构造几何图形解决代数问题

构造几何图形解决代数问题
构造几何图形解决代数问题

构造几何图形解决代数问题

摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。

关键词 数形结合 解题 以形助数 教学

1.“以形助数”的思想应用

1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。

分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3]

例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为

分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。

B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。

1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

例:(2009山东理)若函数

()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是

分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数

()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

0

a>1

例:若函数()f x 是定义在R 上的偶函数,在(,0]-∞上是减函数,且(2)0f =,求()0f x <的x 的取值范围。

分析:由偶函数的性质,y=f(x)关于y 轴对称,由y=f(x)在(,0]-∞上为减函数,且f(-2)=f(2)=0,做出如图,由图象可知发f(x)<0,所以x ∈(-2,2)

评价:函数问题是高考中主打题型,往往又是比较难解的问题。在解决这类问题时,若只采用代数的方法思考问题,往往会太过于抽象或无从下手。但如果根据函数的定义,引入图象,使所求的问题具体化,可从图中一目了然,则达到事半

功倍的效果。

1.3解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图像的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。

例:若方程

2lg(3)lg(3)x x m x -+-=-在(0,3)x ∈内有唯一解,求实数m 的取值范围。

分析:原方程可化为2(2)1(03)x m x --+=<<,设212(2)1(03),y x x y m =--+<<=

在同一坐标系中画出它们的图像,如下图,由原方程在(0,3)内有唯一解,知12y y 与的图象只有一个公共点,可见m 的取值范围是-1

例:已知不等式

22(1)(2)x x m ++->对一切实数x 恒成立,求实数m 取值。 分析: 2(1)x +表示数轴上点x 到点(-1)的距离,2(2)x -表示数轴上点x 到点2的距离。数轴上点x 到点(-1)的距离与点x 到点2的距离的和的最小值为3,即22(1)(2)3x x ++-≥,所以实数m 的范围是:m<3.

评价:方程问题和不等式问题归根结底也就是函数问题的变形,只要我们根据题意条件循序渐进地找出突破口,便可同样很好地利用图象简捷地解决。

1.4解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。

例:求

sin +2

cos 2x y x =-最值 分析:我们可以把(cosx,sinx )看成是单位圆周上的一点,sin +2cos 2

x x -可以理解为点(cosx,sinx )与点(2,-2)连线的斜率。由图可知,斜率的最大值与最小值应为通过点(2,-2)且与单位圆相切的两条切线的斜率,设点(2,-2)且与单位圆相切的直线方程为:+2(-2)y k x =,利用圆心(0,0)到切线的距离为圆的半径1,可以求出斜率k 的范围:

-47-4733k -+≤≤,所以m a x m i n -47-4

7,33y y +

-==

评价:三角函数的图象和性质是高考的热点,在解题时要灵活运用数形结合的思想,把图像和性质结合起来,通过图象直观地感受题目的要义,为解题提供方便。

1.5解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 例:(08年高考湖南卷理改编)已知变量x,y 满足条件1,0,290x x y x y ≥-≤+-≤,

求x y +的最大值。

分析:本题实质是线性规划问题,运用图象画平面区域,再求线性目标函数的最值。如图所示,可行域为图中阴影部分(包括边界线),则z=x+y 在A 点处取得最大值,由0,290x y x y -=+-=联立得A (3,3),故最大值为3+3=6.

评价:线性规划位于不等式和直线方程的结合点,是培养学生转化能力和熟练运用数形结合能力的重要内容。

1.6解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n 项和公式可以看作关于正整数n 的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。

例:若数列{}n a 为等差数列,,p q a q a p ==,求p q a +

分析:如图,由于等差数列中n a 的图象是一条直线上均匀排开的孤立的点,故三点A(p,q),B(q,p),C(p+q,m)共线,所以AB AC k k =,即

p q m p q p p q q

--=-+-,得m=0,即0p q a +=

评价:人们在解决数列问题时,习惯用代数的思维方法,如果将数形结合的数学思想渗透到数列中,运用数形结合的思想和方法看待和解决数列问题,往往会有异样的收获。

2.“以形助数”的思想总结

2.1“数”转化为“形”问题的途径和基本思路

2.1.1数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。

2.1.2对于“数”转化为“形”这类问题,解决问题的基本思路:明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再做出或构造出与之相适合的图形,最后利用已经做出或构造出的图形的性质、几何意义等,联系所要求解(求解)的目标去解决问题。

2.1.3常见“以形助数”的方法:

(1)借助于数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补、运算等问题是非常有效的。

(2)借助于函数图像,利用函数图象分析问题和解决问题是数形结合的基本方法。

2.2“数形结合”思想在解题过程中注意点

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念

和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

2.3数形结合的意义

数学是研究现实世界的空间形式和数量关系的科学,也就是数与形,数与形是中学数学主体,是中学数学论述的两个重要内容。“数”与“形”既有区别,又有联系,“坐标法”实现了它们之间的转化。“数形结合”的思想不仅使几何、代数、三角知识相互渗透融于一题,又能提示问题的裨益,在解题方法上简洁明快,独辟蹊径,能开发智力,培养创造性思维提高分析问题和解决问题的能力。华罗庚教授曾指出:“数形结合百般好,隔裂分家万事非。”由此可见数形结合思想在教学中的重要地位,它是数学思想方法的核心。因此,应用数行结合的思想,可以解决许多复杂的代数问题。

2.4数形结合思想在教学中的重要性

2.4.1加强数形结合思想的概念教育

数学中的“数形结合”思想大部分源于概念教学过程,加强对基本概念的教学,是掌握数形结合的基础。在正常的教学活动中,教师要有意识的将抽象概念知识形象化,使学生加深对概念的理解和掌握,为以后利用概念不同的表达形式来解决复杂多变的数学问题打下坚实的基础。特别是一些明显具有几何意义的概念,如复数的模、直线的斜率、导数等,这些就需要老师在讲解其文字意义的同时赋予图形表征,这样学生便能更容易接受,而且记忆深刻,遇到题目时能够想到相关知识进而灵活应用。因此,我觉得对数形结合的概念教育也是不可忽视的环节,它不仅可以帮助教师得心应手地进行课堂教学,而且也有助于学生开发其创新意识和提高思维能力。

2.4.2如何应用好“数形结合”思想?

(1)结合学生的认真结构循序渐进地逐步渗透数学思想。教学不是对角戏,而是教师与学生进行沟通交流的过程,教师的责任不仅仅是将知识填鸭式的写在黑板上让学生记住,而是以学生为主体,根据他们的需要和能力制定适当的教学目标和教学计划。数学教育亦是如此,鉴于数学本身就是一门较为难学的科目,所以更要循序渐进地向学生传授数学思想。在解决问题的过程中,潜移默化地理

解“数形结合”思想,所以不仅要结合问题,而且要考虑学生的认知结构。在学习中不断积累数形结合的素材,让学生逐步体会数形结合的优点。这样学生就可以循序渐进地理解运用这一数学思想,从而不断提高学生的数学品质和素养。

(2)尽可能使用多媒体教学,展示数形结合,以此激发学生的好奇心和求知欲。教学过程中合理的运用多媒体,可以将黑板上的模糊的静态的图形转变为清晰的生动的动画,这样不仅能够充分体现数与形的联系及变化规律达到较好的教学效果,而且可以调动学生学习数学的积极性和兴趣。

(3)培养学生观察和联想的能力。在学生逐步了解“数形结合”思想之后,给出有关问题让学生自己思考解决,培养学生自主学习能力和联想能力,这样对提高学生数形结合能力很有帮助。

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

一次函数代数几何综合问题

一次函数代几综合问题 一.填空题(共6小题) 1.如图,直线和x轴、y轴分别交于点A、B.若 以线段AB为边作等边三角形ABC,则点C的坐标是. 2.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点, 使△ABC为等腰三角形,则这样的点C的坐标为. 3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1), C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段 PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交 于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q, 则点Q的坐标为. 4.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直 线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴 的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…; 按此作法继续下去,则点A4的坐标为. 5.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1 按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数 y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为. 6.如图,直线1:与x轴、y轴分别相交于点A、B, △AOB与△ACB关于直线l对称,则点C的坐标为.

二.解答题(共24小题) 7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y 轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值; (2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标; (3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值. 8.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上. (1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式; (2)如图2,连接BF,设CG=a,△FBG的面积为S. ①求S与a的函数关系式; ②判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由; (3)如图3,连接GE,当GD平分∠CGE时,m的值为.

从综合几何到几何代数化的数学思想方法

从综合几何到几何代数化的数学思想方法 从综合几何到几何代数化的数学思想方法 一、几何代数化思想的由来 数学的发展是以数和形两个基本概念作为主干的,数学思想方法的各种变革也是通过这两个概念进行的。在数学的萌芽时期,数和形的研究并不是互相割裂的,长度、面积和体积的量度把数和形紧密地联系起来。可是,在尔后的数学发展中,数和形的联系却长期没能得到进一步的深化。这突出表现在几何和代数的不协调性发展上。 我们知道,几何学作为一门独立的数学学科,最先是在古希腊学者手中形成的,欧几里得《几何原本》的问世就是重要的标志。那时,代数尚处于潜科学阶段,尚未形成严谨的逻辑体系,只是以零散、片断的知识形态存在着。因此,从公元前3世纪到14世纪,几何学在数学中占据着主导地位,而代数则处于从属的地位。由于几何学有着严谨的推理方法和直观的图形,可以把种种空间性质、图形关系问题的探讨,归结成一系列基本概念和基本命题来推演、论证,所以数学家们大都喜欢运用几何思维方式来处理数学问题,甚至把代数看成是与几何不相干的学科。这种人为的割裂,不仅延误了代数的发展,也影响了几何学的进步。 随着数学研究范围的扩大,用几何方法来解决数学问题越来越困难,因为许多问题特别是证明问题往往需要高超的技巧才能奏效,而且推演、论证的步骤又显得相当繁难,缺乏一般性方法。正当几何学难于深入进展时,代数学日趋成熟起来。尤其是在16世纪代数学得到突破性进展,不仅形成了一整套简明的字母符号,而且成功地解决了二次、三次、四次方程的求根问题。这就使代数学在数学中的地位逐渐得到上升,于是综合几何思维占统治地位的局面开始被打破。

历史上最先明确认识到代数力量的是16世纪法国数学家韦达。他尝试用代数方法来解决几何作图问题,并隐约出现了用方程表示曲线的思想。他指出,几何作图中线段的加减乘除可以通过代数的术语表出,所以它们实质上属于代数的运算。随着代数方法向几何学的渗透,代数方法的普遍性优点日益表露出来,于是用代数方法来改造传统的综合几何思维,把代数和几何有机结合起来,互相取长补短,便成为十分必要的了。 实现代数与几何有机结合的关键,在于空间几何结构的数量化,即把形与数统一起来。这一项工作是由法国数学家笛卡儿完成的。笛卡儿继承和发展了韦达等人的先进数学思想,他充分看到代数思想的灵活性和方法的普遍性,为寻求一种能够把代数全面应用到几何中去的新方法思考了二十多年。1619年,他悟出建立新方法的关键,在于借助坐标系建立起平面上的点和数对之间的对应关系,由此可用方程来表示曲线。1637年,他的《几何学》作为《方法论》一书的附录出版,在这个附录中,他明确提出了坐标几何的思想,并用于解决许多几何问题。此书的问世,标志着解析几何的诞生。与笛卡儿同一时代、同一国度的另一位数学家费尔马,也几乎同时独立地发现了解析几何的基本原理。他的思想集中体现在他的《轨迹引论》一书中。 解析几何的出现开创了几何代数化的新时代,它借助坐标实现了空间几何结构的数量化,由此把形与数、几何与代数统一了起来。而坐标本身就是几何代数化的产物,是点与数的统一体,它既是点的位置的数量关系表现,又是数量关系的几何直观,因此它具有形与数的二重性。有了坐标概念,就可以把空间形式的研究转化为数量关系的研究了。 例如,求两点间的距离,如果两点的坐标(x1,y1)和(x2,y2)何学上两点之间的测量问题就转化成代数学上求一个代数式的值的问题。 再如,求两条曲线的交点,这是几何学中比较困难的一个问题,如果两条曲线的方程给定,那么通过解联立方程组就可求出交点的位置,因为方程组的解恰是二条曲线交点的坐标。

巧构几何图形 证明代数问题

巧构几何图形证明代数问题 ——兼谈构造法 习题已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ac=bd,即 BC*AD=AB*CD ∴BC/AB=CD/AD 又∠B=∠D=90 ?? ∴Rt⊿ABC 相似于Rt⊿ADC 但为公共斜边,故 Rt⊿ABC?Rt⊿ADC ∴AB=AD,BC=CD,即b=c,a=d. 评注把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用 【例1】已知a,b是两个不相等的正实数,求证(a+b)/2 >ab

[证明] 以a+b为边长作正方形,然后过a,b的连接点作正方形各边的垂线(如图2),于是大正方形的面积为(a+b)^2,四个矩形的面积都是ab,这样得 (a+b)^2>4ab ab>0 ∴a+b>2ab 即(a+b)/2>ab 【例2】已知0<θ<∏/2,求证1AB ∴sinθ+cosθ>1(三角形两边之和大于第三边) 又⊿ABC的面积=(1/2)BC*AC≤(1/2)AB*CO=(1/4)AB^2(三角形面积不大于一边与这边上中线积的一半) ∴2BC*AC≤AB^2 又BC^2+AC^2≤AB^2 ∴(BC+AC)^2≤2AB^2,BC+AC≤2AB,即sinθ+cosθ≤2

【精品】2021年八年级数学解题技巧训练7构造中位线解题的五种常用方法含答案与试题解析

2021年八年级数学解题技巧训练7构造中位线解题的五种常用 方法含答案与试题解析 一、经典试题 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 二、技巧分类 技巧1 连接两点构造三角形的中位线 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN; (2)求∠MPN的度数. 技巧2 已知角平分线及垂直构造中位线 3.(2019秋?诸城市期末)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为() A.3B.9 2C.5D. 15 2 4.(2018春?吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD ⊥AD于点D,E为BC中点.求DE的长.

技巧3 倍长法构造中位线 5.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°, M为AF的中点,求证:ME=1 2CF. 技巧4 已知两边中点,取第三边中点构造三角形的中位线 6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=√2MN. 7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于 点N,求证:AN=1 3AC.

2021年构造中位线解题的五种常用方法 参考答案与试题解析 一.试题(共7小题) 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 【专题】证明题. 【解答】证明:延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线, ∴∠CBN=∠ABN, ∵BN⊥AG, ∴∠ABN+∠BAN=90°,∠G+∠CBN=90°, ∴∠BAN=∠AGB, ∴AB=BG, ∴AN=GN, 同理AC=CF,AM=MF, ∴MN为△AFG的中位线,GF=BG+CF﹣BC, ∴MN=1 2(AB+AC﹣BC). 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN;

构造几何图形解决代数问题

构造几何图形解决代数问题 摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。 关键词 数形结合 解题 以形助数 教学 1.“以形助数”的思想应用 1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。 分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3] 例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。 B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。 1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 例:(2009山东理)若函数 ()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是 分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数 ()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

初中数学用几何图示法解代数问题 学法指导

初中数学用几何图示法解代数问题 很多代数问题用纯代数知识来解答很繁琐,也很难解决。因此,许多代数问题用几何图示法来解决非常容易,下面列举几例进行探讨。 一. 线段图示法 例1. 甲、乙两车分别从A 、B 两地同时出发,相向而行,相遇时,甲车在已过中点15千米处,相遇后甲车再行8 9时到达B 地,乙车又行了2时到达A 地,求甲、乙两车每时各行多少千米? 分析:行程问题有三个基本量:路程、速度、时间,且有基本关系:路程=速度×时间。本题设甲车的速度为x 千米/小时,乙车的速度为y 千米/小时,由于同时出发到相遇时,甲车在已过(如图1)所示的线段AB 中点M 的15千米处C 点,继续前进后,甲车行的距离为x 89CB = 千米,乙车行的距离为CA=2y 千米。因此,甲车开始行驶的距离AC 的时间为x y 2时与乙车开始行驶的距离BC 的时间为y x 89时所用时间相同,而M 是AB 的中点, 即AM=BM ,MC=15千米, 则15x 8 9BM ,15y 2AM +=-=,由图所示易知: ???????=+=-y x 89x y 215x 8915y 2 解这个方程组,得??? ????=-=???==760y 780x ,60y 80x 2211 经检验,???????=-=???==760y 780x ,60y 80x 2211都是原方程组的解,但??? ????=-=760y 780x 22,不合题意,舍去。 所以,甲车的速度为80千米/小时,乙车的速度为60千米/小时。 图1 二. 三角形图示法 例2. 已知正数,x ,y 满足条件x+y=4,求1y 1x 22++的最小值。

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

解析几何中的几何条件代数化

解析几何中的几何条件代数化 综合分析:解析几何是用代数的方法研究几何问题,通过曲线的几何性质帮助解析几何是其解题策略之一,几何性质帮助解题,一是直接参与思维推理过程,二是指以形引导代数推理的方向、方法。 【课前小练】 1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为3- ,那么PF =_______________. 2.过抛物线y 2=4x 的焦点F 作弦AB ,若BF AF 2=,则弦AB 所在直线的方程是____________. 3.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线13 322=-y x 相交于A ,B 两点,若△ABF 为等边三角形,则p=_______________. 4.椭圆T :122 22=+b y a x (a >b >0)的左.右焦点分别为21,F F ,焦距为2c ,若直线)(3c x y +=与椭圆T 的一个交点M 满足,则该椭圆的离心率等于__________ 5.如图F 1、F 2是椭圆C1:x 24 +y 2=1与双曲线C2的公共焦点A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是_________________, 6.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为_________

【典型例题】 例1.已知,,A B C 是椭圆2 2:14 x W y +=上的三个点,O 是坐标原点. (Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 例2.椭圆1:22 22=+b y a x C 的离心率为2 3,长轴端点与短轴端点间的距离为5. (Ⅰ)求椭圆C 的方程; (Ⅱ)过点D (0,4)的直线l 与椭圆C 交于两点E ,F , ①设)4 1,0(-B ,若BF BE =,求直线l 的斜率。 变式1.A 是椭圆的右顶点,且EAF ∠的角平分线是x 轴,求直线l 的斜率。

构造几何图形巧解向量问题

运用向量几何运算巧解几个高考题 向量是高中数学中重要的数学概念和数学工具之一,它用代数的方法来研究几何问题,是数形结合的一个典范,体现了解析几何的本质。代数几何化、几何代数化等多角度思维是平面向量命题的特点,这就说明了平面几何和平面向量交汇点的将是高考试题命制的焦点和热点。 例1. 已知向量e a ≠,1=e ,对任意R t ∈,恒有e a e t a -≥-,则( ) (A) e a ⊥ (B) )(e a a -⊥ (C) )(e a e -⊥ (D) )()(e a e a -⊥+ 参考答案:R t ∈ ,恒有e a e t a -≥-,等价于22e a e t a -≥-恒成立,即 22)()(e a e t a -≥-恒成立,展开整理得0)12(22≥-?+?-e a t e a t ?R t ∈恒成立,则 0)12(4)2(2≤-?-?-=?e a e a ,整理得0)1(2≤-?e a ,1=?∴e a ,)(e a e -⊥∴,所以选(C)。 妙解:如下图作a OA =,e OB =,e t OC =, 则 e a -= e t a -=,又因为?R t ∈,恒有e a e t a -≥- ≤,则必有 OC AB ⊥,即)(e a e -⊥。 例2.设向量a ,b ,c 满足0 =++c b a ,c b a ⊥-)(,b a ⊥,若1=a ,则222c b a ++的值是 。 参考答案: )(,)(b a c c b a +-=⊥-,)()(b a b a --⊥-∴, 0)()(=+?-∴b a b a ,022=-∴b a ,1==∴b a ,又),(b a c +-=0=?b a 22)(2222=?++=+-=∴b a b a b a c ,4222=++∴c b a 。 妙解:如下图作a BD AB ==,b BC =,c CA =, b a ⊥,BC AB ⊥∴,又 CD BC BD b a =-=- ,又c b a ⊥-)(, C A

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

2019年中考数学突破专题之 阅读理解问题——几何问题代数化

阅读理解问题——几何问题代数化 1.观察下图: 第1题图 我们把正方形中所有x、y相加得到的多项式称为“正方形多项式”,如第1个图形中的“正方形多项式”为4x+y,第2个图形中的“正方形多项式”为9x+4y,遵循以上规律,解答下列问题: (1)第4个图形中的“正方形多项式”为,第n(n为正整数)个图形中的“正方形多项式”为; (2)如果第1个图形中的“正方形多项式”为5,第4个图形中的“正方形多项式”为2. ①求x和y的值; ②求“正方形多项式”的值Q的最大值(或最小值),并说明是第几个图形. 解:(1)25x+16y,(n+1)2x+n2y; 【解法提示】∵第1个图形中“正方形多项式”为4x+y, 第2个图形中“正方形多项式”为9x+4y, 第3个图形中“正方形多项式”为16x+9y, ∴第4个图形中的“正方形多项式”为25x+16y,

第n (n 为正整数)个图形中的“正方形多项式”为(n +1)2x +n 2y . (2)①依题意,得45 25162 x y x y +=??+=?, 解得 2 3x y =?? =-? , ②Q =(n +1)2x +n 2y =?n 2+4n +2=?(n ?2)2+6, 当n =2时,Q 最大值为6, ∴第2个图形中,“正方形多项式”的值最大,最大值为6. 2.如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的 顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠): 第2题图 (1)填写如表: (2)如果原正方形被分割成2018个三角形,此时正方形ABCD 内部有多少个点? (3)上述条件下,正方形又能否被分割成2019个三角形?若能,此时正方形ABCD 内部有多少个点?若不能,请说明理由. 解:(1)如下表: 正方形ABCD 内点的个数 1 2 3 4 … n 分割成三角形的个数 4 6 ____ ____ … ____

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

方程解问题的代数解法与几何解法(含练习题)

方程解问题的代数解法与几何解法 一般地,讨论方程的解可以有两种解法,一是利用代数方法,最终把比较复杂的 方程化为比较简单的一元一次方程或一元二次方程或其他基本方程(如简单的三角方程),二是转化为函数或方程的曲线,利用图形进行分析,即几何解法.要根据具体问题灵活选用这两种解法,而且两种解法要相互补充,灵活运用.下面举例说明这两种解法的具体应用. 例题1:设方程340x x +-=的根为1x ,方程3log 40x x +-=的根为2x , 求12x x +. 代数解法:因为13140+-=,所以1x =方程340x x +-=的一个根, ()34x f x x =+-在R 上为增函数,所以()34x f x x =+-在R 上最多只有一个零 点,所以1 1.x =因为3log 3340+-=,所以3x =方程3log 40x x +-=的一个根,3 ()log 4 f x x x =+-在(0,)+ 上为增函数,所以3()lo g 4f x x x =+-在(0,)+ 上最多只有一个零点,所以2 3.x = 所以12 4.x x += 显然上面提供的代数解法仅仅局限于能够用观察法求出方程根的情况,对于含有指数式、对数式及整式的方程,一般无法用初等方法求出方程的根,因此可以考虑从整体上求出12x x +. 此题的特殊性决定了题目的确具有更有一般性的代数方法,但是要用到指数与对数的互化,很难想到,下面提供给同学们仅供参考: 11340x x +-= ① 322log 40x x +-= ② ①式可以变形为1 13 4x x =-+,即为 311log (4)x x -+=,若设14x t -+=, 则14x t =-,于是3log 4t t =-, ②式变为322log 4x x =-,t 与2x 都是方程3log 4x x =-的根,而这个方程即3log 40 x x -+=,又函数3()log 4f x x x =+-在(0,)+ 上为增函数,最多只有一个实数根,因此必有214x x =-+,所以12 4.x x += 几何解法:将方程340x x +-=变形为34x x =-+,将方程

中考数学冲刺拔高:代数几何综合问题--巩固练习(有答案)

中考冲刺:代几综合问题—知识讲解(提高) 【巩固练习】 一、选择题 1. 如图,正方形ABCD的边长为2, 将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止,那么在这个过程中,线段QF的中点M所经过的路线围成的图形的面积为() A. 2 B. 4- C. D. 2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的 影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函 数关系的图象大致为() 二、填空题 3.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC 是直角三角形,则满足条件的C点的坐标为______________.

4.如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2 的面积为S2,…,△B n+1D n C n的面积为S n,则S2=______________;S n=__________________ (用含的式子表示). 三、解答题 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0). (1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由; (2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么? (3)当t为何值时,△EDQ为直角三角形.

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法 ?名师点金? 三角形的中位线具有两方面的性质: 一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。 典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N. 求证:MN=21(AB+AC-BC) 解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=2 1(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。 方法1:连接两点构造三角形的中位线 1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。 (1)求证PM=PN ; (2)求∠MPN 的度数。 方法2:已知角平分线及垂直构造中位线 2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。 方法3:倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF 方法4:已知两边中点,取第三边中点构造三角形的中位线 5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN 方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线 6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=3 1AC

相关文档
最新文档