牛顿环干涉汇总

牛顿环干涉汇总
牛顿环干涉汇总

实验六、牛顿环干涉

光的干涉现象是光波动性的基本特征之一。牛顿环干涉是属于用分振幅的方法产生的定域干涉现象,亦是典型的等厚干涉条纹。“牛顿环”是牛顿在1675年制做天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。在实际工作中,利用牛顿环干涉来测定光波的波长、透镜的曲率半径或检查光学元件表面的光洁度、平整度和加工精度等。

实验目的

1. 观察等厚现象,考察其特点;

2. 掌握一种测量透镜曲率半径的方法;

3. 学习使用读数显微镜。

实验仪器

JXD3型读数显微镜(一套),钠光灯,牛顿环

实验原理

把一块曲率半径相当大的平凸透镜A的凸面放在一块很平的平玻璃B上,

那么在两者之间就形成类似劈尖形的空气薄层。如图(a)

。如果将一束单色光垂直地投射上去,则入射光

在空气层上下两表面反射且在上表面相遇将产生干涉。在反射光中形成一系列以接触点O 为中心的明暗相间的光环叫牛顿圈。各明圈(或暗圈)处空气薄层的厚度相等,故称为等厚干涉。

明、暗环的干涉条件分别是: λλ

δk e =+=2

2 ??????=,3,2,1k (1)

2

)

12(2

λ

δ+=+

=k e ??????=,2,1,0k (2)

其中

2

λ

一项是由于二束相干光线中,其中一束光从光疏媒质(空气)到光密媒质(玻璃)交界面上反射时,发生“半波损失”引起的。

由图(b )可得环半径r 与厚度e 的关系:2

22)(e R r R -== 即: 2

2

2e eR r -=

R 系透镜A 的曲率半径。由于e R ??,所以上式近似为:

R

r e 22

= (3)

将(3)带入(1)、(2)明、暗环公式分别有

2

)12(2

λ

R

k r +=(明环) ??????=,3,2,1k (4)

R k r λ=2 (暗环) ??????=,2,1,0k (5)

由(4)、(5)式可看出:以一定波长λ的光入射到牛顿环上形成干涉条纹后,只要测出某一级明环或暗环的半径,即可测出透镜的曲率半径。但在实际测量中,暗环较易对准,故以测量暗环为宜。还有一个要注意的问题是,在实验中利用暗环公式(5),来测定透镜曲率半径R 时是认为接触点O 处(r=0)是点接触,且接触处无脏东西或灰尘存在,但是,实际上由于存在脏物或灰尘及玻璃的弹性形变,接触点是很小的面接触,看到的是一个暗斑。在

这种情况下,牛顿环的中心和级数k 都不易确定。而且如果只测量一个环纹的半径,计算结果可能有较大的误差。为了减少误差,提高测量精度,必须测量距中心较远的、比较清晰的两个环纹的直径。

由(4)、(5)对于第m 圈暗半径

R m r m λ=2

对于第n 圈 R n r n λ=2

两式相减得 λ

λ)(4)(2

222n m D D n m r r R n

m n m --=

--= (6) 实验时波长λ是已知的,所以只要测量第m 和第n 圈直径m D 和n D ,从式(6)就可算出R 来。

实验内容及步骤

一、仪器的调整

1.调整牛顿环仪的三个调节螺丝,

在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝,使牛顿环中心暗斑不要太大。

2.把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高。旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。

3.调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差(见附录)。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 二、测量牛顿环的直径

取m=15,n=5。横向改变显微镜筒位置,使叉丝由第15圈外向第15圈移动直至叉丝交点与之重合,读取15C ,继续朝同一方向移动叉丝至第5圈读取5C ;仍按原方向移动叉丝

越过中央暗环,按同样方法读取5

C ' 、15C '。 将牛顿环旋转若干角度,重复以上测量共6次。

注意事项

1.调节显微镜的焦距时,应使物镜筒从待测物移开,使物镜筒自下而上地调节。严禁将

镜筒反向调节,以免碰伤和损坏物镜和待测物。

2.在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。思考题

1.是否可以用弦长取代牛顿环直径?

2. 用同样的方法能否测定凹透镜的曲率半径。

参考资料

[1].成正维.大学物理实验.北京:高等教育出版社,2002.12

附录1:数据记录及数据处理

1.数据记录表

牛顿环数据记录表

单位:mm =λ nm

实验室温度 :

实验室相对湿度: (二)数据处理

1.m D 的最佳值及不确定度的计算

(1)m D 的最佳值 ∑==6

1

61i mi m D D

(2)计算m D 的实验标准差

()()∑=--=6

1

2161i m mi m D D D s (按肖准则检查无坏值) (3)计算m D 的平均值的实验标准差

()()6

m

D s D s m =

(4)读数显微镜的示值极限误差m ?=0.01 mm (5) 合成不确定度:

2

22

2)3

(

)()(m m B A m D s u u D u ?+=+= 2.n D 的最佳值及不确定度的计算

(1)n D 的最佳值 ∑==6

1

61i ni n D D

(2)计算n D 的实验标准差

()()∑=--=6

1

2161i n ni n D D D s (按肖准则检查无坏值) (3)计算n D 的平均值的实验标准差

()()6

n

D s D s n =

(4)读数显微镜的示值极限误差m ?=0.01 mm (5) 合成不确定度:

2

22

2)3

(

)()(m n B A n D s u u D u ?+=+=3. R 的最佳值的计算和不确定度的计算 (1)R 的最佳值的计算

()λ

n m D D R n

m --=

4

(2)R 的不确定度的计算

()()()()()

2

2

21)(n

n

m

m

D u D D u D n m R u +-=

λ

(3)R 的相对不确定度的计算

()()R

R u R E =

4.实验结果表示: mm R 不确定度)最佳值±=( (P=68.3%)

E (R )= %

附录2:JCD

型读数显微镜使用说明书

3

一、用途

JCD3型读数显微镜操作方便,用途广泛,可根据不同需要,完成下列功能:

1、可作长度测量,也可作观察使用。如测孔距、直径、直线距离及刻线宽度等。配用牛顿圈还可以测定光的波长及透明介质的曲率半径等。

2、扩大一般读数显微镜的使用范围,可根据不同使用要求在不同方向上测量及观察。

3、显微镜可置水平和垂直位置,能搭成各种测试装置。

4、配备测微目镜和物方测微器,可测量显微镜的放大率和玻璃平板的折射率。

二、技术性能

1、光学系统性能

2、测量范围

纵向50毫米,最小读数值0.01毫米;升降方向40毫米,最小读数值0.1毫米。

3、测量精度:纵向测量精度为0.02毫米。

4、观察方式:45o斜视。

5、仪器外形尺寸:195×155×285(毫米)

6、仪器净重:8.5公斤。

三、仪器结构

1、目镜接筒,

2、目镜,

3、锁紧螺钉,

4、调焦手轮,

5、标尺,

6、测微鼓轮,

7、锁紧手轮I,

8、接头轴,

9、方轴,10、锁紧手轮II,11、底座,12、反光镜旋轮,13、压片,

14、半反镜组,15、物镜组,16、镜筒,17、刻尺,18、锁紧螺钉, 19、棱镜室

四、使用方法

1、将被测件放在工作台面上,用压片固定。

2、调节目镜进行视度调整,使分划板清晰,转动调焦手轮,从目镜中观察,使被测件成象清晰为止,调整被测件,使其被测部分的横面和显微镜移动方向平行。

3、转动测微鼓轮,使十字分划板的纵丝对准被测件的起点,记下此值(在标尺上读取整数,在测微鼓轮上读取小数,此二数之和即是此点的读数)A,沿同方向转动测微鼓轮,使十字分划板的纵丝恰好停止于被测件的终点,记下此值A’,则所测之长度计算可得L=A’-A,为提高测量精度,可采用多次测量,取其平均值。

1)实验中,读数显微镜底座中的大反光镜不需用,应反转向内,避免有反射光反射向上至牛顿环内,影响观察的背景。

五、仪器的保养

1、读数显微镜是较精密的测量仪器,在使用和搬运中应谨慎小心,避免震动及碰撞。仪器应保持清洁、润滑。

2、被测件应压紧,并无灰尘、污物。

3、松开各锁紧手轮时必须用手托住相应部分,以免其坠落和受冲击,旋转目测系统时,应先松开棱镜室锁紧螺钉。

4、若仪器光学零件表面有灰尘、污物等影响观察时,可用擦镜纸擦拭。

5、仪器应经常保养,注意在导轨、丝杆及齿轴中加适量的润滑油。

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

牛顿环详案或者教案

实验8. 牛顿环测透镜的曲率半径 教学目的 1、理解等厚干涉形成牛顿环的机理; 2、掌握用牛顿环测量平凸透镜曲率半径的方法; 3、掌握读数显微镜的调节及使用方法。 教学重点 1、清晰牛顿环图案的调整; 2、利用牛顿环测量平凸透镜曲率半径的方法; 3、除读数显微镜的空回误差。 教学难点 1、清晰牛顿环图案的调整; 2、消除读数显微镜的空回误差。 课型: 提高性实验(2学时) 教学内容: 1、牛顿环的产生原因; 2、消除系统误差的方法介绍; 3、读数显微镜的使用及注意事项 4、用牛顿环测量平凸透镜曲率半径的方法 教学方法: 讲解教学内容,明确其重点和难点,然后实际演示操作要点 课件: PPT 教学手段 学生操作,随堂检查操作情况。根据学生的操作情况将容易犯错的问题做重点提示,学生可以根据操作中遇到的具体问题个别提问。 教学过程 【课前的准备】: 1.仪器设备的检查,注意要校零。

2.实验的预做(采集三组以上数据进行处理)。 3.作出数据表格设计的参考。 【课上的常规检查】 预习报告、数据表格的设计等 1 引言 “牛顿环”是牛顿在1675年制作天文望远镜时,偶然把一个望远镜的物镜放在平板玻璃上发现的。因为是牛顿发现的,所以称为牛顿环。牛顿环实际上是一种利用分振方法实现等厚干涉现象,实验原理并不复杂,但却有其研究价值和实用意义。牛顿实验原理——光的干涉广泛应用于科学研究,工业生产和检验技术中。如:利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用于检测加工工件表面的光洁度和平整度及机械零件的内力分布等。因此不管对于科学研究还是实验教学,研究牛顿环是很有意义的。 牛顿环干涉实验是大学物理实验中的一个经典实验项目,几乎所有的理科大学都开设有这样一个实验。牛顿环实验既能够培养学生的基本实验技能,又能提高学生解决问题的能力。 学生们在做此实验的过程中往往都需要眼睛紧紧地盯着显微镜目镜仔细观察,同时还需要移动牛顿环装置和调焦手轮,寻找最清晰的干涉条纹并要移动到最佳观察位置。学生长时间用肉眼观测数据容易出现视觉疲劳,造成干涉条纹数错和条纹位置测不准,最终导致实验结果的不准确。还有在传统的牛顿环实验中,教师要逐一检查学生调节后的现象工程量很大,不仅影响了教师的视力,而且该过程也不能够及时反馈学生实验的情况,严重影响了教学质量。在传统牛顿环实验装置中加入摄像头和显示器以达可到更好的教学效果,同时也可以保护教师和学生的眼睛。 首先牛顿环是光学实验和测量中除了读数显微镜外常用的实验仪器。牛顿换实验是大学物理实验中的一个非常重要的实验。它既能培养学生的基本实验技能,同时能提高学生的解决实际问题的能力。为了能在做实验时得到正确的数据,课前要认真预习,做实验的时候要认真听老师讲解! 2 实验原理 牛顿环实验是大学物理实验中的一个经典实验项目,是光学基础性实验。它的重要性首先在于,从原理上讲,它主要是研究光的等厚干涉,这在大学物理理

牛顿环干涉汇总

实验六、牛顿环干涉 光的干涉现象是光波动性的基本特征之一。牛顿环干涉是属于用分振幅的方法产生的定域干涉现象,亦是典型的等厚干涉条纹。“牛顿环”是牛顿在1675年制做天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。在实际工作中,利用牛顿环干涉来测定光波的波长、透镜的曲率半径或检查光学元件表面的光洁度、平整度和加工精度等。 实验目的 1. 观察等厚现象,考察其特点; 2. 掌握一种测量透镜曲率半径的方法; 3. 学习使用读数显微镜。 实验仪器 JXD3型读数显微镜(一套),钠光灯,牛顿环 实验原理 把一块曲率半径相当大的平凸透镜A的凸面放在一块很平的平玻璃B上, 那么在两者之间就形成类似劈尖形的空气薄层。如图(a) 。如果将一束单色光垂直地投射上去,则入射光

在空气层上下两表面反射且在上表面相遇将产生干涉。在反射光中形成一系列以接触点O 为中心的明暗相间的光环叫牛顿圈。各明圈(或暗圈)处空气薄层的厚度相等,故称为等厚干涉。 明、暗环的干涉条件分别是: λλ δk e =+=2 2 ??????=,3,2,1k (1) 2 ) 12(2 2λ λ δ+=+ =k e ??????=,2,1,0k (2) 其中 2 λ 一项是由于二束相干光线中,其中一束光从光疏媒质(空气)到光密媒质(玻璃)交界面上反射时,发生“半波损失”引起的。 由图(b )可得环半径r 与厚度e 的关系:2 22)(e R r R -== 即: 2 2 2e eR r -= R 系透镜A 的曲率半径。由于e R ??,所以上式近似为: R r e 22 = (3) 将(3)带入(1)、(2)明、暗环公式分别有 2 )12(2 λ R k r +=(明环) ??????=,3,2,1k (4) R k r λ=2 (暗环) ??????=,2,1,0k (5) 由(4)、(5)式可看出:以一定波长λ的光入射到牛顿环上形成干涉条纹后,只要测出某一级明环或暗环的半径,即可测出透镜的曲率半径。但在实际测量中,暗环较易对准,故以测量暗环为宜。还有一个要注意的问题是,在实验中利用暗环公式(5),来测定透镜曲率半径R 时是认为接触点O 处(r=0)是点接触,且接触处无脏东西或灰尘存在,但是,实际上由于存在脏物或灰尘及玻璃的弹性形变,接触点是很小的面接触,看到的是一个暗斑。在

牛顿环实验报告

等厚干涉——牛顿环 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和 下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径 k r ,则可求得透镜 的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且 m D 、n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清

晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45角的反射透明玻璃片等高,旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 3、测量牛顿环的直径 (1)选取要测量的m和n(各5环),如取m为55,50,45,40,35,n为30,25,20,15,10。 (2)转动鼓轮。先使镜筒向左移动,顺序数到55环,再向右转到50 环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与45,40,35,30,25,20,15,10,环对准,顺次记下读数;再继续转动测微鼓轮,使叉丝依次与圆心右10,15,20,25,30,35,40,45,50,55环对准,也顺次记下各环的读数。注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。 4、算出各级牛顿环直径的平方值后,用逐差法处理所得数据,求出 直径平方差的平均值代入公式求出透镜的曲率半径,并算出误差。.注意: (1)近中心的圆环的宽度变化很大,不易测准,故从K=lO左右开始比较好; (2)m-n应取大一些,如取m-n=25左右,每间隔5条读一个数。 (3)应从O数到最大一圈,再多数5圈后退回5圈,开始读第一个数据。 (4)因为暗纹容易对准,所以对准暗纹较合适。,

牛顿环

引言 “牛顿环”是牛顿在1675年制作天文望远镜时,偶然把一个望远镜的物镜放在平板玻璃上发现的。因为是牛顿发现的,所以称为牛顿环。牛顿环实际上是一种利用分振方法实现等厚干涉现象,实验原理并不复杂,但却有其研究价值和实用意义。牛顿实验原理——光的干涉广泛应用于科学研究,工业生产和检验技术中。如:利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用于检测加工工件表面的光洁度和平整度及机械零件的内力分布等。因此不管对于科学研究还是实验教学,研究牛顿环是很有意义的。 牛顿环干涉实验是大学物理实验中的一个经典实验项目,几乎所有的理科大学都开设有这样一个实验。牛顿环实验既能够培养学生的基本实验技能,又能提高学生解决问题的能力。 学生们在做此实验的过程中往往都需要眼睛紧紧地盯着显微镜目镜仔细观察,同时还需要移动牛顿环装置和调焦手轮,寻找最清晰的干涉条纹并要移动到最佳观察位置。学生长时间用肉眼观测数据容易出现视觉疲劳,造成干涉条纹数错和条纹位置测不准,最终导致实验结果的不准确。还有在传统的牛顿环实验中,教师要逐一检查学生调节后的现象工程量很大,不仅影响了教师的视力,而且该过程也不能够及时反馈学生实验的情况,严重影响了教学质量。在传统牛顿环实验装置中加入摄像头和显示器以达可到更好的教学效果,同时也可以保护教师和学生的眼睛。 1. 牛顿环实验的相关知识 1.1牛顿环实验的重要性 牛顿环实验是大学物理实验中的一个经典实验项目,是光学基础性实验。它的重要性首先在于,从原理上讲,它主要是研究光的等厚干涉,这在大学物理理论课上是作为一个重点章节讲述的,通过做相应的大学物理实验,可以加深学生对物理学理论的深刻理解,从实际动手操作中帮助学生学习物理学理论。其次,它不仅是典型的等厚干涉条纹,同时也为光的波动提供了重要的实验证据。再者,从牛顿环实验应用的角度来说,利用牛顿环可以测平凸透镜的曲率半径,入射光的波长以及根据牛顿环的干涉花样好薄膜干涉原理可以判定光学平面的质量。最后,就大学物理实验本身的角度来说,该实验对于加深对等厚干涉及半波损失概念的理解及读数显微镜的使用,发挥了重要的作用。同时也能够培养学生的基本实验技能和提高学生解决实际问题的能力。 1.2牛顿环的实验原理 牛顿环是光的一种干涉图样,是一些明暗相间的同心圆环。将一块曲率半径较大的平凸透镜放在一块平板玻璃上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。由于空气薄膜是有中心即图1—1中的点O (平凸透镜与平板玻璃的接触点)开始向四周逐渐增厚,而与中心O 等距离的点处的空气膜是等厚的,所以光程差相等的地方就形成以接触点为中心的一族等厚干涉同心圆环即牛顿环,这些圆环明暗交替,且离接触点越远,环纹越密集。从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的。若用白光入射,将观察到彩色圆环[1]。 如图1—1所示,当透镜凸面的曲率半径R 很大时,在P 点处相遇的两反射光线的集合程差为该处空气间隙厚度k e (表示第k 级条纹对应的空气膜厚度)的两倍,即2e k 。又因这两条光线来自光疏媒质上的反射,它们之间有一附加的半波损失即 2 ,所以在P 点处得两相干光的总光程差为:

牛顿环

第九章 光学 §9-6 牛顿环 教学目的:1、了解牛顿环等候干涉的原理 2、理解用牛顿环测量透镜曲率半径的原理及方法 教学重点:牛顿环形成明暗条纹得到原理 教学难点:牛顿环测量透镜曲率半径的原理 教学方法:讲授法,ppt 演示 教学安排: (一)引入: 17世纪初,物理学家牛顿在考察肥皂泡及其他薄膜干涉现象时, 把一个玻璃三棱镜压在一个曲率已知的透镜上,偶然发现 干涉圆 环,并对此进行了实验观测和研究。他发现,用一个曲率半径大的 凸透镜和一个平面玻璃相接触,用白光照射时,其接触点出现明暗 相间的同心彩色圆环,用单色光照射,则出现明暗相间的单色圆环。 这是由于光的干涉造成的,这种光学现象被称为“牛顿环”。 (二)新课讲授: 观察牛顿环的实验装置如图所示,在一块平玻璃B 上放一曲率 半径R 很大的平凸透镜A,在A 、B 之间便形成环状的空气劈形膜。 当单色平行光正入射时,在空气劈形膜的上、下表面发生反射形成 两束相干光,它们在平凸透镜下表面处相遇而发生干涉。 在显微镜下观察,可以看到一组干涉条纹,这些条纹是以接触点O 点为中心的同心圆环,称为牛顿环。 在空气层上下表面反射的两束相干光,它们之间的光程差为 22d λ δ=+ d 为空气薄层的厚度, 2 λ是光在空气层的下表面(空气—平玻璃分界面)反射时产生的半波损失。 牛顿环形成明环的条件为 2,(1,2,3)2d k k λ λ+==

形成暗条纹的条件为 2(21),(0,1,2,)22d k k λλ +=+= 在中心O 处,0d =,两反射光的光程差为 2 λ,所以形成暗斑。 由图可以得知 2222()2r R R d Rd d =--=- 由于2,R d d >>可以略去,所以2 2r Rd ≈ 由形成明环及暗环的条件公式解出d ,分别代入上式,可得明环半径为 1,2,3r k == 暗环半径为0,1,2,3,r k = = 在实验室里,常用牛顿环测定光波的波长或平凸透镜的曲率半径,在工业生产中则常利用牛顿环来检测透镜的质量。 例1 用钠光灯(黄光589.3nm λ=)做牛顿环实验,测得暗斑左边第16环的位置是23.61mm,测得暗斑左边第10环的位置是23.02mm,测得暗斑右边第10环的位置是17.48mm,测得暗斑右边第16环的位置是16.90mm 。求所用平凸透镜的曲率半径R ? 解:第16环的直径为161623.6116.90 6.71r r --=-= 第10环的直径为101023.0217.48 5.54r r --=-= 利用2 r kR λ=(暗环) 2261610614.331010274(1610)589.31024589.3D D R mm --==?=?-??? 例2 已知:用紫光照射。借助于低倍测量显微镜测得由中心往外数第k 级明环的半径 33.010k r m -=?,k 级往上数第16个明环半径316 5.010k r m -+=?,平凸透镜的曲率半径2.50R m =。求:紫光的波长? 解:根据明环半径公式:16k k r r +?=????=?? 221616k k r r R λ+-= 2222 7(5.010)(3.010) 4.01016 2.50m λ---?-?==??

课程设计:牛顿环干涉实验

探究外部因素对牛顿环干涉的影响 10级物本:周晨、陈杨华、许英磊 指导老师:尹真 摘要:本实验利用移测显微镜对牛顿环仪在不同条件下显示出的牛顿环进行观察,求出各种条件下所测得透镜的曲率半径,并分析这些条件对牛顿环测定透镜曲率半径的影响情况。关键词:牛顿环、曲率半径、牛顿环仪、移测显微镜 1 引言: 运用钠灯发出的光线作为实验的入射光线,光线经过牛顿环仪后,在牛顿环仪表面发生干涉现象,形成了一系列同心圆圈,运用移测显微镜进行测量,可以求得牛顿环仪中透镜的曲率半径。 2实验仪器及用具:移测显微镜、牛顿环仪、钠灯等 3实验原理: 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜 弹性形变,甚至损坏透镜。

当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。 在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。

等厚干涉牛顿环实验报告

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光

束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 =(1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中K 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2(4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

关于“牛顿环”原理及其应用的研究分析和源代码实现(基于C++语言)

关于“牛顿环”及其应用的研究 姓名,专业,学号 摘要 1. 牛顿环的物理解释及历史背景。 2. 牛顿环实验的物理分析。 3. 牛顿环的应用举例。 4. 利用计算机解决牛顿环问题的源代码实现。 正文 1.解释与背景 牛顿环,又称“牛顿圈”。光的一种干涉图样,是一些明暗相间的同心圆环。例如用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用 单色光照射时,则表现为一些明暗相间的单色 圆圈。这些圆圈的距离不等,随离中心点的距 离的增加而逐渐变窄。它们是由球面上和平面 上反射的光线相互干涉而形成的干涉条纹。在 加工光学元件时,广泛采用牛顿环的原理来检 查平面或曲面的面型准确度。在牛顿环的示意 图上,B为底下的平面玻璃,A为平凸透镜, 其与平面玻璃的接触点为O,在O点的四周 则是平面玻璃与凸透镜所夹的空气气隙。当平 行单色光垂直入射于凸透镜的平表面时。在空 气气隙的上下两表面所引起的反射光线形成相 干光。 牛顿环是牛顿在1675年首先观察到的.将 一块曲率半径较大的平凸透镜放在一块玻璃 平板上,用单色光照射透镜与玻璃板,就可以

观察到一些明暗相同的同心圆环.圆环分布是中间疏、边缘密,圆心在接触点O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.牛顿环是典型的等厚薄膜干涉.平凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状.这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉.按理说,牛顿环乃是光的波动性的最好证明之一,遗憾的是,牛顿没有从实际出发,而是从他所信奉的微粒说出发,提出一个及其复杂的理论来解释牛顿环的形成。直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。 2.模型分析 下面对牛顿环实验做一些定量分析。 我们的装置如图2所示。平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。 图2 牛顿环装置图3 干涉圆环 与k级条纹对应的两束相干光的光程差为

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

牛顿环原理和分析

牛顿环是由光的干涉原理形成的,不是有色散形成的,干涉同色散是两个完全不同的物理过程。 当光相从空气薄膜的上下两个面反射时,由下表面反射的光会产生1/2派的相位突变,导致反射的两束光产生相位差,从而导致反射的两束光产生了入射光波长的一半的光程差(实际上光程差还应该加上该处空气薄膜厚度的两倍)。反射的两束光的光程差为入射光波长的一半的奇数倍时,两束反射光干涉相消,该处为暗纹,反射的两束光的光程差为入射光波长的一半的偶数倍时,两束反射光干涉加强,该处为明纹。具体公式有 明环半径r=根号下((k - 1/2)Rλ) k=1,2,3.... 暗环半径r=根号下(kRλ) k=0,1,2,... 其中k代表第几条牛顿环,R代表凸透镜的曲率半径,由公式可知R 越大环的半径越大。(R 越小则凸透镜弯曲的越厉害) 在电阻式触摸屏和液晶显示器的生产加工过程中,牛顿环(有些厂家也叫彩虹纹,或干脆叫彩虹)就象一个漂荡在工场的幽灵,一不小心,它就时不时的在生产与客户使用过程中出现,弄得不少在工场做现场管理的工艺技术人员神魂颠倒。不是因为这彩虹太美丽,而是这美丽的品质杀手,在目前的行业中,太容易闯祸,让别人一眼精艳的挑出毛病来。 在显示器模组中,牛顿环出现的区域,因为光线干涉的原故,会造成色彩叠加因而导致最终显现的色彩不正,另一方面,也降低了该区域的显示对比度,所以都是作为致命的主要缺陷列置。 一、牛顿环的产生机理 我们知道,不管是电阻式触摸屏,还是液晶显示器,支撑主体都是两块ITO玻璃或一块ITO玻璃,一块ITOFILM,如果有一面材料产生形变,材料ITO内表面产生一个曲率半径的曲面,跟平常物理光学里讲的产生牛顿环的凸透镜与平面镜内表面的效果是一样的,牛顿环同样是体现了光线在相对的两个表面因反射光线与入射光线光程差与波长间的关系。它同样的,会因为光程差的增大,也就是两表面间的距离增加,牛顿环的间距也会增大。5FI>T=QF 在实际生产过程中,不管电阻式触摸屏也好,液晶显示器也好,都会把外框支撑处的间隙距离做得比中间的稍微大一些,如果工艺中参数稍有差离,那么这种距离差就没法消除,这样就让两个表面的产生一定的中间向内凹陷,这样光线在两个表面间的光程差就会产生不一样,在入射光与反射光的互相干涉过程中,就会按不同的光程差区域选择出不同的波长出来,显现出对应波长的颜色。 二、实际生产中牛顿环产生的地方与原因 在液晶显示器模块中,有三种地方最容易产生牛顿环: 1、液晶显示器内部产生的彩虹。 液晶显示器的盒厚一般都在10微米以下,如果里面的空间粒子数量不够,或分布不均匀,或是外框与内部支撑的空间粒子直径搭配不适合工场设计的工艺,都会产生彩虹缺陷。另一个主要的产生原因是,成盒过程中,盒内被超过空间粒子直径的外物所污染,这也是液晶显示器工场对于洁净环境管控十分严厉的缘由。

牛顿环干涉实验的相关问题及研究

牛顿环干涉实验的相关问题及研究 第一作者:王梓兆 学号:14051134 院系:航空科学与工程学院 第二作者:左冉东 学号:14051132 院系:航空科学与工程学院

牛顿环干涉实验的相关问题及研究 【摘要】 在判断透镜表面凸凹、精确检验光学元件表面质量、测量透镜表面曲率半径和液体折射率等方面,牛顿环干涉是一种非常常用的方法。通过观察牛顿环并进行计算,可以较为准确地得出结果,但同时,现实中是无法达到完美的理想效果的,所以实验中一定会出现一系列问题,本文对牛顿环干涉实验中出现的若干问题进行了研究。 【关键词】 牛顿环、光的干涉、一元线性回归 【实验原理】 牛顿环是一种光的干涉图样。是牛顿在1675年首先观察到的。将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。圆环分布是中间疏、边缘密,圆心在接触点O。从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的。若用白光入射.将观察到彩色圆环。牛顿环是典型的等厚薄膜干涉。凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉。同一半径的圆环处空气膜厚度相同,上、下表面反射光程差

相同,因此使干涉图样呈圆环状。这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉。 分析光路:将一大曲率半径的平凸玻璃透镜 A放在平板玻璃上即构成牛顿环仪。光源S 通过透镜L产生平行光束,再经倾角为450的 平板玻璃M反射后,垂直照射到平凸透镜上。 入射光分别在空气层的两表面反射后,穿过 M进入读数显微镜下,在显微镜中可以观察 到以接触点为中心的圆环形干涉条纹——牛顿环。 推导公式:根据光的干涉条件,在空气厚度为d的地方,有 2d+λ 2 =kλ(k=1,2,3...)明条纹 2d+λ 2=(2k+1)λ 2 (k=1,2,3...)暗条纹 式中左端的λ 2 为“半波损失”。令r为条纹半径,由右图可知: R2=r2+(R?d)2 化简后得r2=2Re?d2 当R>>d时,上式中的d2可以略去,因此 d=r2 将此式代入上述干涉条件,并化简,得r2=2k?1Rλ 2 k=1,2,3…明环 r2=kλR(k=1,2,3…)暗环 由上式可以看出,若测出了明纹或暗

变形牛顿环装置干涉条纹特点的研究及应用

变形牛顿环装置干涉条纹特点的研究及应用 摘要:牛顿环是典型的用分振幅方法实现的等厚干涉现象,一般采用平凸透镜加双凸透镜的模式实现,而牛顿环仪则往往采用平凸透镜加玻璃平板的模式实现。本文通过对牛顿环仪的变形,利用平凸透镜加平凸透镜的模式实现了牛顿环现象,分析了单色点光源下牛顿环干涉条纹的半径公式、分布规律以及中心斑明暗等特点,讨论了变形牛顿环装置在测量透镜曲率半径、介质折射率以及检验精密光学元件质量等方面的应用。 关键词: 牛顿环仪;变形牛顿环装置;干涉图样 Deformation Newton rings device the interference fringes characteristics of the research and application Abstract:Newton rings is a typical interference phenomenon with equal thickness ,which is the realized by the method of sub-amplitude, generally using flat with double convex lens to achieve, and Newton rings apparatus tends to use flat add glass plate to be achieved. Based on the Newton rings apparatus deformation, the article realizes the Newton rings phenomenon with the model of using two plano-convex lens added, analyses the formula of the radius, distribution and lightness and darkness of the center spot and other features under monochromatic light source of the Newton rings interference fringes ,and discusses the deformation Newton rings device in measuring lens radius, refractive index, and test the quality of precision optical components and other applications. Keywords:Newton rings apparatus; Deformation Newton rings installation; Interference pattern

牛顿环实验误差分析

牛顿环实验中的误差分析 ——— 一种新的牛顿环仪构想 物理学院 微电子系 滕渊 20071001107 指导教师 :戚焕筠 摘要:牛顿环实验中利用反射点半径与平凸透镜曲率半径的关系测量平凸透镜的曲率半径,这个实验中有三个较明显的系统误差。本方简要分析这三个系统误差的影响,并针对影响最大的一个因素深入探讨,最后提出一种新的牛顿环仪模型。 关键词:牛顿环、系统误差、中心暗斑、新式牛顿环仪 正文:首先,在关系式: 或 的推导过程中,就存在两点系统误差。 然后,在实验操作中,中心不可能是点接触又是一个系统误差。 一、把观察到的干涉产生的暗环的半径当成是光线进入透镜反射点的半径。分析光路图知道,它们是不相等的。这一因素影响不大,在分析误差时常常忽略而忘记考虑。 入射h

这样测出的半径比光线反射处的半径要小,由 R=(r^2+h^2)/2h 知,这一因素使得测量结果偏小。 二.推导时,忽略了h^2,这样也使得测量结果偏小。 这一因素的影响也不大。 三、在实验操作中,由于中心不可能达到点接触,在重力和螺钉压力下,透镜会变形,中心会形成暗斑,造成测量结果偏差。 我们推导的公式中,用两个级次的差值进行处理,但是这样也只能避免确定暗环级次的问题,而不能真正彻底消除中心暗斑大小对结果的影响。 因为中心暗斑大小反映了透镜形变的大小,透镜受到螺钉的压力和重力,不仅是中心处发生形变,整个曲面都要形变。越靠外的地方形变越大,则Δh变小,因此关系式中分母上的(m-n)与没有形变时已经不同了,而是变小了,可以推知,测量结果偏大了。实验书上的公式暗含着这样的近似:认为只有中心处变平,而未考虑透镜曲面上其它地方的形变。事实上,当透镜发生形变后,就不再是球面了,也不严格满足关系式:Δr^2=2RΔh了。 也就是说,相同的半径R处对应的空气层厚度h减小,且越靠外减小得越甚,Δh变小,m-n变小,测量结果偏大。这个因素是影响最大的一个因素,中心暗斑越大,测量结果越不准确,越偏大。 对于这一因素,有一篇题为《牛顿环中暗斑大小对测量结果的影

牛顿环

实验名称:牛顿环测曲率半径 一、 实验目的: 1、 学习用牛顿环测量透镜曲率半径的方法 2、 正确使用测量显微镜,学习用逐差发处理数据 二、 实验仪器: 牛顿环装置,测量显微镜,钠光灯 三、 实验原理: 1. 在平板玻璃面DCF 上放一个曲率半径很大的平凸透镜ACB ,C 点为接触点,这样在ACB 和DCF 之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。从上下表面反射的光是同一条光线,会发生干涉现象。 两光线的光程差为 当时出现第k 级明条纹,当时出现第k 级暗条纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线,所以出现牛顿环。 2. 设第k 级条纹的半径为,对应的膜厚度为k e ,则 因为R >> e k ,e k 2相对于2Re k 是一个小量,可以忽略,所以上式可以简化为所以曲率半径的计算公式为由上式带入化简得,因为透镜和玻璃板之间不可能是一个理想的点接触,这样一来,干涉环的圆心就很难确定,所以半径很难测量。因此我们选择两个离中心较远的暗环,假定他们的级数为m 和n ,测出它们的直径d m = 2r m ,d n = 2r n 由 式可得曲率半径的计算公式λ )(422n m d d R n m --=。只要我们准确地测出某两条暗纹的直径,准确地数出级数m 和n 之差(m-n )(不必确定圆心也不必确定具体级数m 和n ),即可求得曲率半径R 。 四、 实验内容及操作步骤:

1、观察牛顿环:将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻 璃片的角度,使通过显微镜目镜观察时视场最亮。调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。 2、测牛顿环半径:是显微镜十字叉交点和牛顿环中心重合,是水平方向的线与标尺平行, 记录标尺数据。转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。 3、重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R 和R的标准差。 五、实验数据及处理:

等厚干涉牛顿环实验报告

等厚干涉——牛顿环示范报告 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和 下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径 k r ,则可求得透镜 的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且 m D 、n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到

清晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45角的反射透明玻璃片等高,旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 3、测量牛顿环的直径 (1)选取要测量的m和n(各5环),如取m为55,50,45,40,35,n为30,25,20,15,10。 (2)转动鼓轮。先使镜筒向左移动,顺序数到55环,再向右转到50 环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与45,40,35,30,25,20,15,10,环对准,顺次记下读数;再继续转动测微鼓轮,使叉丝依次与圆心右10,15,20,25,30,35,40,45,50,55环对准,也顺次记下各环的读数。注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。 4、算出各级牛顿环直径的平方值后,用逐差法处理所得数据,求出 直径平方差的平均值代入公式求出透镜的曲率半径,并算出误差。.注意: (1)近中心的圆环的宽度变化很大,不易测准,故从K=lO左右开始比较好; (2)m-n应取大一些,如取m-n=25左右,每间隔5条读一个数。 (3)应从O数到最大一圈,再多数5圈后退回5圈,开始读第一个数据。 (4)因为暗纹容易对准,所以对准暗纹较合适。,

相关文档
最新文档