[(x+ A x)A(n-1 )+x*(x+ A x)A(n -2)+...+xA(n-2)*(x+ A x)+xA(n -1 )]/ A x =lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+...+xA(n-2)*(x+A x)+xA(n-1)] =xA(n-1 )+x*xA(n -2)+xA2*xA(n -3)+ ...xA(n-2)*x+xA(n -1 ) =nxA(n-1) 证法二:n为任意实数) f(x)=xAn lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*xAn f'(x)=nxA(n -1) (2)f(x)=sinx f'(x)

=lim (sin(x+A x)-sinx)/A x =lim (sinxcos A x+cosxsin A x-sinx)/ A x =lim (sinx+cosxsin A x-sinx)/A x =lim cosxsin A x/A x =cosx (3)f(x)=cosx f'(x) =lim (cos(x+A x)-cosx)/A x =lim (cosxcos A x-sinxsin A x-cosx)/A x =lim (cosx-sinxsin A x-cos)/A x =lim -sinxsin A x/A x =-sinx 4)f(x)=a A x f'(x) =lim (aA(x+A x)-aAx)/A x =lim a A x*(a A△ x-1)/A x 设"Ax-仁m,贝U A x=logaA(m+1)) =lim aAx*m/logaA(m+1) =lim aAx*m/[ln(m+1)/lna]

相关文档
最新文档