20Vp-p(opencircuit);>10Vp-p(加50Ω负载)阻抗50Ω+10%衰减器-20dB+1.0dB" />

信号发生器的基本参数和使用方法

信号发生器的基本参数和使用方法
信号发生器的基本参数和使用方法

信号发生器

本人介绍一下信号发生器的使用和操作步骤.

1、信号发生器参数性能

频率范围:0.2Hz ~2MHz

粗调、微调旋钮

正弦波, 三角波, 方波, TTL 脉波

0.5" 大型LED 显示器

可调DC offset 电位

输出过载保护

信号发生器/信号源的技术指标:

波形正弦波, 三角波, 方波, Ramp 与脉波输出

振幅>20Vp-p (open circuit);>10Vp-p (加50Ω负载) 阻抗50Ω+10%

衰减器-20dB+1.0dB (at 1kHz)

DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating

显示幕4位LED显示幕

频率范围0.2Hz to2MHz(共7 档)

频率控制Separate coarse and fine tuning

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz

频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB100kHz~2MHz

线性98% 0.2Hz ~100kHz;95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz

上升/下降时间<120nS

位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调

上升/下降时间<120nS

位准>3Vpp

上升/下降时间<30nS

输入电压约0V~10V ±1V input for 10 : 1 frequency ratio

输入阻抗10kΩ(±10%)

交流100V/120V/220V/230V ±10%, 50/60Hz

电源线×1, 操作手册×1, 测试线GTL-101 ×1

230(宽) ×95(高) ×280(长) mm,约2.1 公斤

信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率1.信号发生器面板:

(1)电源开关;

(2)信号输出端子;

(3)输出信号波形选择;

(4)输出信号幅度调节;

(5)矩形波、尖脉冲波幅度调节;

(6)矩形脉冲宽度调节;

(7)输出信号衰减选择;

(8)输出信号频段选择;

(9)输出信号频率粗调;

(10)输出信号频率细调;

(11)单次脉冲;

(12)信号输入端子;

(13)显示窗口;

(14)频率计内测、外测功能);

(15)测量频率;

(16)测量周期;

(17)计数;

(18)复位;

(19)频率或周期单位指示;

(20)测量功能指示。

2.信号源部分

(1)频率范围:1Hz —1MHz,由频段选择和频率粗调细调配合调节;

(2)频率漂移:1档≤0.4%;2、3、4、5档≤0.1%;6档≤0.2%;

(3)正弦波:频率特性≤1dB (第6档≤1.5db),输出幅度≥5V,波形的非线性失真:20HZ—20KHZ≤0.1%;

(4)正、负矩形脉冲波:占空比调节范围30%—70%,脉冲前、后沿≤40ns;

波形失真:在额定输出幅度时,前、后过冲及顶部倾斜均小于5%;

输出幅度:高阻输出≥10VPP,50Ω输出≥5VPP;

(5)正、负尖脉冲:脉冲宽度0.1μs,输出幅度≥5VPP。

3.频率计部分:

(1)功能:频率、周期、计数;

(2)输入波形种类:正弦波、对称脉冲波、正脉冲;

(3)输入幅度:1V≤脉冲正峰值≤5V,1.2V≤正弦波≤5V;

(4)输入阻抗:≥1MΩ;

(5)测量范围:1HZ—20MHZ(精度:5×10-4±1个字);

(6)计数:计数速率:波形周期≥1uS, 计数范围:1—983040。

2、基本操作

(1)将电源线接入220V,50HZ交流电源上。应注意三芯电源插座的地线脚应与大地妥善接好,避免干扰。

(2)开机前应把面板上各输出旋扭旋至最小。

(3)为了得到足够的频率稳定度,需预热。

(4)频率调节:按下相应的按键,然后再调节至所需要的频率。

(5)波形转换:根据需要波形种类,按下相应的波形键位。波形选择键是:正弦波、矩形波、尖脉冲、TTL电平。

(6)幅度调节:正弦波与脉冲波幅度分别由正弦波幅度和脉冲波幅度调节。不要作人为的频繁短路实验。

(7)输出选择:根据需要选择,“ON/OFF”键,否则没有输出。

3、信号发生器应用

(1)用信号发生器信号

波形选择,选择“~”键,输出信号即为正弦波信号。

频率选择,选择“K Hz”键,输出信号频率以KHz为单位。

必须说明的是:信号发生器的测频电路的调节,按键和旋钮要求缓慢调节;信号发生器本身能显示输出信号的值,当输出电压不符合要求时,需要另配交流毫表测量输出电压,选择不同的衰减再配合调节输出正弦信号的幅度,直到输出电压达到要求。

若要观察输出信号波形,可把信号输入示波器。需要输出其它信号,可参考上述步骤操作。

(2)用信号发生器测量电子电路的灵敏度

信号发生器发出与电子电路相同模式的信号,然后逐渐减小输出信号的幅度(强度),同时通过监测输出的水平。当电子电路输出有效信号与噪声的比例

劣化到一定程度时(一般灵敏度测试信噪比标准S/N=12dB),信号发生器输出的电平数值就等于所测电子电路的灵敏度。在此测试中,信号发生器模拟了信号,而且模拟的信号强度是可以人为控制调节的。

用信号发生器测量电子电路的灵敏度,其标准的连接方法是:信号发生器信号输出通过电缆接到对电子电路输入端,电子电路输出端连接示波器输入端。

(3)用信号发生器测量电子电路的通道故障

信号发生器可以用来查找通道故障。其基本原理是:由前级往后级,逐一测量接收通路中每一级放大和滤波器,找出哪一级放大电路没有达到设计应有的放大量或者哪一级滤波电路衰减过大。信号发生器在此扮演的是标准信号源的角色。信号源在输入端输入一个已知幅度的信号,然后通过超电压表或者频率足够高的示波器,从输入端口逐级测量增益情况,找出增益异常的单元,再进一步细查,最后确诊存在故障的零部件。

数字信号发生器课程设计

数字信号发生器的设计 摘要 信号发生器也叫做振荡器或是信号源,在现在的科技生产实践中有着广泛而重要的应用。现在的特殊波形发生器在价格上不够经济,有些昂贵。而基于AT89C51单片机的函数信号发生器可以满足此要求。根据傅里叶变换,各种波形均可以用三角函数的相关式子表示出来。函数信号发生器能够产生多种波形,如三角波、锯齿波、矩形波、方波和正弦波。 本文通过在单片机的外围加上键盘,控制波形的种类和输出频率的大小,加上LED 显示出相应信息。单片机输出为数字信号,于是在输出端用DAC0832进行D/A转换,再通过两级运放对波形进行调整。最终在示波器上显示出来。 关键词:信号发生器, AT89C51,D/A转换,波形调整

目录 1 绪论 (1) 1.1 课题研究背景 (1) 1.2波形介绍 (1) 2系统设计 (3) 2.1方案选择 (3) 2.2框图设计 (3) 2.3单片机模块 (4) 2.4按键控制与显示电路设计 (6) 2.5 D/A转换电路 (7) 2.6 显示电路 (9) 2.7 放大电路设计 (12) 2.8整体的电路原理图 (13) 2.9元件清单 (13) 3软件设计 (15) 3.1程序流程图 (15) 3.2程序代码 (15) 4系统仿真及调试 (18) 4.1系统仿真图 (18) 4.2系统调试 (19) 总结 (21) 致谢 (22) 参考文献 (23)

1绪论 1.1课题研究背景 随着经济与科技不断发展,相应的测试仪器与手段也有了许多改善与提高,但是对之要求也不断提高。波形发生器的信号已知,使用者然后根据具体的要求,将其作为激励源,测得感兴趣的参数。信号源仿真各种测试信号,给待测电路,从而满足现实需求。信号发生器在仿真实验占有重要地位,对于测试仪器来说也同样不可缺少。因此对相关信号发生器的研究开发有着一定的意义。 传统的信号发生器电路复杂,控制灵活度不够,成本也相对较高。虽然我国所研制的波形发生器在一定程度上已有了一些成果,但与国外技术确实还存在一定差距,因此很有必要提高相关方面的研究。 利用单片机的控制灵活性,外设处理能力强等特点,实现频率与幅度可调的多种波形,这就克服了传统的缺点,具有良好的实用性。同时根据程序的易控制性,可以容易实现各种较复杂的调频调幅功能。 1.2波形介绍 正弦波,正弦信号可用如下形式表示 f (t)=A sin(ωt+θ) (1) 其中,A 为振幅,ω是角频率,θ为初相位。正弦函数为一周期信号如下图1所示: 图1正弦波 ·方波 方波函数是我们常用且所熟知的简单波形函数,做脉冲等,其表示形式如下:

(数字信号发生器+电子琴)实验报告

实验一数字信号发生器和电子琴制作 一、实验目的 1.熟悉matlab的软件环境,掌握信号处理的方法,能在matlab的环境下完成对 信号的基本处理; 2.学会使用matlab的GUI控件编辑图形用户界面; 3.了解matlab中一些常用函数的使用及常用运算符,并能使用函数完成基本的 信号处理; 二、实验仪器 计算机一台,matlab R2009b软件。 三、实验原理 1.数字信号发生器 MATLAB是矩阵实验室(Matrix Laboratory)的简称,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink两大部分。 已知的常用正弦波、方波及三角波,可以通过matlab自带的函数实现,通过改变函数的幅值、相位和频率可以得到不同的信号。 正弦信号:y=A*sin(2*pi*f*t); 方波信号:y=A*square(2*f*pi*x+c); 三角波信号:y=A*sawtooth(2*pi*f*x+c); 2. 电子琴 电子琴的每个音阶均对应一个特定频率的信号,通过调用数字信号发生器产生一系列指定的频率的声音,从而达到虚拟的电子琴的功能。界面中包含1、2、…、7共 7 个琴键,鼠标按下时即发声,松开时发声停止。同时能够产生正弦波、方波、三角波等常见的波形的数字信号,然后将数字信号写入声卡的缓冲区,最后由声卡播放出相应的声音。 已知音乐的七个音阶的主频率分别是131Hz、147Hz、165Hz、175Hz、196Hz、220Hz和247Hz,分别构造正弦波、方波和三角波,可以组成简单的电子琴。

四、实验内容 1.数字信号发生器的制作 (1)搭建GUI界面 图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界面相比,图形界面对于用户来说在视觉上更易于接受。 Matlab环境下的图形用户界面(GUI)是由窗口、光标、按键、菜单、文字说明等对象(Objects)构成的一个用户界面。用户通过一定的方法(如鼠标或键盘)选择、激活这些图形对象,使计算机产生某种动作或变化,比如实现计算、绘图等。MATLAB的用户,在指令窗中运行demo 打开那图形界面后,只要用鼠标进行选择和点击,就可产生丰富的内容。 利用GUI控件中自带的按钮,根据需要组成如下图1所示的数字信号发生器的Gui界面。 图1 数字信号发生器的GUI界面

四位数字显示函数信号发生器的设计和制作

《综合电子技术》 课程设计指导书 四位数字显示函数信号发生器 的设计和制作 汤栋王尧编 三江大学 电气工程与自动化学院 二OO七年十二月

、设计目的

在《模拟电子技术》和《数字电子技术》课程学习和实验的基础上 ,通过《综合 电子技术》课程设计,使学生在电子技术基础知识和设计、调试能力方面达到以下要 求: 1. 进一步加深理解电子线路基本功能单元的工作原理及其电路设计、参数选择方 法; 2. 学会绘制电路原理图、接线图,学会正确安装、调试并排除常见故障; 3. 熟悉示波器、信号发生器、稳压电源及晶体管毫伏表的正确使用,重点要求学会 使用示波器观测信号波形、幅值。 二、 设计任务 设计一个能输出正弦波、锯齿波、矩形波等信号频率,并能数字显示(四位)频率的 多波形函数发生器。 三、 技术指标 该波形发生器的主要技术指标如下: 1. 可输出正弦波、锯齿波(含三角波)、矩形波(含方波)等波形; 2. 输出信号频率范围:1HZ~9999H 并能四位数码显示。 四、 系统框图和各功能单元介绍及要求 1. 系统框图:本设计为一具有四位数字显示频率的函数发生器,其系统框图如下: 图一系统框图 2. 各单元电路及要求: 1) 电源部分 设计一组土 1.2V ?土 20V 可调直流稳压电源 2) 信号源部分 正弦波信号源: 叵洼稳压电煩 士 I2V 正弦信号濒 T 柜形渡墙号腫T *输出,正弦疲 f\f\

输出正弦电压频率f o=1KHZ f o=1OKHZ M档; 输出正弦电压V O(有效值)0.5V?5V可调;输出直流偏移电压范围:O?± 3V; 矩形波信号源 输出矩形波电压频率:1KHZ、10KHZ两档;输出矩形波电压幅值: ± 5V;输出矩形波电压直流偏移电压范围: 0 ?± 3V; 锯齿波信号源 锯齿波频率:1KHZ、10KHZ两档;锯齿波电压幅值:± 4V;可输出正反向锯齿波及三角波; 3)秒信号源:产生周期为一秒的方波信号,作为测控时基信号。 4)控制单位:产生一系列顺序脉冲,用作计数,保持,显示和复位控制,使频率计按时序 正常工作。 5)偏移放大、整形电路:将输入正弦波、三角波等被测信号变换为方波脉冲序列,以便测 量其频率。 6)计数闸门:用于产生一秒钟内的被测信号脉冲个数,便于后面电路计数显示。 7)计数、译码、驱动和显示电路:在控制电路产生的顺序脉冲控制下,周期性地计数和显 示被测信号频率。 3. 选做部分 1 )频率显示时间延长; 2)加秒信号输出功能; 3)溢出指示。 五、设计要求 1.选择各部分电路结构,按上列指示要求,设计计算有关电路各参数,并最终选出元器件;2.画出各部分电路原理图及接线图,列出各电路元器件的明细表。(注意电路图中各元器件统一编号); 3.在原理图上标明各级电路预期的输出波形及测量值,并在接线图上选定测试点; 六、调试要求 1.列出各部分电路调试过程并自拟数据表格和所需测试的有关波形,做详细记录。 2.记录调试过程中出现的故障,经过分析并提出解决的办法。

基于DDS的数字移相信号发生器

EDA课程设计 课题名称_ 基于DDS的数字移相信号发生器 专业_ 电子信息工程____ _ _ 班级_____ _________ __ __ 学号_ 姓名_ __ __ 成绩_____ ____________ _ 指导教师___ _ ___ ___ 2014年 5 月7日

一、课程设计目的 (3) 二、设计任务 (3) 三、工作原理及模块分析 (3) 1、频率预置与调节电路 (4) 2、累加器 (4) 3、波形存储器 (4) 4、D/A转换器 (5) 四、相关程序 (5) 1、加法器 (5) (1)ADD10 (5) (2)ADD32 (7) 2、寄存器 (8) (1)REG10B (8) (2)REG32B (10) 3、ROM (11) 4、主程序 (13) 五、仿真结果: (16) 六、引脚配置和下载 (17) 七、实验心得 (18)

一、课程设计目的 1、进一步熟悉Quartus Ⅱ的软件使用方法; 2、熟悉利用VHDL设计数字系统并学习LPM_ADD_SUB、LPM ROM、LPM_FF 的使用方法; 3、学习FPGA硬件资源的使用和控制方法; 4、掌握DDS基本原理,学习利用此原理进行信号发生器的设计 二、设计任务 完成10位输出数据宽度的频率可调的移相正弦信号发生器,通过按键调节频率和初始相位,实现相位和频率可调的正弦信号发生器 三、工作原理及模块分析 直接数字频率合成器(DDS)是通信系统中常用到的部件,利用DDS可以制成很有用的信号源。与模拟式的频率锁相环PLL相比,它有许多优点,突出为(1)频率的切换迅速;(2)频率稳定度高。 一个直接数字频率合成器由相位累加器、波形ROM、D/A转换器和低通滤波器构成。DDS的原理框图如下所示: 频率预置与调节电路 累加器 累加器波形存储器 波形存储器D/A转换器 D/A转换器低通滤波器 低通滤波器K N位 N位 fc S(n) D位 S(t) 图1直接数字频率合成器原理图 其中K为频率控制字,fc为时钟频率,N为相位累加器的字长,D为ROM 数据位及D/A转换器的字长。相位累加器在时钟fc的控制下以步长K作为累加,输出N位二进制码作为波形ROM的地址,对波形ROM进行寻址,波形ROM输出的幅码S(n)经D/A转换器变成梯形波S(t),再经低通滤波器平滑后就可以得到合成的信号波形了。合成的信号波形形状取决于波形ROM中存放的幅码,因此用DDS可以产生任意波形。本设计中直接利用D/A转换器得到输出波形,省略了低通滤波器这一环节。

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

(完整版)数字信号发生器的电路设计_(毕业课程设计)

1 引言 信号发生器又称信号源或者振荡器,它是根据用户对其波形的命令来产生信号的电子仪器,在生产实践和科技领域有着广泛的应用。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其他仪表测量感兴趣的参数。信号发生器在通信、广播、电视系统,在工业、农业、生物医学领域内,在实验室和设备检测中具有十分广泛的用途。 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。到70年代处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。随着现代电子、计算机和信号处理等技术的发展,极大地促进了数字化技术在电子测量仪器中的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之发展起来。

信号发生器作为电子领域不可缺少的测量工具,它必然将向更高性能,更高精确度,更高智能化方向发展,就象现在在数字化信号发生器的崛起一样。但作为一种仪器,我们必然要考虑其所用领域,也就是说要因地制宜,综合考虑性价比,用低成本制作的集成芯片信号发生器短期内还不会被完全取代,还会比较广泛的用于理论实验以及精确度要求不是太高的实验。因此完整的函数信号发生器的设计具有非常重要的实践意义和广阔的应用前景。 2 数字信号发生器的系统总述 2.1 系统简介 信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。 本设计以AT89C52[1]单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统主要包括CPU模块、显示模块、键盘输入模块、数模转换模块、波形输出模块。系统电路原理图见附录A,PCB (印制电路板)图见附录B。其中CPU模块负责控制信号的产生、变化及频率的改变;模数转换模块采用DAC0832实现不同波形的输出;显示模块采用1602液晶显示,实现波型和频率显示;键盘输入模块实

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

数字信号发生器

第1章摘要 MATLAB是一个数据分析和处理功能十分强大的工程实用软件,具有很多工具箱,他的数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令,以及数字信号处理工具箱使在数字信号处理方面方便实用。数字信号发生器是一种基于软硬件实现的波形发生器,可以实现各种基本波形的产生。由于工程中各种复杂的信号是由这些基本信号叠加而成的,而这些简单信号都可以有数字信号发生器来实现,在工程分析和实验教学中广泛实用,所以设计一种简单而实用的数字信号发生器很有必要。 在本文中将介绍用matlab设计一个简单的信号发生器的基本流程,详细的介绍设计的技术路线和实现方法以及存在的问题。 关键词:Matlab,数字信号发生器

Abstract MATLAB is an very powerful and practical software in data analysis and processing in engineering, it contains many toolboxes such as data acquisition toolbox and data processing toolbox. It's data acquisition toolbox provide many very convenient functions and commands for the input and output of data. Digital signal generator is a software and hardware based waveform generator, can produce a variety of basic waveform. In engineering, many complex signals are combined with this basic waveform, so it is necessary to develop a digital signal generator for teaching and experiment use. In this article, I will introduced how to design a simple signal generator in details. I will also introduce the technology route and my problems. Keywords: Matlab, Digital Signal Generator

基于单片机的信号发生器的设计

唐山师范学院 题目基于单片机的信号发生器的设计 院系名称:电子信息科学与技术 学号: 摘要 波形发生器即简易函数信号发生器,是一个能够产生多种波形,如三角波、锯

齿波、方波、正弦波等波形电路。函数信号发生器在电路实验和设备仪器中具有十分广泛的用途。通过对函数发生器的原理以及构成分析,可设计一个能变换出三角波、锯齿波、方波、正弦波的函数波形发生器。在工业生产和科研中利用函数信号发生器发出的信号,可以对元器件的性能及参数进行测量,还可以对电工和电子产品进行指数验证、参数调整及性能鉴定。常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不仅参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其性能好但体积较大,价格较贵,因此,高精度,宽调幅将成为数字量信号发生器的趋势。 本文介绍的是利用89C52单片机和数模转换器件DAC0832产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。文中简要介绍了 DAC0832数模转换器的结构原理和使用方法,89C52的基础理论,以及与设计电路有关的各种芯片。文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。信号频率幅度也按要求可调。 本设计核心任务是:以AT89C52为核心,结合D/A转换器和DAC0832等器件,用仿真软件设计硬件电路,用C语言编写驱动程序,以实现程序控制产生正弦波、三角波、方波、三种常用低频信号。可以通过键盘选择波形和输入任意频率值。

关键词: AT89C52单片机函数波形发生器 DAC0832 方波三角波正弦波 目次 1 引言 (4) 2 系统设计 (6) 方案 (6) 器件选择 (6) 总体系统设计 (6) 硬件实现及单元电路设计 (7) 单片机最小系统设计 (7) D/A转换器 (8) 运算放大器电路 (10) LED显示器接口电路 (11) 波形产生原理及模块设计 (11) 显示模块设计 (13) 键盘显示模块设计 (14) 软件设计流程 (14) 软件中的重点模块设计 (14) 3 输出波形种类与频率的测试 (18) 测量仪器及调试说明 (18) 调试过程 (18) 调试结果 (22) 结论 (23) 致谢 (25) 参考文献 (26) 附录A 源程序 (27)

基于单片机的全数字信号发生器设计

基于单片机的全数字信号发生器设计 设备技术网时间:2010-4-13 来源:电子技术网作者: 工业设备常用频率量信号作为采集量,如使用光电编码器采信数据,当调试使用频率信号的设备时,由于机械等部份还未动作,无法采集信号,因此需要使用信号发生器。对于在工业现场使用的设备,其要求与实验室设备并不相同,如果直接使用实验室中所用的标准信号发生器,往往会觉得其体积过大、价格太高、使用较麻烦等。工业现场使用的设备,其绝对精度要求并不高,关键要稳定可靠, 便于携带和使用。 一、性能分析 这个项目的目标是替代工业现场的频率采样装置,典型的如光电编码器。通过调查,确认最终要制作的信号发生器的性能指标如下:频率范围:0~1Hz,以0.1Hz步进,1~500Hz,以1Hz步进;波形:矩形波或方波均可;精度:频率值的相对误差不超过±1%;功能:(1)信号发生,信号发生器以给定的频率输出信号;(2)脉冲个数计数,仪器可对本身已发出的脉冲个数进行计数;(3)设定值 可存储,每次上电自动调出前次设定值。 二、初步设计 在确定了性能指标后,可以进行初步设计,考虑其显示、操作等方面的要求。 1、显示部分 待设定的频率值最高为500HZ,只要3位数码管即可;要求对输出脉冲计数,虽未给出要求的计数值,但3位数码管最大仅能计到999,似乎太少了一些,再考虑到该仪器以后的扩展,如希望以后能加一些高端点频(600、700、800、900、1000、2000、5000、10K等),需要更多的数码管显示, 因此最终选择5位数码管显示。

2、键盘部分 键盘有很多方案可供选择,如工业品中常用的三键或四键方案,当然也可以用多键(如市售有一些标准的12或16键键盘)等,经过反复比较,考虑到易制作、易使用等等诸多因素,最终将键的个 数确定为5个。 键盘操作方案是仪器易用性的很重要的一个方面,这并非仪器的关键部分,但键盘、显示程序的工作量往往占据整个设计的很大的一部份。对键盘设计,重要的是要确定各按键功能,描述出各键的 具体操作。 本仪器的键设计如下: 1.工作状态描述 由转换键切换两种状态(1)显示设定的频率值(2)显示脉冲个数值 2.键定义 切换键增加键减少键开启/停止键清除键 3.键操作描述 切换键:切换两种工作状态 增加和减少键:在显示设定频率值时按,按增加键、减少键设定频率,范围为0.1~500HZ,每按一次增加键,设定值加1,如果按着键不放,稍后进入连续状态,设定值快速增加;按减少键,设定值减1,如果按着键不放,稍后进入连续状态,设定值快速减少。当频率设定值小于1以后,每按一 次增加或减少键,设定值增加或减少0.1。 开启/停止键:开始/停止信号发生 清除键:用于清除当前脉冲个数的计数值。 4.工作过程 开机后,信号发生器自动运行,有信号输出,按下“开启/停止”键,则信号发生器停止工作,没有

基于MATLAB的数字信号发生器报告

基于MATLAB的数字信号发生器设计报告 摘要:数字信号发生器是基于软硬件实现的一种波形发生仪器。在工工程实践中需要检测和分析的各种复杂信号均可分解成各简单信号之和,而这些简单信号皆可由数字信号发生器模拟产生,因此它在工程分析和实验教学有着广泛的应用。MATLAB是一个数据分析和处理功能十分强大的工程实用软件,他的数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令,在数字信号处理方面方便实用。本文介绍了使用MATLAB建立一个简单数字信号发生器的基本流程,并详细叙述了简单波形(正弦波、方波、三角波、锯齿波、白噪声)信号的具体实现方法。 关键字:MATLAB ,数字信号发生器 1概述 随着计算机软硬件技术的发展,越来越多现实物品的功能能够由计算机实现。信号发生器原本是模拟电子技术发展的产物,到后来的数字信号发生器也是通过硬件实现的,本文将给出通过计算机软件实现的数字信号发生器。 信号发生器是一种常用的信号源,广泛应用于电子技术实验、自控系统和科学研究等领域。传统的台式仪器如任意函数发生器等加工工艺复杂、价格高、仪器面板单调、数据存储、处理不方便。以Matlab

和LabVlEW 为代表的软件的出现,轻松地用虚拟仪器技术解决了这些问题。 Matlab 是一个数据分析和处理功能十分强大的工程实用软件,他的数据采集工具箱(data acquisition toolbox )为实现数据的输入和输出提供了十分方便的函数和命令,利用这些函数和命令可以很容易地实现对外部物理世界的信号输出和输入。根据声卡输出信号的原理,采用Matlab 软件编程,可以方便地输出所需要的正弦波、三角波、方波等多种信号,有效地实现信号发生器的基本功能。 2 设计原理 要设计的数字信号有正弦信号、方波信号、三角波、锯齿波、白噪声、脉冲信号。其中,前五种波形都可以利用MATLAB 提供的函数实现,并根据输入的幅值、相位、频率等信息进行调整。脉冲信号由自己编写程序实现,并以定义的时间节点控制脉冲出现的时刻。 2.1 正弦信号的实现 正弦波信号的数学表达式如2.1, ()sin 2y A ft πφ=+ 2.1 其中:A 为幅值; f 为频率; φ为相位。 在MATLAB 中,相应的数字信号可以由下式2.2计算,

信号发生器的设计(DOC)

燕山大学 课程设计说明书 课程名称数字信号原理及应用 题目信号发生器设计 学院(系)电气工程学院 年级专业2011级检测技术与仪器一班学号110103020051 学生姓名赵冰飞 指导教师王娜 教师职称讲师

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师: 学号学生姓名(专业)班级设计题目11、信号发生器设计 设 计 技术参数产生如下信号:方波信号、锯齿波信号、抽样信号、冲击串信号、实指数信号、正弦信号 设 计 要 求 设计良好的人机界面,每个按键对应一种波形 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

摘要 数字信号发生器是基于软硬件实现的一种波形发生仪器。在工程实践中需要检测和分析的各种复杂信号均可分解成各个简单信号之和,而这些简单信号皆可由数字信号发生器模拟产生,因此它在工程分析和实验教学有着广泛的应用。MATLAB是一个数据分析和处理功能十分强大的工程实用软件,他的数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令,在数字信号处理方面方便实用。本文介绍了使用MATLAB建立一个简单数字信号发生器的基本流程,并详细叙述了简单波形方波、抽样信号、锯齿波、冲击波、正弦信号、冲击串信号、实指数信号、的具体实现。

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

信号发生器的基本参数和使用方法

信号发生器本人介绍一下信号发生器的使用和操作步骤1、信号发生器参数性能频率范围:0.2Hz ~2MHz 粗调、微调旋钮正弦波, 三角波, 方波, TTL 脉波0.5" 大型LED 显示器可调DC offset 电位输出过载保护信号发生器/ 信号源的技术指标: 主要输出 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (opencircuit);>10Vp-p (加50Ω 负载) 阻抗 50Ω+10% 衰减器 -20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕 4 位LED 显示幕 频率范围 0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning 正弦波

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB 100kHz~ 2MHz 三角波 线性98% 0.2Hz ~100kHz;95%100kHz~ 2MHz 对称性<2% 0.2Hz ~100kHz 上升/ 下降时间<120nS CMOS输出 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/ 下降时间<120nS TTL 输出 位准>3Vpp 上升/ 下降时间<30nS VCF 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (± 10%) 使用电源 交流100V/120V/220V/230V ±10%, 50/60Hz 附件 电源线× 1, 操作手册× 1, 测试线GTL-101 × 1

数字信号发生器毕业设计

数字信号处理结业论文 姓名:杨世彪 学号:031240533

基于AT89S51单片机的数字信号发生器 【摘要】 智能仪器的出现,极大地扩充了传统仪器的应用范围。智能仪器凭借其体积小、功能强、功耗低等优势,迅速地在家用电器、科研单位和工业企业中得到了广泛的应用。 本系统是基于AT89S51单片机设计的数字式波形发生器。采用AT89S51作为系统的控制核心,外围电路采用数字/模拟转换电路(DAC0832),运放电路(MC1458),按键,ISP接口等。通过按键控制切换产生正弦波,锯齿波,三角波,方波,各类型信号的频率统一为100HZ,而幅值在-5V~+5V范围内可调。本设计电路原理简单,性能较好,具有一定的实用性和参考价值。 【关键词】单片机 ,波形发生器,D/A电路 DIGITAL SIGNAL GENERATOR DESIGN BASED ON AT89S51 【ABSTRACT】 The emergence of intelligent machines, which greatly expanded the scope of application of traditional instruments. Intelligent instrument, with its small size, powerful, low-power advantages of home appliances quickly, research institutes and industrial enterprises has been widely used. The system is a digital waveform generator based on single chip computer.

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

相关文档
最新文档