数学建模经典案例:最优截断切割问题

数学建模经典案例:最优截断切割问题
数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题

一、 问 题

从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少.

二、 假 设

1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1;

2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ;

3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用;

4 、每个待加工长方体都必须经过6次截断切割.

三、 模型的建立与求解

设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.

由此准则,只需考虑 P 6622290!!!

??=种切割方式.即在求最少加工费用时,

只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.

1、 e=0 的情况

为简单起见,先考虑e=0 的情况.构造如图9-13的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.

图9-13 G(V,E)

图G(V,E)的含义为:

(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.

(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用.

W(Vi,Vj)=(xj-xi)?(bi?ci)+(yj-yi)?(ai?ci)+(zj-zi)?(ai?bi)?r

其中,ai、bi、ci分别代表在状态Vi时,长方体的左右面、上下面、前后面之间的距离.

例如,状态V5(1,1,0),a5 = a0-u1,b5 = b0-u3,c5 = c0;状态V6(2,1,0)W(V5,V6) =(b0-u3)?c0

(3)根据准则知第一刀有三种选择,即第一刀应切M1、M3、M5中的某个面,在图中分别对应的弧为( V1,V2),(V1,V4),(V1,V10). 图G中从V1到V27的任意一条有向道路代表一种切割方式.从V1到V27共有90条有向道路,对应着所考虑的90种切割方式.V1到V27的最短路即为最少加工费用,该有向道路即对应所求的最优切割方式.

实例:待加工长方体和成品长方体的长、宽、高分别为10、145、19 和3、2、4,两者左侧面、正面、底面之间的距离分别为6、7、9,则边距如下表:u1 u2 u3 u4 u5 u6

6 1

7 55 6 9

r=1时,求得最短路为V1-V10-V13-V22-V23-V26-V27,其权为374 对应的最优切割排列为M5-M3-M6-M1-M4-M2,费用为374元.

2、e≠0的情况

当e 0时,即当先后两次垂直切割的平面不平行时,需加调刀费e.希望在图9-13的网络图中某些边增加权来实现此费用增加.在所有切割序列中,四个垂直面的切割顺序只有三种可能情况:

<情况一>先切一对平行面,再切另外一对平行面,总费用比e=0时的费用增加e.

<情况二>先切一个,再切一对平行面,最后割剩余的一个,总费用比e=0时的费用增加2e.

<情况三>切割面是两两相互垂直,总费用比e=0时的费用增加3e.

在所考虑的90种切割序列中,上述三种情况下垂直切割面的排列情形,及在图G中对应有向路的必经点如下表:

垂直切割面排列情

有向路必经点

情况一(一)M1-M2-M3-M4 (1,0,z),(2,0,z),(2,1,z)

情况一(二)M3-M4-M1-M2 (0,1,z),(0,2,z),(1,2,z)

情况二(一)M3-M1-M2-M4 (0,1,z),(1,1,z),(2,1,z)

情况二(二)M1-M3-M4-M2 (1,0,z),(1,1,z),(1,2,z)

情况三(一)M1-M3-M2-M4 (1,0,z),(1,1,z),(2,1,z)

情况三(二)M3-M1-M4-M2 (0,1,z),(1,1,z),(1,2,z)

我们希望通过在图9-13的网络图中的某些边上增加权来进行调刀费用增加的计算,但由于网络图中的某些边是多种切割序列所公用的.对于某一种切割序列,需要在此边上增加权e,但对于另外一种切割序列,就有可能不需要在此边上增加权e,这样我们就不能直接利用图9-13的网络图进行边加权这种方法来求出最短路径.

由上表可以看出,三种情况的情形(一)有公共点集{(2,1,z)|z=0,1,2},情形(二)有公共点集{(1,2,z)|z=0,1,2}.且情形(一)的有向路决不通过情形(二)的

公共点集,情形(二)的有向路也不通过情形(一)的公共点集.所以可判断出这两部分是独立的、互补的.如果我们在图G中分别去掉点集{(1,2,z)|z=0,1,2}和{(2,1,z)|z=0,1,2}及与之相关联的入弧,就形成两个新的网络图,如图H1和H2.这两个网络图具有互补性.对于一个问题来说,最短路线必存在于它们中的某一个中.

由于调整垂直刀具为3次时,总费用需增加3e,故我们先安排这种情况的权增加值e,每次转刀时,给其待切弧上的权增加e.增加e的情况如图9-14中所示.再来判断是否满足调整垂直刀具为二次、一次时的情况,我们发现所增加的权满足另外两类切割序列.

综合上述分析,我们将原网络图G分解为两个网络图H1和H2,并在指定边上的权增加e,然后分别求出图H1和H2中从V1到V27的最短路,最短路的权分别为:d1,d2.则得出整体的最少费用为:d = min(d1,d2) ,最优切割序列即为其对应的最短路径.

实例:r=15,e=2时,求得图G1与G2的最短路为G2的路V1-V4-V5-V14-V17-V26-V27,权为4435,对应的最优切割序列为M3-M1-M6-M4-M5-M2,最优费用为4435.

图9-14 H1

图9-15 H2

数学建模经典案例:最优截断切割问题复习进程

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.

数学建模 截断切割.

数学建模 截断切割问题 学号:1443205000041 姓名:杨德升 学号:1443205000108 姓名:李春红 学号:1443205000088 姓名:杨建明

问题描述: 某些工业部门(如贵重石材加工等)采用截断切割的加工方式。这里“截断切割”是指将物体沿某个切割平面分成两部分。从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6次截断切割。 设水平切割单位面积的费用是垂直切割单位面积费用的r倍,且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e。 试为这些部门设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。(由工艺要求,与水平工作台接触的长方体底面是事先指定的)详细要求如下: 1、需考虑的不同切割方式的总数。 2、给出上述问题的数学模型和求解方法。 3、试对某部门用的如下准则作出评价:每次选择一个加工费用最少的待切割面进行切割。 4、对于e=0 5、用以下实例数据验证你的方法:待加工长方体和成品长方体的长、宽、高分别为10、14.5、19和3、2、4,二者左侧面、正面、底面之间的距离分别为 6、 7、9(单位均为厘米)。垂直切割费用为每平方厘米1元,r和e的数据有以下4组: a r = 1 e = 0; b r = 1.5 e = 0; c r = 8 e = 0; d r = 1.5 2<= e<=15; 对最后一组数据应给出所有最优解,并进行讨论。 解: (1)对于计算不同的切割方式总数,经过分析,能够用排列组合的知识来解决这个问题。我们对分别位于前、后、左、右、上、下的切割面进行编号,其相应的编号分别为1M,2M,M3,M4,M5,M6,然而每一种切割方式都是对这6个切割面的一个排列方式,所以总共就6!=720种排列方式。但是相继切割一对平行面时,交换切割次序,不影响切割费用,把费用相同的一项归到一类,最终的切割总数为: 720-3x5!+3x4!-3!=426种 (2)(3)(4)(5) 符号说明: a0,b0,c0分别表示待加工长方体的长、宽、高。 a,b,c分别表示成品长方体的长、宽、高。 1M、2M、3M、4M、5M、6M表示左、右、前、后、上、下, 1u,2u,3u,4u,5u,6u分别表示待加工长方体与成品长方体。 有向图顶点是vi,坐标为(xi,y i,z i),xi,y i,z i分别代表侧面(左右面)、正(前后面)、水平面(上下面)的切割次数。其中xi,y i,z i都在{0.1.2}中取值。a i,bi,c i

初中数学建模案例

初中数学建模案例 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

97b截断切割 参考答案

1997年B题截断切割 B题截断切割 某些工业部门(如贵重石材加工等)采用截断切割的加工方式。这里“截断切割”是指将物体沿某个切割平面分成两部分。从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长主体的对应表面是平行的)通常要经过6次截断切割。 设水平切割单位面积的费用是垂直切割单位面积费用的r倍,且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e. 试为这些部门设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。(由工艺要求,与水平工作台接触的长方体底面是事先指定的)详细要求如下: 1、需考虑的不同切割方式的总数 2、给出上述问题的数学模型和求解方法。 1、试对某部门用的如下准则作出评价:每次选择一个加工费用最少的待切割面进行切割。 2、对于e=0的情形有无简明的优化准则。 3、用以下实例验证你的方法:待加工长方体和成品长方体的长、宽、高分别为10、14.5、 19和3、2、4,二者左侧面、正面、底面之间的距离分别为6、7、9(单位均为厘米)。 垂直切割费用为每平方厘米1元,r和e的数据有以下4组: a.r=1 e=0 ; b.r=1.5 e=0 ; c.r=8 ,e=0 ; d.r=1.5;2≤e≤15 对最后一组数据应给出所有最优解,并进行讨论。 B题截断切割 (1)需考虑的不同切割方式的总数 V中共有6!=720个不同的元素,因此有720种不同的切割方式,注意到相继二次切割一对平行的平面时,交换这二次切割的先后次序不影响对应切割方式的费用,将费用相同的切割方式归成一类,每类取一种切割方式作为代表,此时仅需考虑加工费用可能不同的切割方式426种。 (2)问题归结为求一个定义在6个切割面排列次序的全体或它的一个子集上的函数的最小值。目标函数应尽量用显式写出。求解可用枚举法,分支定界法或其它方法,从尽可能简便有效作为评价标准: (3)一种作法如下: 在直角坐标系中,表面平行于坐标平面的长方体可表示为{(x,y,z),(a,b,c)},其中(x,y,z)为长方体某指定角点的坐标,a,b,c分别为它的长、宽、高。 设原材料长方体(简称母体)知成品长方体(简称子体)的长、宽、高分另为(a0,b0,c0)和(a,b,c);取母体正前方左下角为原点,取长、宽、高方向为x.y,z轴,建立直角坐标系;设子体正前方左下角坐标为(x e,y e,z e),6个切割平面分别为:x=x e,x=x e+a,y=y e y=y e+b,z=z e z=z e+c我们依次用1-6分别标记这6种切割。 对于一种给定的切割方式,i1i2i3 i4 i5 i6, i j∈{1,2,3,4,5,6},i j≠i k(j≠k j,k=1,2,3,4,5,6)可以用递推方法决定其加工费用,设第k次切割前的加工长方体为{(x k-1,y k-1,z k-1),(a k-1,b k-1c k-1)},i k决定了加工后的长方体{(x k,y k,z k),(a k,b k,c k)};由i k和i k-j(k-j>0,j=1,2,3)完全决定了k次切割的费用e k,例如:设i k=1(此时x k-1≠x e),{(x k,y k,z k),(a k,b k,c k)}={(x e,y k-1,z k-1),(a k-x e,b k-1,c k-1)}而e k=b k-1,c k-1+f k,其中

截断切割问题论文

截断切割问题论文 Prepared on 22 November 2020

题 目 截断切割问题 摘要 本文研究了实际生产过程中的截断切割问题,求出最优的切割顺序,使得在对待加工的长方体进行切割时,能够花费最少的切割费,得到最大的收益。 根据题中所给的数据,我们发现不同的切割顺序所花费的切割费用是不一样的,所以我们建立模型,通过图论来对其进行求解。 首先,我们建立了一个三维的有向赋权网络图,假设图中的弧表示长方体的切割过程,图中的定点表示长方体切割后所处的状态,并对弧权进行赋值,弧权值表示在切割过程中所花费的切割费用。 然后通过求最短路径来求出最少的切割费用。我们利用Lingo 软件得出了如下答 案: 当1,0r e ==时,最少加工费用为:374元;切割次序为: 1101322232627------,也就是按照615324M M M M M M -----的顺序切割。 当 1.5,0r e ==时,最少加工费用为:437.5元;切割次序为: 141314172627------,也就是按照163254M M M M M M -----的顺序切割。 当8,0r e ==时,最少加工费用为:540.5元;切割次序为: 1458171827------,也就是按照132645M M M M M M -----的顺序切割。(当1.5,215r e =≤≤时,答案较为复杂,请见正文) 并且,我们提出了最简明的优化准则,即为“每次选择一个加工费用最少的待切割面进行切割。”当0e =时的情况下,对长方体进行截断切割时,就能够遵循这条准则对其进行切割,花费最小的切割费。 关键词:截断切割 最优化模型 图论 一、问题重述 某些工业部门(如贵重石材加工等)采用截断切割的加工方式。这里“截断切割”是指将物体沿某个切割平面分成两部分。从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6次截断切割。 设水平切割单位面积的费用是垂直切割单位面积费用的r 倍,且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e 。 试为这些部门设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。(由工艺要求,与水平工作台接触的长方体底面是事先指定的)详细要求如下: 1、需考虑的不同切割方式的总数。 2、给出上述问题的数学模型和求解方法。 3、试对某部门用的如下准则作出评价:每次选择一个加工费用最少的待切割面进行切割。 4、对于0e =的情形有无简明的优化准则。 5、用以下实例数据验证你的方法:待加工长方体和成品长方体的长、宽、高分别为 10、、19和3、2、4,二者左侧面、正面、底面之间的距离分别为6、7、9(单位均为厘米)。垂直切割费用为每平方厘米1元,r 和e 的数据有以下4组: 对最后一组数据应给出所有最优解,并进行讨论。

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时, 只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况

数学建模截断切割的优化设计

工业中截断切割的优化设计 一摘要 本文讨论了加工业中截断切割的优化排序策略我们对于不同的切割 方式总数用穷举法得到720 种所可行解及其费用并对于原问题建立了决策 并对所给出的算法进行了分析和检验 1.当e=0时我归纳出解决问题的最优法则, 从而提出了将面间距统一成判断权重来作为排 序准则的算法,同时证明 了e = 0 的情况下根据这种最优准则能够实现题目所要求的优化目标 2.对于e 1 0 时我们提出了实用准则 最后我结合实际问题将本问题进行了拓展讨论了当最终产品(成品) 在毛坯(待加工长方体)中位置不预定时应如何实施加工方案以达到节省费用 和节约资源的目的,使我们的方案适用于更为广阔的领域 二问题的重述、 在工业生产中,常需要采取将物理一分为二的截断切割方式从一块长方体材料中切出一个小长方体,其加工费用取决于水平切割和垂直切割的截面面积,以及调整刀具时的额外费用。对本题所给出的问题我们首先面临的对加工次序的排序策略然后我们考虑当毛坯和产品位置不预定的时候如何采取策略以达到我们的优化目的 问题: 1> 需考虑的不同切割方式的总数。 2> 给出上述问题的数学模型和求解方法。 3> 试对某部门用的如下准则做出评价,每次选择一个加工费用最少的切割面进行切割。 4> 对于e=0 的情况有无简明的优化准则。 5> 用以下实例验证你的方法: 待加工长方体和成品长方体的长,宽,高分别为10,14.5,19 和3,2,4,两者左侧面,正面,底面之间的距离分别为6,7,5(单位为厘米,垂直切割费用为每平方厘米1 元,r 和e 的数据有 4 组: 1) r=1,e=0; 2) r=1.5,e=0; 3) r=8,e=0; 4) r=1.5, 2 £ e £15 ; 三模型的假设和符号说明 1 切割刀具为两个一个水平放置一个为垂直放置 2 目标长方体所在位置不与毛坯任一表面重合 3 水平方向只需平行移动水平刀具垂直方向只平行移动或调整后再平行 移动刀具因此调整费用e 是否付出仅取决于先后两次垂直切割是否平行而 不记是否穿插着水平切割 4毛坯与工作台接触的底面是事先指定的

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

截断切割的优化设计

长方 摘要 本篇论文着重讨论了长方体截断切割的最优排序策略,用排列组合得到720 种所可行解及其费用并对于原问题建立了决策并对所给出的算法进行了分析和检验。当E=3时我归纳出解决问题的最优法则, 从而提出了将面间距统一成判断权重来作为排序准则的算法, 最后我结合实际问题将本问题进行了拓展讨论了当最终产品(成品)在毛坯(待加工长方体)中位置不预定时应如何实施加工方案以达到节省费用和节约资源的目的,使我们的方案适用于更为广阔的领域 关键字:权重、捆绑法、排列组合、最小路径

一、问题的重述与分析 在日常的工业生产中,工人师傅会常常采取一分为二的截断切割方式从一块长方体材料中切出一个小长方体,其加工总费用与水平切割、垂直切割的截面面积、调整刀具时的额外费用e以及切割面的排列顺序。通常要经过6 次截断切割完成.水平切割单位面积的费用是垂直切割单位面积费用的r倍.先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e. 对于本问题我们首先面临的是各面加工次序的排列问题和我们当考虑到原成品和成品的位置不确定的时候我们如何采取策略来达到最优的切割方式 二、模型假设 1、机器切割与刀具无任何误差 2、人为操作(换刀,位置摆放等)完全正确 3、金属不会因为加工过程中环境因素而发生微小的变形 4、目标长方体所在位置与原成品任一表面不重合 5、切割刀具为一个且水平放置 6、水平方向只需平行移动水平刀具或调整后平行移动 三、符号说明 A,B,C分别表示原长方体的长、宽、高,单位:cm a,b,c分别表示目标长方体的长、宽、高,单位:cm 毛坯的左表面右表面前表面后表面上表面下 表面最终产品的左表面右表面前表面后表面上表面 下表面(为方便做题,分别记为253614) r 水平切割单位面积费用与垂直切割单位面积费用之比 e 调整一次垂直刀具的额外费用 p 垂直切割单位面积费用 ti 加工过程中的第i 刀切割第ti 个面 wi 第i 次切割的切割费用单位:元 vi 第i 次切割被切割掉部分的面积单位:平方厘米 di 最终产品与毛坯的对应表面的距离i = 1,2,,,,6 其它变量如果出现则在使用时另行说明

多元线性回归 数学建模经典案例

多元线性回归 黄冈职业技术学院数学建模协会胡敏 作业: 在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。 x1 x2 x3 x4 x5 y 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 编写程序如下: data ex; input x1-x5 y@@; cards; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 ; proc reg; model y=x1 x2 x3 x4 x5/cli; run; 运行结果如下: (1)回归方程显著性检验. Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 5 2.25207 0.45041 11.63 0.0170 Error 4 0.15497 0.03874 Corrected Total 9 2.40704

数学建模案例

2014年河南科技大学模拟训练一 承诺书 我们仔细阅读了数学建模选拔赛的规则. 我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。 我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。 我们选择的题号是(从A/B/C中选择一项填写): C 队员签名:1. 2. 3. 日期: 2014 年 8 月 19 日

2014年河南科技大学数学建模竞赛选拔 编号专用页 评阅编号(评阅前进行编号): 评阅记录(评阅时使用): 评 阅 人 评 分 备 注

搜索黑匣子 摘要

一、问题重述 2014年3月8号,马来西亚航空370号班机从马来西亚吉隆坡前往中国北京途中失联,被认为是有史以来“最离奇”的飞机失联案例。空难的谜团不能解开,很大程度上取决于能不能打捞到“黑匣子”。MH370的失联,各国为此出动了25架飞机,40艘舰艇,甚至包括若干卫星。 我们要解决的问题如下: 1.我们首先将单独对船只这种搜寻工具分析,根据假设确定最后失联地点,找出大概搜索区域,确定飞机残骸和黑夹子疑似地点,利用性变形最短路径模型确定搜索完所有可疑地点的最短路径,最后求出最小风险系数下的最优搜索方案,并明确这种搜索方案的优缺点。 2.所有的飞机船舰及卫星都有一个国家统一调度,则根据卫星、飞机、船舰的各自的探索方式划分搜寻区域,进行统一分工合作,提高搜索的效率和降低搜索的费用。分别建立模型得出每种单一搜索工具的最优搜索你方案,最终利用多人TST问题计算整合出多种搜索工具共同参与下的最优搜索方案。 二、模型假设 1.马航370残骸和黑夹子落点的可疑位置已确定。 2.专家对搜索船只在搜索过程中的权重确定真是可靠。 3.船只在搜索过程中只受到文中因素的影响,其余因素影响很小。 4.在搜索过程中,风速和浪高等环境因素是不变的。 5.搜索过程中各种搜索工具不会出现故障。 6.搜救船只只能按照特定航道行驶。 7.搜索船只的设备都比较齐全,船只的类别对搜索的影响不大。 8.在搜索过程中,风速和浪高等环境因素是不变的。 9.各种搜索人员之间能够实现理想状态下的无障碍交流和信息共享。 三、符号说明 变量和缩略语定义 WC 风飘矢量位移 Vt 海流t时刻的速度 S1 只在洋流影响下的漂流位移 S0 初始位移 La1 A线上相邻顶点之间的距离 A 顶点的分组A即搜索路线A线 M 关联矩阵

2021年数学建模 截断切割的优化设计

工业中截断切割的优化设计 欧阳光明(2021.03.07) 一摘要 本文讨论了加工业中截断切割的优化排序策略我们对于不同的切割方式总数用穷举法得到720 种所可行解及其费用并对于原问题建立了决策 并对所给出的算法进行了分析和检验 1.当e=0时我归纳出解决问题的最优法则, 从而提出了将面间距统 一成判断权重来作为排序准则的算法,同时证明 了 e = 0 的情况下根据这种最优准则能够实现题目所要求的优化目标 2.对于e 10 时我们提出了实用准则 最后我结合实际问题将本问题进行了拓展讨论了当最终产品(成品)在毛坯(待加工长方体)中位置不预定时应如何实施加工方案以达到节省费用 和节约资源的目的,使我们的方案适用于更为广阔的领域 二问题的重述、 在工业生产中,常需要采取将物理一分为二的截断切割方式从一块长方体材料中切出一个小长方体,其加工费用取决于水平切割和垂直切割的截面面积,以及调整刀具时的额外费用。对本题所给出的

问题我们首先面临的对加工次序的排序策略然后我们考虑当毛坯和产品位置不预定的时候如何采取策略以达到我们的优化目的 问题: 1> 需考虑的不同切割方式的总数。 2> 给出上述问题的数学模型和求解方法。 3> 试对某部门用的如下准则做出评价,每次选择一个加工费用最少的切割面进行切割。 4> 对于 e=0 的情况有无简明的优化准则。 5> 用以下实例验证你的方法: 待加工长方体和成品长方体的长,宽,高分别为10,14.5,19 和3,2,4,两者左侧面,正面, 底面之间的距离分别为6,7,5(单位为厘米,垂直切割费用为每平方厘米1 元,r 和e 的数据有 4 组: 1) r=1,e=0; 2) r=1.5,e=0; 3) r=8,e=0; 4) r=1.5, 2 £e £15 ; 三模型的假设和符号说明 1 切割刀具为两个一个水平放置一个为垂直放置 2 目标长方体所在位置不与毛坯任一表面重合 3水平方向只需平行移动水平刀具垂直方向只平行移动或调整后再平行

初中数学建模案例

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。

第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

最优截断切割问题

B题截断切割 组号:14

截断切割 摘要 本文讨论的问题是实际生产加工中的截断切割问题,研究了采用何种切割顺序能使得材料切割所用费用最省。根据题中条件,待加工材料和成品均为长方体,且不同的加工顺序使得材料切割费用不同,我们考虑了将三维直角坐标系与有向图相结合的方式构造模型。本文构造的有向图是三维形式的,有向图的顶点坐标(x ,y ,z )分别代表侧面(左右面)、正面(前后面)、水平面(上下面)的切割次数,其中x ,y ,z 都在{0.1.2}中取值。有向弧代表一个从弧的始点至弧终点的切割步骤,弧权值代表弧所代表的加工步骤所需加工费。那么切割问题就转化为了求解一个带权有向图的最短路径问题。通过编写数学软件,运用lingou 软件求得了最短路径。 最终我们解出了最优切割法: (1)当r=1,e=0时,最短切割路径为:5,3,1,6,4,2;5,3,6,1,4,2 (2)当r=1.5,e=0时,最短切割路径为:3,1,5,4,6,2;3,5,1,4,6,2 (3)当r=8,e=0时,最短切割路径为:3,1,4,5,2,6 (4)当r=1.5,e=2时,最短切割路径为:3,1,5,4,6,2;3,5,1,4,6,2 (1)(2)(3)(4)情况的最少费用分别为:374,437.5,540.5,443.5。(数字1,2,3,4,5,6分别代表切割左右前后上下面) 当然,本文是假设切割是在一定的切割原则,即在两个平行待切割面中,边距较大的待切割面总是先加工这一原则下进行的,这是符合基本的切割作业常识的,也符合截断切割的同类换序定理(在截断切割方式()123456,,,,,,v v v v v v v → =中交换其内相邻同类切割的切割次序,总切割面积不因切割面积的交换而改变;若交换间隔一异类切割的的同类切割的切割次序,则割弃长较大的同类切割面先切割者,其总切割面积较小)。再者,由题意,成品与待切割品的相邻平行面的距离已经给定。那么也可以通过调整相邻平行面的距离而使得切割花费达到更省,这是本题可以改进的一个方向。 关键词:截断切割 最优切割次序

数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.

由此准则,只需考虑 P 6 6 222 90 !!! ?? =种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况 为简单起见,先考虑e=0 的情况.构造如图9-13的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z. 图9-13 G(V,E) 图G(V,E)的含义为: (1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.

高中常见数学模型案例(最新整理)

高中常见数学模型案例 中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。 分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有化简得,所以25.0)2.01()25.01()2.01(?-=---b a b a b 4 5=,即x a bx y ??==2.0452.0+ ∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离x km 与时间t h 之间的关系式是:,图略。 ?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x 速度vkm/h 与时间t h 的函数关系式是:,图略。 ?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。

相关文档
最新文档