内存型号说明

内存型号说明
内存型号说明

Samsung

具体含义解释

主要含义:

第1位——芯片功能K,代表是内存芯片。

第2位——芯片类型4,代表DRAM。

第3位——芯片的更进一步的类型说明,S代表SDRAM、H代表DDR、G代表SGRAM 、T代表DDR2 DRAM、D表示GDDR1(显存颗粒)。

第4、5位——容量和刷新速率,容量相同的内存采用不同的刷新速率,也会使用不同的编号。64、62、63、65、66、67、6A代表64Mbit的容量;28、27、2A 代表128Mbit的容量;56、55、57、5A代表256Mbit的容量;51代表512Mbit 的容量。

第6、7位——数据线引脚个数,08代表8位数据;16代表16位数据;32代表32位数据;64代表64位数据。

第8位——为一个数字,表示内存的物理Bank,即颗粒的数据位宽,有3和4两个数字,分别表示4Banks和8Banks。对于内存而言,数据宽度×芯片数量=数据位宽。这个值可以是64或128,对应着这条内存就是1个或2个bank。例如256M内存32×4格式16颗芯片:4×16=64,双面内存单bank;256M内存

16M×16格式 8颗芯片:16×8=128,单面内存双bank。所以说单或双bank和内存条的单双面没有关系。另外,要强调的是主板所能支持的内存仅由主板芯片组决定。内存芯片常见的数据宽度有4、8、16这三种,芯片组对于不同的数据宽度支持的最大数据深度不同。所以当数据深度超过以上最大值时,多出的部分主板就会认不出了,比如把256M认成128M就是这个原因,但是一般还是可以正常使用。

第9位——由一个字符表示采用的电压标准,Q:SSTL-1.8V (1.8V,1.8V)。与DDR的2.5V电压相比,DDR2的1.8V是内存功耗更低,同时为超频留下更大的空间。

第10位——由一个字符代表校订版本,表示所采用的颗粒所属第几代产品,M 表示1st,A-F表示2nd-7th。目前,长方形的内存颗粒多为A、B、C三代颗粒,而现在主流的FBGA颗粒就采用E、F居多。靠前的编号并不完全代表采用的颗粒比较老,有些是由于容量、封装技术要求而不得不这样做的。

第11位——连线“-”。

第12位——由一个字符表示颗粒的封装类型,有G,S:FBGA(Leaded)、Z,Y:FBGA(Leaded-Free)。目前看到最多的是TSOP和FBGA两种封装,而FBGA是主流(之前称为mBGA)。其实进入DDR2时代,颗粒的封装基本采用FBGA了,因为TSOP封装的颗粒最高频率只支持到550MHz,DDR最高频率就只到400MHz,像DDR2 667、800根本就无法实现了。

第13位——由一个字符表示温控和电压标准,“C”表示Commercial

Temp.( 0°C ~ 85°C) & Normal Power,就是常规的1.8V电压标准;“L”表示Commercial Temp.( 0°C ~ 85°C) & Low Power,是低电压版,适合超频,

一般很少在普及型内存上使用,因为三星比较注重稳定性和兼容性,并不想更多的发烧友超频带来危险。

第14、15位——芯片的速率,如60为6ns;70为 7ns;7B为7.5ns (CL=3);7C为7.5ns (CL=2) ;80为 8ns;10 为10ns (66MHz)。DDR2起步频率是400MHz,主流最高频率是800MHz,也有品牌出过1066MHz,其实在DDR2的应用层面上已经没有多大的用处了,因此这段的两个字符“CC”表示DDR2-400(200MHz@ CL=3、tRCD=3、tRP=3)、“D5”表示DDR2-533(266MHz@ CL=4、tRCD=4、tRP=4)、“E6”表示DDR2-667(333MHz@ CL=5、tRCD=5、tRP=5)、“E7”表示DDR2-800(400MHz@ CL=5、tRCD=5、tRP=5)

三星的编号还有第16、17、18三位,这三位编号并不常见,一般用于OEM与特殊的领域,因而在此就不介绍了。

容量计算

知道了内存颗粒编码主要数位的含义,拿到一个内存条后就非常容易计算出它的容量。例如一条三星DDR内存,使用18片SAMSUNG K4H280838B-TCB0颗粒封装。颗粒编号第4、5位“28”代表该颗粒是128Mbits,第6、7位“08”代表该颗粒是8位数据带宽,这样我们可以计算出该内存条的容量是128Mbits(兆数位)× 16片/8bits=256MB(兆字节)。

注:“bit”为“数位”,“B”即字节“byte”,一个字节为8位则计算时除以8。关于内存容量的计算,文中所举的例子中有两种情况:一种是非ECC内存,每8片8位数据宽度的颗粒就可以组成一条内存;另一种ECC内存,在每64位数据之后,还增加了8位的ECC校验码。通过校验码,可以检测出内存数据中的两位错误,纠正一位错误。所以在实际计算容量的过程中,不计算校验位,具有ECC功能的18片颗粒的内存条实际容量按16乘。在购买时也可以据此判定18片或者9片内存颗粒贴片的内存条是ECC内存。

2Hynix(Hyundai)现代

现代内存的含义:

HY5DV641622AT-36

HY XX X XX XX XX X X X X X XX

1 2 3 4 5 6 7 8 9 10 11 12

1、HY代表是现代的产品

2、内存芯片类型:(57=SDRAM,5D=DDR SDRAM);

3、工作电压:空白=5V,V=3.3V,U=2.5V

4、芯片容量和刷新速率:16=16Mbits、4K Ref;64=64Mbits、8K Ref;65=64Mbits、4K Ref;128=128Mbits、8K Ref;129=128Mbits、4K Ref;256=256Mbits、16K Ref;257=256Mbits、8K Ref

5、代表芯片输出的数据位宽:40、80、1

6、32分别代表4位、8位、16位和32位

6、BANK数量:1、2、3分别代表2个、4个和8个Bank,是2的幂次关系

7、I/O界面:1 :SSTL_3、 2 :SSTL_2

8、芯片内核版本:可以为空白或A、B、C、D等字母,越往后代表内核越新

9、代表功耗:L=低功耗芯片,空白=普通芯片

10、内存芯片封装形式:JC=400mil SOJ,TC=400mil TSOP-Ⅱ,TD=13mm TSOP-Ⅱ,TG=16mm TSOP-Ⅱ

11、工作速度:55 :183MHZ、5 :200MHZ、45 :222MHZ、43 :233MHZ、4 :250MHZ、33 :300NHZ、L DR200、H DR266B、 K DR266A

3Infineon(亿恒)

亿恒简介

Infineon是德国西门子的一个分公司,目前国内市场上西门子的子公司

Infineon生产的内存颗粒只有两种容量:容量为128Mbits的颗粒和容量为

256Mbits的颗粒。编号中详细列出了其内存的容量、数据宽度。Infineon的内存队列组织管理模式都是每个颗粒由4个Bank组成。所以其内存颗粒型号比较少,辨别也是最容易的。

容量标示

HYB39S128400即128MB/ 4bits,“128”标识的是该颗粒的容量,后三位标识的是该内存数据宽度。其它也是如此,如:HYB39S128800即128MB/8bits;

HYB39S128160即128MB/16bits;HYB39S256800即256MB/8bits。

Infineon内存颗粒工作速率的表示方法是在其型号最后加一短线,然后标上工

作速率。

-7.5——表示该内存的工作频率是133MHz;

-8——表示该内存的工作频率是100MHz。

例如:

1条Kingston的内存条,采用16片Infineon的HYB39S128400-7.5的内存颗粒生产。其容量计算为: 128Mbits(兆数位)×16片/8=256MB(兆字节)。

1条Ramaxel的内存条,采用8片Infineon的HYB39S128800-7.5的内存颗粒生产。其容量计算为: 128Mbits(兆数位)× 8 片/8=128MB(兆字节)。

4KINGMAX内存的说明

简介

Kingmax内存都是采用TinyBGA封装(Tiny ball grid array)。并且该封装模式是专利产品,所以我们看到采用Kingmax颗粒制作的内存条全是该厂自己生产。Kingmax内存颗粒有两种容量:64Mbits和128Mbits。在此可以将每种容量系列的内存颗粒型号列表出来。

容量备注

KSVA44T4A0A——64Mbits,16M地址空间× 4位数据宽度;

KSV884T4A0A——64Mbits,8M地址空间× 8位数据宽度;

KSV244T4XXX——128Mbits,32M地址空间× 4位数据宽度;

KSV684T4XXX——128Mbits,16M地址空间× 8位数据宽度;

KSV864T4XXX——128Mbits,8M 地址空间× 16位数据宽度。

Kingmax内存的工作速率有四种状态,是在型号后用短线符号隔开标识内存的工作速率:

-7A——PC133 /CL=2;

-7——PC133 /CL=3;

-8A——PC100/ CL=2;

-8——PC100 /CL=3。

例如一条Kingmax内存条,采用16片KSV884T4A0A-7A 的内存颗粒制造,其容量计算为: 64Mbits(兆数位)×16片/8=128MB(兆字节)。

5Micron(美光)

以MT48LC16M8A2TG-75这个编号来说明美光内存的编码规则。

含义:

MT——Micron的厂商名称。

48——内存的类型。48代表SDRAM;46 代表DDR。

LC——供电电压。LC代表3V;C 代表5V;V 代表2.5V。

16M8——内存颗粒容量为128Mbits,计算方法是:16M(地址)×8位数据宽度。A2——内存内核版本号。

TG——封装方式,TG即TSOP封装。

-75——内存工作速率,-75即133MHz;-65即150MHz。

实例:一条Micron DDR内存条,采用18片编号为MT46V32M4-75的颗粒制造。该内存支持ECC功能。所以每个Bank是奇数片内存颗粒。

其容量计算为:容量32M ×4bit ×16 片/ 8=256MB(兆字节)。

6Winbond(华邦)

含义说明:

A字段由W组成,代表华邦(Winbond)内存芯片的前缀。

B字段表示产品类型。98代表SDRAM内存94代表DDR SDRAM内存。

C字段表示内存芯片的容量。16代表16Mbit(2MB)32代表32Mbit(4MB)64

代表64Mbit(8MB)12代表128Mbit(16MB)25代表256Mbit(32MB)。要计算内存条的总容量,只需将内存芯片的容量乘上内存芯片的数量即可。D字段表示内存结构。08代表*816或G6代表*1632或G2代表*32。

E字段表示内存芯片的修正版本。A代表第1版B代表第2版C代表第3版D代表第4版。

F字段表示内存芯片的封装方式。B代表60balls BGA、90balls BGA或144-Ball LF BGA封装D代表100-Pin LQFP封装H代表50-Pin 400mil TSOP、66-Pin 400mil TSOP或86-Pin 400mil TSOP封装。

G字段表示内存芯片的速度标识。对于SDRAM而言:-5代表200MHz(CL=3)-6代表166MHz(CL=3)-7代表143MHz(CL=3)或PC133(CL=2)-75代表PC133(CL=3)-8H代表PC100(CL=2)。对于DDR SDRAM而言:-4代表250MHz(CL=3/4)-5代表DDR400(CL=2.5)-5H代表200MHz(CL=3)-55代表183MHz(CL=3)-6

代表DDR333(CL=2.5)-7代表143MHz(CL=2.5)或DDR266(CL=2)-75代表DDR266(CL=2.5)。

H字段表示工作温度类型(此字段也可空白)。空白或L代表正常温度(0℃~70℃),I代表工业温度(-40℃~85℃)或扩大温度(-25℃~85℃)。

系统性能监控

linux系统性能监控 1)uptime查看运行时间,连接数以及负载数 2)top查看各进程的cpu使用情况 3)vmstat可以统计系统的cpu,内存,swap,io等情况 4)pidstat主要用于监控全部或指定进程占用系统资源的情况 Uptime: 依次显示运行的时长,当前登录用户数,服务器在过去的1min,5min,15min的系统平均负载值 平均负载值最佳为1,表示每个进程都可以立即执行不会错过cpu周期,单处理器中1或者2都是可以接受的,在多处理器的服务器上可能看到8到10 Top 第一行显示和uptime相同的内容

4-5行显示cpu内存情况 Vmstat 不写参数的话值采集一次,写参数的话如图表示每隔2s采集一次一共采集四次

r表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU 比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。 b表示阻塞的进程 swpd虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么你该升级内存了或者把耗内存的任务迁移到其他机器。 free空闲的物理内存的大小,我的机器内存总共8G,剩余3415M。 buff Linux/Unix系统是用来存储,目录里面有什么内容,权限等的缓存 cache cache直接用来记忆我们打开的文件,给文件做缓冲,我本机大概占用300多M(这里是Linux/Unix的聪明之处,把空闲的物理内存的一部分拿来做文件和目录的缓存,是为了提高程序执行的性能,当程序使用内存时,buffer/cached 会很快地被使用。) si每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉。 so每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上。 bi块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte,我本机上没什么IO操作,所以一直是0,但是我曾在处理拷贝大量数据(2-3T)的机器上看过可以达到140000/s,磁盘写入速度差不多140M每秒 bo块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。bi和bo一般都要接近0,不然就是IO过于频繁,需要调整。 in每秒CPU的中断次数,包括时间中断 cs每秒上下文切换次数,例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源,也要尽量避免频繁调用系统函数。上下文切换次数过多表示你的CPU大部分浪费在上下文切换,导致CPU干正经事的时间少了,CPU没有充分利用,是不可取的。 us用户CPU时间,我曾经在一个做加密解密很频繁的服务器上,可以看到us 接近100,r运行队列达到80(机器在做压力测试,性能表现不佳)。 sy系统CPU时间,如果太高,表示系统调用时间长,例如是IO操作频繁。

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

如何看懂内存条上的型号

如何看懂内存条上的型号 参数内存条都是以(厂家名)(容量)(容量系数)(类型)(速度)的形式来表示的。中间可能夹着电压(3.3/5V)特殊标识在里面。 要知道它是什麽内存,只要从“-”标记往前数,第一个数字就是内存类型标识,0是普通FP,单数是EDO,双数是SDRAM。 以??064v160j10-10??为例。? ?就是厂家;64=64Mbit容量(是bit,不是Byte);v表示3.3V的内存;16是跟容量相关的系数。表示这块小芯片的位数是16,所以64位总线的Pentium机至少要用4片这样的小芯片才能构成可用的SIMM内存条。这时候这条由4片小芯片构成的SIMM内存条容量是64bit*4/8=32MB(也就是我们所说的32M一条的内存)。如果SIMM内存条上有16片这样的小芯片,就是128M一条的内存条。另一方面,如果SIMM内存条上只有2片这样的小芯片,就必须两条SIMM 内存条同时使用才能满足总线宽度。16bit*2片*两条=64bit(总线宽度)。而32bit总线的486,只要有两片这样的小芯片就可以构成完整可用的SIMM 内存组了。这时候SIMM的容量是64bit*2/8=16MB。0j是厂家的内部标识,没有固定的判别方法。10是双数,所以这是一条SDRAM。 再举一个实例:我的一条内存上印着HY57V168010ATC-10。 HY是指由韩国现代生产; V是表示3.3V工作电压; 16表示容量是16Mbit; 8表示小芯片是16/8=2M*8bit; 10表示是SDRAM; -10表示速度为10ns; 57和ATC都是厂家的内部标识,通常包括内存的封装方式、内存刷新时块的大小等等。 据此,大家可以算出:如果SIMM条上只有4片这样的小芯片,就只有8bit*4=32bit宽度,486上可以单用一条,容量是16Mbit*4/8=8MB;而586上必须用两条,容量是16Mbit*8/8=16MB;如果SIMM条上有16片这样的小芯片,就是一条可以在586上单用的32M条。 (转载自https://www.360docs.net/doc/0f1422214.html,)

操作系统内存管理原理

内存分段和请求式分页 在深入i386架构的技术细节之前,让我们先返回1978年,那一年Intel 发布了PC处理器之母:8086。我想将讨论限制到这个有重大意义的里程碑上。如果你打算知道更多,阅读Robert L.的80486程序员参考(Hummel 1992)将是一个很棒的开始。现在看来这有些过时了,因为它没有涵盖Pentium处理器家族的新特性;不过,该参考手册中仍保留了大量i386架构的基本信息。尽管8086能够访问1MB RAM的地址空间,但应用程序还是无法“看到”整个的物理地址空间,这是因为CPU寄存器的地址仅有16位。这就意味着应用程序可访问的连续线性地址空间仅有64KB,但是通过16位段寄存器的帮助,这个64KB大小的内存窗口就可以在整个物理空间中上下移动,64KB逻辑空间中的线性地址作为偏移量和基地址(由16位的段寄存器给处)相加,从而构成有效的20位地址。这种古老的内存模型仍然被最新的Pentium CPU支持,它被称为:实地址模式,通常叫做:实模式。 80286 CPU引入了另一种模式,称为:受保护的虚拟地址模式,或者简单的称之为:保护模式。该模式提供的内存模型中使用的物理地址不再是简单的将线性地址和段基址相加。为了保持与8086和80186的向后兼容,80286仍然使用段寄存器,但是在切换到保护模式后,它们将不再包含物理段的地址。替代的是,它们提供了一个选择器(selector),该选择器由一个描述符表的索引构成。描述符表中的每一项都定义了一个24位的物理基址,允许访问16MB RAM,在当时这是一个很不可思议的数量。不过,80286仍然是16位CPU,因此线性地址空间仍然被限制在64KB。 1985年的80386 CPU突破了这一限制。该芯片最终砍断了16位寻址的锁链,将线性地址空间推到了4GB,并在引入32位线性地址的同时保留了基本的选择器/描述符架构。幸运的是,80286的描述符结构中还有一些剩余的位可以拿来使用。从16位迁移到32位地址后,CPU的数据寄存器的大小也相应的增加了两倍,并同时增加了一个新的强大的寻址模型。真正的32位的数据和地址为程序员带了实际的便利。事实上,在微软的Windows平台真正完全支持32位模型是在好几年之后。Windows NT的第一个版本在1993年7月26日发布,实现了真正意义上的Win32 API。但是Windows 3.x程序员仍然要处理由独立的代码和数据段构成的64KB内存片,Windows NT提供了平坦的4GB地址空间,在那儿可以使用简单的32位指针来寻址所有的代码和数据,而不需要分段。在内部,当然,分段仍然在起作用,就像我在前面提及的那样。不过管理段的所有责任都被移给了操作系统。

linux内存管理子系统 笔记

4-4 linux内存管理子系统 4-4-1 linux内存管理(参考课件) 物理地址:cpu地址总线上寻址物理内存的地址信号,是地址变换的最终结果 逻辑地址:程序代码经过编译后,出现在汇编程序中的地址(程序设计时使用的地址) 线性地址:又名虚拟地址,32位cpu架构下4G地址空间 CPU要将一个逻辑地址转换为物理地址,需要两步: 1、首先CPU利用段式内存管理单元,将逻辑地址转换成线性地址; 2、再利用页式内存管理单元,把线性地址最终转换为物理地址 相关公式: 逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)(通用的) 16位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值×16+逻辑地址的偏移部分 物理地址=线性地址(没有页式管理) 32位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值+逻辑地址的偏移部分 物理地址<——>线性地址(mapping转换) ARM32位:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 逻辑地址=段内偏移量(段基地址为0) 线性地址=逻辑地址=段内偏移量(32位不用乘以32) 物理地址<——>线性地址(mapping转换) ************************!!以下都是x86模式下!!********************************* 一、段式管理 1.1、16位CPU:(没有页式管理) 1.1.1、段式管理的由来: 16位CPU内部有20位地址总线,可寻址2的20次方即1M的内存空间,但16位CPU 只有16位的寄存器,因此只能访问2的16次方即64K。因此就采用了内存分段的管理模式,在CPU内部加入了段寄存器,这样1M被分成若干个逻辑段,每个逻辑段的要求如下: 1、逻辑段的起始地址(段地址)必须是16的整数倍,即最后4个二进制位须全是0 (因此不必保存)。 2、逻辑段的最大容量为64K。 1.1.2、物理地址的形成方式: 段地址:将段寄存器中的数值左移4位补4个0(乘以16),得到实际的段地址。 段偏移:在段偏移寄存器中。 1)逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 2)由逻辑地址得到物理地址的公式为:(因为没有页式管理,所以这一步就得到了物理地址)物理地址PA=段寄存器的值×16+逻辑地址的偏移部分(注意!!)(段与段可能会重叠)

产品型号说明

产品型号说明 1.聚氯乙烯绝缘护套电力电缆PVC insulated and sheath electric cable 型号、名称和使用范围 型号名称适用范围 VV VLV 聚氯乙烯绝缘聚氯乙烯护套电力电缆 敷设在室内、隧道及管道中,电缆不能承受压力和机械外力作用。 VV22 VLV22 聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆 敷设在室内、隧道及直埋土壤中,电缆能承受压力和其他外力作用。 VV32 VLV32 聚氯乙烯绝缘细钢丝铠装聚氯乙烯护套电力电缆 敷设在室内、矿井中,水中,电缆能承受相当的拉力。 VV42 VLV42 聚氯乙烯绝缘粗钢丝铠装聚氯乙烯护套电力电缆 敷设在竖井、水下等垂直场合,能承受相当的轴向拉力。 ZR-VV ZR-VLV 聚氯乙烯绝缘聚氯乙烯护套阻燃电力电缆 敷设在室内、隧道及管道中,电缆不能承受压力和机械外力作用。 ZR-VV22 ZR-VLV22 聚氯乙烯绝缘钢带铠装聚氯乙烯护套阻燃电力电缆 敷设在室内、隧道及直埋土壤中,电缆能承受压力和其他外力作用。 ZR-VV32 ZR-VLV32 聚氯乙烯绝缘细钢丝铠装聚氯乙烯护套阻燃电力电缆 敷设在室内、矿井中,水中,电缆能承受相当的拉力。 ZR-VV42 ZR-VLV42 聚氯乙烯绝缘粗钢丝铠装聚氯乙烯护套阻燃电力电缆 敷设在竖井,水下等垂直场合,能承受上相当的轴向拉力。 2.聚氯乙烯绝缘护套耐火电力电缆PVC insulated sheath fire-resistance electric cable 型号及名称 型号名称 NH-VV 聚氯乙烯绝缘和护套耐火电力电缆 NH-VV22 聚氯乙烯绝缘和护套钢带铠装耐火电力电缆 交联聚乙烯绝缘电力电缆XLPE insulated electric cable 型号及名称 型号名称 YJV YJLV 铜芯或铝饼交联聚乙烯绝缘,聚氯乙烯护套电力电缆 YJLV22 YJLV22 铜芯或铝芯交联聚乙烯绝缘,钢带铠装聚氯乙烯护套电力电缆 YJV32、42 YJLV32、42 铜芯或铝芯交联聚乙烯绝缘,钢丝铠装聚氯乙烯护套电力电缆 3.聚氯乙烯绝缘护套控制电缆PVC insulated sheath control cable 型号、名称及使用范围 型号名称主要使用范围 KVV 铜贡聚氯乙烯绝缘聚氯乙烯护 套控制电缆 敷设在室内、电缆沟、管道等要求屏蔽的固定场合 KVVP 铜芯聚氯乙烯绝缘,聚氯乙烯 护套编织屏蔽控制电缆 敷设在室内、电缆沟、管道等要求屏蔽的固定场合 KVVP2 铜芯聚氯乙烯绝缘聚氯乙烯护 套铜带屏蔽控制电缆 敷设在室内、电缆沟、管道等要求屏蔽的固定场合 KVV22 铜芯聚氯乙烯绝缘聚氯乙烯护 套钢带铠装控制电缆 敷设在室内、电缆沟、管道、直埋等承受较大机械外力的固定场合 KVVR 铜芯聚氯乙烯绝缘聚氯乙烯护 套控制软电缆 敷设在室内移动要求柔软等场合 ZR-KVVRP 铜芯聚氯乙烯绝缘,聚氯乙烯 护套编织屏蔽控制软电缆 敷设在室内移动要求柔软屏蔽等场合 ZR-KVV 铜芯聚氯乙烯绝缘聚氯乙烯护 套阻燃控制电缆 敷设在有阻燃要求的室内、电缆沟、管道等固定场合 ZR-KVVP2 铜芯聚氯乙烯绝缘聚氯乙烯护 磁铜带屏蔽阻燃控制电缆 敷设在有阻燃要求的室内、电缆沟、管道等固定场合 ZR-KVV2 铜饼聚氯乙烯绝缘聚氯乙烯护 套钢带铠装阻燃控制电缆 敷设在有阻燃要求的室内、电缆沟、管道、直埋等能承受较大机械外力 固定场合 ZR-KVVR 铜芯聚氯乙烯绝缘聚氯乙烯护 套阻燃控制软电缆 敷设在有阻燃要求的室内可移动柔软等场合 4.10KV钢芯铝交联聚乙烯绝缘架空电缆10kV steel core aluminium XLPE insulated aerial cable 型号规格

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

内存型号说明

Samsung 具体含义解释 主要含义: 第1位——芯片功能K,代表是内存芯片。 第2位——芯片类型4,代表DRAM。 第3位——芯片的更进一步的类型说明,S代表SDRAM、H代表DDR、G代表SGRAM 、T代表DDR2 DRAM、D表示GDDR1(显存颗粒)。 第4、5位——容量和刷新速率,容量相同的内存采用不同的刷新速率,也会使用不同的编号。64、62、63、65、66、67、6A代表64Mbit的容量;28、27、2A 代表128Mbit的容量;56、55、57、5A代表256Mbit的容量;51代表512Mbit 的容量。 第6、7位——数据线引脚个数,08代表8位数据;16代表16位数据;32代表32位数据;64代表64位数据。 第8位——为一个数字,表示内存的物理Bank,即颗粒的数据位宽,有3和4两个数字,分别表示4Banks和8Banks。对于内存而言,数据宽度×芯片数量=数据位宽。这个值可以是64或128,对应着这条内存就是1个或2个bank。例如256M内存32×4格式16颗芯片:4×16=64,双面内存单bank;256M内存 16M×16格式 8颗芯片:16×8=128,单面内存双bank。所以说单或双bank和内存条的单双面没有关系。另外,要强调的是主板所能支持的内存仅由主板芯片组决定。内存芯片常见的数据宽度有4、8、16这三种,芯片组对于不同的数据宽度支持的最大数据深度不同。所以当数据深度超过以上最大值时,多出的部分主板就会认不出了,比如把256M认成128M就是这个原因,但是一般还是可以正常使用。 第9位——由一个字符表示采用的电压标准,Q:SSTL-1.8V (1.8V,1.8V)。与DDR的2.5V电压相比,DDR2的1.8V是内存功耗更低,同时为超频留下更大的空间。 第10位——由一个字符代表校订版本,表示所采用的颗粒所属第几代产品,M 表示1st,A-F表示2nd-7th。目前,长方形的内存颗粒多为A、B、C三代颗粒,而现在主流的FBGA颗粒就采用E、F居多。靠前的编号并不完全代表采用的颗粒比较老,有些是由于容量、封装技术要求而不得不这样做的。 第11位——连线“-”。 第12位——由一个字符表示颗粒的封装类型,有G,S:FBGA(Leaded)、Z,Y:FBGA(Leaded-Free)。目前看到最多的是TSOP和FBGA两种封装,而FBGA是主流(之前称为mBGA)。其实进入DDR2时代,颗粒的封装基本采用FBGA了,因为TSOP封装的颗粒最高频率只支持到550MHz,DDR最高频率就只到400MHz,像DDR2 667、800根本就无法实现了。 第13位——由一个字符表示温控和电压标准,“C”表示Commercial Temp.( 0°C ~ 85°C) & Normal Power,就是常规的1.8V电压标准;“L”表示Commercial Temp.( 0°C ~ 85°C) & Low Power,是低电压版,适合超频,

操作系统原理实验-系统内存使用统计5

上海电力学院 计算机操作系统原理 实验报告 题目:动态链接库的建立与调用 院系:计算机科学与技术学院 专业年级:信息安全2010级 学生姓名:李鑫学号:20103277 同组姓名:无 2012年11 月28 日上海电力学院

实验报告 课程名称计算机操作系统原理实验项目线程的同步 姓名李鑫学号20103277 班级2010251班专业信息安全 同组人姓名无指导教师姓名徐曼实验日期2012/11/28 实验目的和要求: (l)了解Windows内存管理机制,理解页式存储管理技术。 (2)熟悉Windows内存管理基本数据结构。 (3)掌握Windows内存管理基本API的使用。 实验原理与内容 使用Windows系统提供的函数和数据结构显示系统存储空间的使用情况,当内存和虚拟存储空间变化时,观察系统显示变化情况。 实验平台与要求 能正确使用系统函数GlobalMemoryStatus()和数据结构MEMORYSTATUS了解系统内存和虚拟空间使用情况,会使用VirtualAlloc()函数和VirtualFree()函数分配和释放虚拟存储空间。 操作系统:Windows 2000或Windows XP 实验平台:Visual Studio C++ 6.0 实验步骤与记录 1、启动安装好的Visual C++ 6.0。 2、选择File->New,新建Win32 Console Application程序, 由于内存分配、释放及系统存储 空间使用情况均是Microsoft Windows操作系统的系统调用,因此选择An application that support MFC。单击确定按钮,完成本次创建。 3、创建一个支持MFC的工程,单击完成。

操作系统内存管理系统

操作系统存管理 1. 存管理方法 存管理主要包括虚地址、地址变换、存分配和回收、存扩充、存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求存空间少的程序,造成存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的存。

2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行存分区的共享。 分区式存储管理引人了两个新的问题:碎片和外碎片。 碎片是占用分区未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是存紧缩(compaction)。

2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

如何看内存条型号(容量)

金士顿 1.KVR代表kingston value RAM 2.外频速度单位:兆赫 3.一般为X 4. 64为没有ECC;72代表有ECC 5.有S字符表示笔记本专用内存,没有S字符表示普通的台式机或是服务器内存 6. 一般为C C3:CAS=3; C2.5:CAS=2.5; C2:CAS=2 7.分隔符号 8.内存的容量 我们以金士顿ValueRAM DDR内存编号为例: 编号为ValueRAM KVR400X64C25/256 这条内存就是.金士顿ValueRAM 外频400MHZ 不带有ECC校验 CAS=2.5 256M内存 HY(现代HYNIX) 现代是韩国著名的内存生产厂,其产品在国内的占用量也很大. HY的编码规则: HY 5X X XXX XX X X X X-XX XX 1 2 3 4 5 6 7 8 9 10 11 定义: 1、HY代表现代. 2、一般是57,代表SDRAM. 3、工艺:空白则是5V, V是3V, U是2.5V. 4、内存单位容量和刷新单位:16:16M4K刷新;64:64M,8K刷新;65:64M,4K刷新;128:128M,8K刷新;129:128M,4K刷新. 5、数据带宽:40:4位,80:8位,16:16位,32:32位. 6、芯片组成:1:2BANK,2:4BANK;3:8BANK; 7、I/O界面:一般为0 8、产品线:从A-D系列 9、功率:空白则为普通,L为低功耗. 10、封装:一般为TC(TSOP) 11、速度:7:7NS,8:8NS,10P:10NS(CL2&3),10S:10NS,(PC100,CL3),10:

软件系统运行情况报告

篇一:软件系统运行总结报告 自2月份开始,我一直在跟进xx银行w-xxnd1s2.0项目的测试工作,至此为止已近6个月时间,从公司内部系统测试、验收测试,再到uat测试,以及投产前的系统压力测试等等。从开始到项目即将结束,一步步走过来。本次项目中,我作为测试环节的主力人员之一,仅对此项目中测试工作进行总结。 一、项目测试进度控制。项目的测试进度主要是按照项目计划进行的,完全按照项目组计划要求完成测试任务、提交测试类相关文档,包括测试案例的完善、制定测试计划、执行测试、缺陷跟踪以及bug回归测试等。协调项目的内部测试工作,本此项目中测试小组一共组织了四轮次系统全面测试工作,认真配合项目工作,共同保证项目质量。项目测试的问题跟踪及处理采用每日进行修改问题回归测试工作,每日同步更新问题跟踪单的模式,按照规划时间完成系统更新测试。 二、项目组内部成员关系处理。在项目工作的这几个月里大家相处融洽,项目组内部共同探讨解决问题的方法,向各模块负责人学习模块功能处理方式,向业务人员了解系统中涉及的业务知识点,两者结合起来进行模块功能测试。鉴于之前辖内对公交易系统和中行对公项目的经验,也向项目组提出了一些完善性意见。 三、协调用户测试方面。用户验收测试是项目测试工作的重要组成部分之一,是项目验收阶段的最终把关阶段,业务人员结合日常业务处理情况对系统进行的尝试性使用过程。本次项目客户测试方面也是我个人觉得不够安全感一个主要方面,客户测试介入力度太小,尽管我们已经很多次电话催促业务人员测试,每次联系相关业务人员进行测试,他们来到项目组开发现场测试,也仅仅一两个小时时间,简单的进行验证操作即可。xx银行利用两批系统培训的时间安排了两次分行集中测试,也算给项目进行了一次全面的测试,从中也暴露出不少系统存在的问题,目前项目组均已解决。[莲~山课件 ] 四、测试成效方面。中信x-funds2.0系统测试中,共记录问题及客户新增需求825个,其中bug数量512个、系统完善类问题225个,新增需求类问题88个。组织了四轮次内部系统全面测试工作,兼顾日常系统更新测试工作,最大限度的进行了内部质量把关。配合外包公司一同进行系统压力测试及稳定性测试,测试结果符合客户要求。现中信 x-funds2.0系统临近投产实施工作,测试组还将继续配合配合项目投产工作及投产后的补丁更新测试工作。 四、个人得失方面。作为此次项目测试的负责人,对于日常的测试流程、测试任务分配、测试执行、缺陷跟踪、协调内部测试及协调客户测试方面能力均得到了进一步提高,理清了项目整个过程中测试小组的工作过程以及后期的项目移交工作。同时也对各子系统相应的业务知识有了更进一步认知。相关业务知识方面还需要进一步加强,测试技能及测试管理方面还需要进一步完善学习。更好的吸收项目经验,做好以后的补丁测试工作及其他项目的测试工作。篇二:系统测试运行报告 supercontrol系统试运行报告 作者:________陈琦_______________ 完成日期:_______2013.11_____________ 签收人:___________________________ 签收日期:________2013.11_____________ 目录 1文档说明 ............................................................................. .................................. i 1.1使用范围 ............................................................................. ......................... i 1.2文档概述 .............................................................................

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

10-实验五:系统内存使用统计(计算机14-3班-王伟)

10-实验五:系统内存使用统计(计算机14-3班-王伟)

新疆师范大学 操作系统(本科) 实验报告 院系:计算机科学技术学院 班级: 14-3班 学生姓名:王伟 学号: 20141602141011 指导教师:王志华 教师评阅结果: 教师评语: 实验日期 2017 年 4月 24 日

五、实验步骤和结果: 代码截图: 实验结果截图:

代码: // 实验五:虚拟内存使用统计(14_3王伟).cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "实验五:虚拟内存使用统计(14_3王伟).h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif void GetMemSta(void); //////////////////////////////////////////////////////////////// ///////////// // The one and only application object CWinApp theApp; using namespace std; int _tmain(int argc, TCHAR* argv[], TCHAR* envp[]) { int nRetCode = 0; LPVOID BaseAddr; char * str;

产品尺寸说明

产品尺寸说明 一、关于稳压管1/2W和1W之间的尺寸区别 1/2W芯片和两脚总长为59.19MM(正负0.5MM),两边引脚长度为27.53MM,芯片直径为1.83MM,长度为3.61MM。 1W芯片和两脚总长为59.19MM(正负0.5MM),两边引脚长度为27.43MM,芯片 直径为2.53MM,长度为4.23MM。 贴片稳压管1206封装: 4148芯片长度为3.35MM(正负0.5MM),直径为:1.36MM 其它伏数长度为3.44MM(正负0.5MM),直径为:1.42MM 常用稳压管的型号对照表: IN4728 3.3v IN4729 3.6v IN4746 18v IN4748 22v IN4747 20v IN4749 24v IN4750 27v IN4751 30v IN4752 33v IN4753 34v IN4755 36v IN4756 47v IN4757 51v IN4754 35v IN4730 3v9 IN4731 4v3 IN4732 4v7 IN4733 5v1 IN4734 5v6 IN4735 6v2 IN4736 6v8 IN4737 7v5 IN4738 8v2 IN4739 9v1 IN4740 10v IN4741 11v IN4742 12v IN4743 13v IN4744 15v IN4745 16v 二、铝电解电容的脚距和脚的孔径 1、一般小体积的脚径是0.5(正负0.05),大体积的脚径是0.8(正负0.05) 引脚长度为20-25MM 2、通用型的脚距 4*7 脚距=1.5MM(正负0.3) 5*11 脚距=1.75 MM(正负0.2) 6.3*12 脚距=2.2MM(正负0.3) 8*12 脚距=3.3(正负0.3)

统计操作系统缺页次数

实验二: 统计操作系统缺页次数

目录 一.实验目的---------------------------------------------3 二.实验内容--------------------------------------------3三.实验步骤----------------------------------------------3

统计操作系统缺页次数 一实验目的 学习虚拟内存的基本原理和Linux虚拟内存管理技术; 深入理解、掌握Linux的按需调页过程; 掌握内核模块的概念和操作方法,和向/proc文件系统中增加文件的方法;综合运用内存管理、系统调用、proc文件系统、内核编译的知识。 二实验内容 1.原理 Linux的虚拟内存技术采用按需调页,当CPU请求一个不在内存中的页面时,会发生缺页,缺页被定义为一种异常(缺页异常),会触发缺页中断处理流程。每种CPU结构都提供一个do_page_fault处理缺页中断。由于每发生一次缺页都要进入缺页中断服务函数do_page_fault一次,所以可以认为执行该函数的次数就是系统发生缺页的次数。因此可以定义一个全局变量pfcount 作为计数变量,在执行do_page_fault时,该变量值加1。本实验通过动态加载模块的方法,利用/proc文件系统作为中介来获取该值。 2.实验环境 操作系统:Ubuntu (内核版本为3.2.0-23-generic-pae) 内核源码:linux-3.2.58

三实验步骤 1.下载一份内核源代码并解压 Linux受GNU通用公共许可证(GPL)保护,其内核源代码是完全开放的。现在很多Linux的网站都提供内核代码的下载。推荐使用Linux的官方网站:。 在terminal下可以通过wget命令下载源代码: $ cd /tmp $ wget 切换到root身份,解压源代码到/usr/src目录下: # xz –d tar –xvf –C /usr/src 2.修改内核源代码,添加统计变量 1、切换到预编译内核目录 #cd /usr/src/linux-3.2.58

相关文档
最新文档