空间向量知识点归纳总结

空间向量知识点归纳总结
空间向量知识点归纳总结

空间向量知识点归纳总结

知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)空间的两个向量可用同一平面内的两条有向线段来表示。

2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈

运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a

++=++

⑶数乘分配律:b a b a

λλλ+=+)(

3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线

向量或平行向量,a 平行于b ,记作b a

//。

当我们说向量a 、b 共线(或a //b )时,表示a 、b

的有向线段所在的直线可能是同一直线,也可能是平行直线。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a

λb 。

4. 共面向量

(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数

,x y 使p xa yb =+。

5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数

,,x y z ,使OP xOA yOB zOC =++。

6. 空间向量的直角坐标系:

(1)空间直角坐标系中的坐标:

在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使

++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。

(2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,

用{,,}i j k 表示。

(3)空间向量的直角坐标运算律:

①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,

112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,

112233a b a b a b a b ?=++,

112233//,,()a b a b a b a b R λλλλ?===∈,

1122330a b a b a b a b ⊥?++=。

②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(4)模长公式:若123(,,)a a a a =,123(,,)b b b b =,

则21||a a a a =?=+21||b b b b =?=+(5)夹角公式:21cos ||||a b

a b a b a ??=

=?+

(6)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,

则2

||(AB AB ==,

或,A B d = 7. 空间向量的数量积。

(1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作

,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显

然有,,a b b a <>=<>;若,2

a b π

<>=

,则称a 与b 互相垂直,记作:a b ⊥。

(2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。

(3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ??<>叫做,a b 的数量积,记作a b ?,即a b ?=||||cos ,a b a b ??<>。

(4)空间向量数量积的性质:

①||cos ,a e a a e ?=<>。②0a b a b ⊥??=。③2||a a a =?。

(5)空间向量数量积运算律:

①()()()a b a b a b λλλ?=?=?。②a b b a ?=?(交换律)。

③()a b c a b a c ?+=?+?(分配律)。

(6):空间向量的坐标运算:

1.向量的直角坐标运算

设a =123(,,)a a a ,b =123(,,)b b b 则

(1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---;

(3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++;

2.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.

3、设111(,,)a x y z =,222(,,)b x y z =,则

a b ?(0)a b b λ=≠; a b ⊥?0a b ?=?1212120x x y y z z ++=.

4.夹角公式 设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=

.

5.异面直线所成角

cos |cos ,|a b θ==

21

||||||

a b a b x ?=

?+.

6.平面外一点p 到平面α的距离

已知AB 为平面α的一条斜线,n 为平面α的一个法

向量,A 到平面α的距离为:||

||

AB n d n ?=

【典型例题】

例1. 已知平行六面体ABCD -D C B A '''',化简下列向量表达式,标出化简结果的向量。

⑴AB BC +; ⑵AB AD AA '++;

B

A

α

n

⑶12AB AD CC '++; ⑷1

()3

AB AD AA '++。

例2. 对空间任一点O 和不共线的三点,,A B C ,问满足向量式:

OP xOA yOB zOC =++(其中1x y z ++=)的四点,,,P A B C 是否共面?

例3. 已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC 表示

向量OG 。

例 4. 如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,

60OAB ∠=,求OA 与BC 的夹角的余弦值。

说明:由图形知向量的夹角易出错,如,135OA AC <>=易错写成,45OA AC <>=

,切记!

例5. 长方体1111ABCD A B C D -中,4AB BC ==,E 为11AC 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB 。

空间向量与立体几何练习题

一、选择题

1.如图,棱长为2的正方体1111ABCD A B C D -在空间直角坐标

系中,若,E F 分别是1,BC DD 中点,则EF 的坐标为( )

A.(1,2,1)-

B.(1,2,1)--

y

x

z

F

E C 1

D 1

C D(O)

B 1

A 1

A

B

O

A B C

C.(1,2,1)--

D.(1,2,1)--

2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4

1

1B A ,则BE 1

与DF 1

所成角的余弦值是( )

A .

1715 B .

21 C .17

8 D .

2

3 3.在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,

PA a =,PB b =,PC c =,则BE =( )

A.111222a b c -+

B.111

222

a b c -- C.131222a b c -+ D.113222

a b c -+ 二、填空题

4.若点(1,2,3)A ,(3,2,7)B -,且0AC BC +=,则点C 的坐标为______.

5.在正方体1111ABCD A B C D -中,直线AD 与平面11A BC 夹角的余弦值为_____.

三、解答题

1、在正四棱柱ABCD-A 1B 1C 1D 1中, AB 1与底面ABCD 所成的角为

4

π

, (1)求证11AB C BD ⊥面(2)求二面角1B AC B --的正切值

2.在三棱锥P ABC -中,3AB AC ==

4AP =,PA ABC ⊥面,90BAC ∠=?, D 是PA 中点,点E 在BC 上,且2BE CE =,(1)求证:AC BD ⊥;(2)求直线DE 与PC 夹角θ的余弦值;(3)求点A 到平面BDE 的距离d 的值.

3.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值.

4、已知棱长为1的正方体A C 1,E 、F 分别是B 1C 1、C 1D 的中点.(1)求证:E 、F 、D 、B 共面;(2)求点A 1到平面的B DEF 的距离;(3)求直线A 1D 与平面B DEF 所成的角.

D

A

P

E

5、已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点,求: (Ⅰ)D 1E 与平面BC 1D 所成角的大小;(Ⅱ)二面角D -BC 1-C 的大小;

【模拟试题】

1. 已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++; (2)

1

()2

AB BD BC ++;

(3)1

()2

AG AB AC -+。

2. 已知平行四边形ABCD ,从平面AC 外一点O 引向量。

,,,OE kOA OF kOB OG kOC OH kOD ====。(1)求证:四点,,,E F G H 共面;

(2)平面AC //平面EG 。

3. 如图正方体1111ABCD A B C D -中,1111111

4

B E D F A B ==

, 求1BE 与1DF 所成角的余弦。

4. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5)。

⑴求以向量,AB AC 为一组邻边的平行四边形的面积S ;

⑵若向量a 分别与向量,AB AC 垂直,且|a |=3,求向量a 的坐标。

5.已知平行六面体

ABCD A B C D ''''

-中,

4,3,5,90AB AD AA BAD '===∠=,

60BAA DAA ''∠=∠=,求AC '的长。

[参考答案] 1. 解:如图,

(1)AB BC CD AC CD AD

++=+=;

(2)

111

()

222

AB BD BC AB BC BD ++=++。

AB BM MG AG

=++=;

(3)

1

()

2

AG AB AC AG AM MG -+=-=。

2. 解:(1)证明:∵四边形ABCD是平行四边形,∴AC AB AD

=+,∵EG OG OE

=-,

∴,,,

E F G H共面;

(2)解:∵()

EF OF OE k OB OA k AB

=-=-=?,又∵EG k AC

=?,∴//,//

EF AB EG AC。

所以,平面//

AC平面EG。

3.

解:不妨设正方体棱长为1,建立空间直角坐标系O xyz

-,

则(1,1,0)

B,

1

3 (1,,1)

4

E,(0,0,0)

D,

1

1 (0,,1)

4

F,

∴11(0,,1)4BE =-,11

(0,,1)4

DF =,

∴1117

4

BE DF ==

, 111115

00()114416BE DF ?=?+-?+?=。

1115

15cos ,17BE DF ==。

4. 分析:⑴

1

(2,1,3),(1,3,2),cos 2

||||AB AC AB AC BAC AB AC ?=--=-∴∠=

=

∴∠BAC =60°,||||sin 6073S AB AC ∴==⑵设a =(x ,y ,z ),则230,a AB x y z ⊥?--+=

解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1)。

5. 解:22||()AC AB AD AA ''=++

所以,||85AC '=

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

空间向量知识点归纳(期末复习).doc

空间向量期末复习 知识要点: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示?同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 运算律:⑴加法交换律:a + h =b +ci ⑵加法结合律:(N + T) + E = N + 0 + e) ⑶数乘分配律:= + 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,&平行于5 ,记作allb o 当我们说向量N、T共线(或a//b)时,表示万、5的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量万、b(方工6), allb存在实数2,使a=kb o 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量方,5不共线,"与向量刁,5共面的条件是存在实数 x^y\^p = xa-\-yb。 5.空间向量基本定理:如果三个向量a.b.c不共面,那么对空间任一向量存在一个唯一的有序实数组x,y,z ,使0 = xN + y5 + zC。 若三向量万不共面,我们把{a.b.c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共而的向量都可以构成空间的一个基底。 推论:设O ,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x, y, z ,使OP = xOA + yOB + zOC。 6.空间向量的数量积。 (1)空I'可向量的夹角及其表示:已知两非零向量a.b,在空间任取一点0,作0A = a,0B = b ,则厶叫做向量N与方的夹角,记作且规定OM a9b><7T, 显然有<丽>=<歸>;若<云伍>=仝,则称万与5互相垂直,记作:N丄方。 (2)向量的模:设0A = a,则有向线段刃的长度叫做向量万的长度或模,记作:\a\o

向量知识点归纳与常见总结

向量知识点归纳与常见题型总结 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量 可以比较大小,而向量不能比较大小,只有它的模才能比较大小. 记号“a>b”错了,而| a | > | b | 才有意义 . ⑵有些向量与起点有关,有些向量与起点无关. 由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量). 当遇到与起点有关向量时,可平移向量 . ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量 ⑷单位向量是模为 1 的向量,其坐标表示为(x, y ),其中 x 、y满足x2y2=1 (可用( cos ,sin)( 0≤≤2π)表示) . 特别: AB 表示与 AB 同向的单位向量。|AB| 例如:向量直线);( AB AC )(0) 所在直线过ABC 的内心(是BAC 的角平分线所在|AB||AC| 例 1、O是平面上一个定点, A、B、C不共线,P 满足OP OA(AB AC )[0,). |AB|| AC 则点 P 的轨迹一定通过三角形的内心。 →→→→ → →→ 1 AB + AC AB · AC =, 则△ABC 为() (变式 )已知非零向量 AB 与 AC 满足 (→→)·BC=0 且→→2 |AB ||AC ||AB ||AC | A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形 D. 等边三角形(06 陕西 ) ⑸ 0 的长度为0,是有方向的,并且方向是任意的,实数0 仅仅是一个无方向的实数 . ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. ( 7)相反向量 ( 长度相等方向相反的向量叫做相反向量。 a 的相反向量是- a 。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量. (三角形法则和平行四边形法则) ①当两个向量 a 和 b 不共线时, a b 的方向与 a 、b 都不相同,且| a b |<| a |+| b |; ②当两个向量 a 和 b 共线且同向时, a b 、a 、b 的方向都相同,且 | a b || a || b |; ③当向量 a 和 b 反向时,若| a |>| b |, a b 与 a 方向相同,且 |a b |=| a |-| b |; 若 | a | < | b | 时 , a b 与 b方向相同,且 | a+b |=| b |-| a |. ⑵向量与向量相减,其差仍是一个向量. 向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。 AB BC AC;AB AC CB 例 2: P 是三角形 ABC 内任一点,若CB PA PB,R ,则P一定在()

最新空间向量知识点归纳总结(经典)

精品文档 空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ???ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与 a 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

空间向量与立体几何知识点归纳总结教学提纲

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ???ρ+=+ ⑵加法结合律:)()(c b a c b a ????ρ?++=++ ⑶数乘分配律:b a b a ????λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x y x 其中 (4)与a 共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

向量知识点归纳与常见题型总结

向量知识点归纳与常见题型总结 高三理科数学组全体成员 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2 y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示).特别:||AB AB →→表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞u u u r u u u r u u u r u u u r u u u r u u u u r 则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形 D.等边三角形 (06陕西) ⑸0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。的相反向量是-。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量.(三角形法则和平行四边形法则) ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+||; ②当两个向量a 和b 共线且同向时,+a b 、a 、b 的方向都相同,且=+||||||+; ③当向量a 和b 反向时,若|a |>|b |,b a +与 a 方向相同 ,且|b a +|=|a |-|b |; 若|a |<|b |时,b a +与b 方向相同,且|a +b |=|b |-|a |. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。 =+;=-

向量知识点归纳与常见题型总结

向量知识点归纳与常见题型总结 高三理科数学组全体成员 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2 x 2 y =1 (可用(cos θ,sin θ)(0≤θ≤2π)表示).特别: || AB AB → → 表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠所在直线过ABC ?的内心(是BAC ∠的角平分线所在 直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 (06陕 西) ⑸的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量.(三角形法则和平行四边形法则) ①当两个向量a 和b 不共线时,+a b 的方向与a 、b 都不相同,且|+a b |<|a |+|b |; ②当两个向量和共线且同向时,+、、的方向都相同,且=+||||||+; ③当向量和反向时,若||>||,+与 方向相同 ,且|+|=||-||; 若||<||时,+与 方向相同,且|+|=||-||. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结 知识点精讲 一、空间向量及其加减运算 1.空间向量 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可 用有向线段表示,有向线段的长度表示向量的模,若向量a r 的起点是A ,终点是B ,则向量a r 也可以记作 AB u u u r ,其模记为a r 或AB u u u r . 2.零向量与单位向量 规定长度为0的向量叫做零向量,记作0r .当有向线段的起点A 与终点B 重合时,0AB =u u u r r . 模为1的向量称为单位向量. 3.相等向量与相反向量 方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量. 与向量a r 长度相等而方向相反的向量,称为a r 的相反向量,记为a -r . 4.空间向量的加法和减法运算 (1)OC OA OB a b =+=+u u u r u u u r u u u r r r ,BA OA OB a b =-=-u u u r u u u r u u u r r r .如图8-152所示. (2)空间向量的加法运算满足交换律及结合律 a b b a +=+r r r r ,()() a b c a b c ++=++r r r r r r 二、空间向量的数乘运算 1.数乘运算 实数λ与空间向量a r 的乘积a λr 称为向量的数乘运算.当0λ>时,a λr 与向量a r 方向相同;当0λ<时,向量a λr 与向量a r 方向相反. a λr 的长度是a r 的长度的λ倍. 2.空间向量的数乘运算满足分配律及结合律 () a b a b λλλ+=+r r r r ,() ()a a λμλμ=r r . 3.共线向量与平行向量 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a r 平行于b r ,记作//a b r r . 4.共线向量定理

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

机械制图知识点总结

机械识图知识点总结 图之功能各国标准尺度比例线之种类与用途角法与视图 图之功能 1. 信息传递:把设计者之构想绘制成图,传递给加工制作人员、检验人员等。 2. 国际性:图为技术界的国际语言,即须具有国际语言之性格,如图形表法,标注方法或符号定义必须完全统一规格。 3. 泛用性:随着技术的发展,目前在各种产业上的互相关连加深,因此需画出各种行业均能了解之图。 TOP 各国标准 TOP 尺度比例 尺度单位 工至机械制图用基本长度单位,通常采用 mm ,可以不用在图中表示。儒需使用其它单位时,则必须注明单位符号。英制则以 in. 为基本长度单位,而不必标注。

常用比例 机械制图再绘图时,因尽量画出较大之圆形,以便于微缩影储存。通常以 2,5,10 之倍数为常用比例或按实物大小画出。 长用比例如下所列: 实大比例:1:1 缩小比例:1:2,1:2.5,1:4,1:5,1:10,1:20,1:50,1:100,1:200,1:500,1:1000 。 放大比例:2 :1,5:1,10:1,20:1,50:1,100:1。 TOP 线之种类与用途

线之粗细与其使用 通常绘图时,粗实线之线宽须按图之大小与其复杂程度而订定,在同一张图中使用粗线之线宽必须均匀一致,中线与细线亦同理。 虚线之起讫与交会 虚线之起讫,如下图所示,虚线与其它线条交会时,除虚线无实线之延长外,其余应尽量维持相交。 1.实线与虚线相交 2.虚线与虚线相交 TOP

投影与视图 第一角法与第三角正投影法之比较 第一角投影法起于法国,盛行于欧洲大陆、德、法、义、俄等国,其中美、日及荷兰等国原先亦采用第一角投影法,后来改采用第三角法讫今。目前国内使用第一角投影法之机构约 35% ,而采用第三角投影法之机构约 65% 。因此为适应国内使用者之需求,于最新修订之 CNS3 , CNS3-1 , CNS3-2 ,…, CNS3-11 等工程制图国家标准规定“第一角法及第三角法同等适用”。唯于同一张图中,不的同时使用两种投影法,且每张图上均应于明显部位标示“投影法”,以资鉴别。 第一角投影法与第三角投影法之异同如下: (1) 对同一投影方向上而言,两者投影面之位置不同。第一角投影法之投影面在物体之后方,而第三角投影法之投影面则在物体前方。 (2) 两中投影法之各视图彼此完全相同。 (3) 两者之投影相于展开后视图排列,则因投影面之不同而有所分别,以前视图为基准而展开时,除前视图以外,其它各视图之位置相反。 (4) 判断视图为第一角或第三角时,可先假定为其中任一者,以侧视图之轮廓线判断误,表示假定正确,若虚实线相反,表示假定错误。 剖视图 对物体作假想剖切,以了结其内部形状,假想之割切面称为割面,而割面体所见之线,称为割面线,如图 1-1 所示。割面线可以转折,两端及转折处用粗实线画出,中间以细链线连接。转折处之大小如图 1-2 所示。 如有多个割面图时,应以大楷拉丁字母区别之,同一割面之两端以相同字母标示,字母写在箭头外侧,书写方向一律朝上。割面线箭头标示剖视图方向,割面线之两端需伸出视图外约10mm ,其箭头之大小形状如图 1-3 所示。 割面及剖面线 假想剖切所得剖面,须以细实线画出剖面线,剖面线虚为与主轴线或机件外形线成45 °之均匀并行线,(但应避免将剖面线画成垂直或水平)。若剖面线与轮廓线平行或近平行时,必须改变方向如图 1-4 所示。 同一机件被剖切后,其剖面线之方向与间隔必须完全相同。在组合图中,相邻两机件,其剖面线应取不同之方向或不同之间隔,如图 1-5 所示。机件剖面之面积较大时,其中间部分之剖面线可以省略,但画出之剖面线须整齐,如图 1-6 所示机件剖面之面积甚为狭小时,

向量知识点归纳与常见总结

向量知识点归纳与常见题型总结 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量 ⑷单位向量是模为1的向量,其坐标表示为(y x ,),其中x 、y 满足 +2x 2 y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示).特别:||AB AB →→表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞u u u r u u u r u u u r u u u r u u u r u u u u r 则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形 D.等边三角形 (06陕西) ⑸0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。) 2.与向量运算有关的问题

选修2-1空间向量知识点归纳总结

第三章 空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a =λb 。 4. 共面向量 (1)定义:一般地,能平移到同一平面的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向

高中数学选修21空间向量与立体几何知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1. P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

相关文档
最新文档