转炉炼钢设备

转炉炼钢设备
转炉炼钢设备

1 概述

1.1氧气顶吹转炉炼钢特点

氧气顶吹转炉炼钢又称 LD 炼钢法,通过近几十年的发展,目前已完全取代了平炉炼钢,其之所以能够迅速发展的原因,主要在于与其它炼钢方法相比,它具有一系列的优越性,较为更突出的几点如下:

1.生产效率高

一座容量为80 吨的氧气顶吹转炉连续生产24 小时,钢产量可达到日产3000 — 4000 吨,而一座 100 吨的平炉一昼夜只能炼钢 300 — 400 吨钢,平均小时产量相差甚远,而且从冶炼周期上看,转炉比平炉、电炉的冶炼周期要短得多。

2.投资少,成本低

建氧气顶吹转炉所需的基本建设的单位投资,比同规模的平炉节约30% 左右,另外投产后的经营管理费用,转炉比平炉要节省,而且随着转炉煤气回收技术的广泛推广和应用,利用转炉余热锅炉产生蒸气及转炉煤气发电,使转炉逐步走向“负能”炼钢。

3.原料适应性强

氧气顶吹转炉对原料情况的要求,与空气转炉相比并不那么严格,可以和平炉、电弧炉一样熔炼各种成分的铁水。

4.冶炼的钢质量好,品种多

氧气顶吹转炉所冶炼的钢种不但包括全部平炉钢,而且还包括相当大的一部分电弧炉钢,其质量与平炉钢基本相同甚至更优,氧气顶吹转炉钢的深冲性能和延展性好,适宜轧制板、管、丝、带等钢材。

1 / 35

5.适于高度机械化和自动化生产

由于冶炼时间短,生产效率高,再加转炉容量不断扩大,为准确控制冶炼过程,保证获得合格钢水成分和出钢温度,必须进行自动控制和检测,实现生产过程自动化。另外,在这种要求下,也只有实现高度机械化和自动化,才能减轻工人的劳动强度,改善劳动条件。

1.2 转炉炼钢机械设备系统

氧气顶吹转炉炼钢法,是将高压纯氧[压力为0.5~1.5MPa ,纯度99.5% 以上,(我厂为99.99% )],借助氧枪从转炉顶部插入炉内向熔池吹氧,将铁水吹炼成钢。氧气顶吹转炉的主要设备有:

1.转炉本体系统:

包括转炉炉体及其支承系统——托圈、耳轴、耳轴轴承和支承座,以及倾动装置,其中倾动装置由电动机、一次减速机,二次减速机、扭矩缓冲平衡装置等组成。

2.氧枪及其升降、氧气装置及配套装置。

氧枪包括枪体、氧气软管及冷却水进出软管。

根据操作工艺要求氧枪必须随时升降,因此需要升降装置,为保证转炉连续生产,必须设有备用枪,即通过换枪装置,随时将备用枪移至工作位置,同时要求备用枪的氧气,进出水管路连接好。

3.散装料系统:

氧气顶吹转炉炼钢使用的原料有:

(1)金属料——铁水、废铁、生铁块;

(2)脱氧剂——锰铁、硅铁、硅锰、铝等;

(3)造渣剂——石灰、萤石、白云石等;

(4)冷却剂——废钢、铁矿石、石灰石、氧化铁皮等。

(5)供应铁水的设备有:贮存和混匀铁水用的混铁炉,运输铁水用的铁水罐及铁水罐车,铁水包。

(6)废钢及生铁块用专用吊车及废钢斗装入炉内。

(7)氧剂主要为合金料,经烘烤、称量后,由叉车运送至炉后,由铁合金旋转溜槽加入到钢水罐中。

而绝大多数造渣剂,则是从低位料仓经斜桥上料皮带输送机送至高位料仓,需用时,再通过电振给料器、称量斗、汇总斗、下料管直接进入炉内。4.活动烟罩及提升装置。

转炉吹炼时,产生大量气体(烟尘),经烟罩进入烟气处理系统,烟罩分为固定烟罩和活动烟罩两部分,固定烟罩是装在余热锅炉与活动烟罩之间,活动烟罩在吹炼时降下,接近炉口,这样可减少大量冷空气进入炉气处理系统,降低除尘负荷,同时也利于转炉煤气回收。

吹炼时需上、下升降活动烟罩,其传动方式为机械式,包括重锤、电机、提升减速机及绳链装置等。

5.烟气净化处理系统。

顶吹转炉吹炼过程中产生的大量高温烟尘,首先进入半余热锅炉(烟道)进行余热回收和冷却,而后经一级文氏管、重力脱水器、弯头脱水器、二级文氏管、湿漩脱水器等进行除尘和冷却,脱水后的烟气被抽入一次除尘风机,经水封器之后,被送入贮气罐(煤气柜)回收利用或进行放散。

6.其它配套设备及系统:

转炉配套装置包括前后挡火门、炉下车辆,另外转炉的中压水系统也是很重要的组成部分。

氧枪配套装置包括刮渣器及标尺装置。配套的系统包括了氧枪的供水、供气系统,以及氮封系统。

3 / 35

另外,为了准确地判断吹炼终点,提高钢水命中率、炉龄、产量和钢水质量,以及降低各种消耗等,近年来在许多转炉上,已经应用电子计算机对转炉冶炼过程进行静态和动态相结合的控制,其中最广泛和有效的手段是采用副枪装置,测定钢水温度、钢中含碳量和含氧量,并可同时取样供化验分析,包括测定熔池深度,以供准确确定吹炼枪位等等。

2 氧气顶吹转炉炉体

氧气顶吹转炉炼钢生产的本体系统,是由炉体、炉体支承系统、倾动机构及扭矩平衡装置组成。

2.1 炉体结构

氧气顶吹转炉炼钢是在1600 度以上的高温中进行的,所以,转炉炉壳内部必须砌筑一定厚度的耐火材料即炉衬。

转炉炉体包括炉壳和炉衬。炉壳为钢板焊接结构;炉衬包括工作层、永久层和填充层三部分。

炉体由截锥形炉帽、圆柱形炉身及炉底三部分组成。炉帽顶部为圆形炉口,工作时用以加料、插入氧枪、排出炉气和倒渣。

2.1.1水冷炉口

我厂采用的为铸铁埋管式炉口,其结构为180 °剖分式,内部为循环水强制冷却,由14 套销轴、斜楔通过炉帽法兰与炉体相连接,炉口进出水管分别连在耳轴上,此种水冷炉口结构,可以大大增强炉口水冷效果,提高使用寿命,同时也可以减少炉口上的粘结物,降低漏水率,及延长炉帽金属壳与炉衬的使用寿命。

2.1.2 炉帽挡渣板

挡渣板由24 块大小不等的钢板组成,呈环形伞状分布,每块挡渣板通过四个M36 高强螺栓与焊接在炉体上的支撑架相连,这种形式挡渣板强度较高,而且易于维护和检修。

2.1.3 出钢口

设置在炉帽与炉身交界处,以保证在出钢过程中,炉子维持在接近水平位置时,保持钢液的深度,以便顺利出钢,。

2.1.4 炉帽及炉身

炉帽采用焊管式水冷结构(3#炉上采用),通入冷却水强制冷却,以降低炉壳温度提高使用寿命,炉身由σ=60mm厚钢板制成。

2.1.5 炉底

转炉炉底为活炉底,由18 个炉底销及楔铁通过上、下吊架连接炉底与炉身,其中 3#炉炉底另配有底吹管路。转炉修炉为下修式。

★维护要点

1.水冷炉口和溜渣板在清完渣后,要及时喷洒喷涂料;

2. 打炉皮渣时,禁止拆炉机正面冲击炉口及溜渣板;

3.控制钢水的喷溅;

4.炉口进出水管及时清渣,防止水管被钢渣包住而失去缓振功能,导致水管焊缝撕裂以及被挤坏。

2.2 炉体支承系统

转炉炉体及其附件的全部重量皆通过支承系统传递到基础上去。此外,支承系统的一部分构件,还承担着传递从倾动机械到炉体之间的倾动力矩,使炉

5 / 35

体实现倾转。因此,支承系统是直接关系着转炉能否正常工作的重要组成部分。

炉体支承系统包括支承炉体的托圈、托圈与炉体连接用的连接装置(球绞支撑),以及支承托圈的耳轴,耳轴轴承及其底座。。

2.2.1 托圈

托圈是转炉重要承载和传动部分,在工作中,托圈除承受炉体、钢液及炉体附件的静载荷和传递倾动力矩外,还要承受频繁启、制动产生的动负荷,以及各种热幅射、热传导产生的热负荷。因此,它的强度和刚度都要求较高,托圈采用焊接式整体结构,工作时托圈内通水强制冷却。我厂转炉托圈由厚度为80 和100 的钢板焊接组成的箱形结构,它与耳轴焊接成一个整体。托圈内径为¢ 5710 ,托圈与炉壳间隙100 mm 。

2.2.2 耳轴

耳轴与托圈一样是转炉的重要承载和传动件,它支承者炉体和托圈的全部重量,并传递倾动力矩。在工作中承受弯、扭力矩,以及托圈传来的高温和周围热辐射产生的热负荷,和启动、制动、打渣、兑铁水等的冲击载荷等。

耳轴分为从动端耳轴和驱动端耳轴。从动轴、驱动端耳轴轴心同样都是空的,供通冷却水用。

2.2.3 炉体与托圈的连接装置

我厂转炉采用三支点方式支承在托圈上,其支承装置采用球面带销螺栓将炉体和托圈连接在一起。

整个连接装置是由两部分组成,一部分是托圈上三个球面带销活节螺栓与炉壳上部连接支承法兰组成的倾动、承载部分;另一部分是安装在两耳轴部位的托圈上下的两组止动托座。

三个球面带销活节螺栓与炉壳上部的连接支承法兰,承受炉体在垂直位置和倾动过程的炉体载荷。其中位于出钢口对侧的活节螺栓传递倾动力矩。而炉

体倾动到水平位置时的炉体载荷则由位于耳轴部位的两组止动托座传递到托圈。

三点支承的球面螺栓中,一个安置在出钢口对侧的托圈中心上,其余两个与其成120 °角布置,每一个支承点都由焊接在托圈上的水平销轴座、水平销、活节螺栓、两组凹凸球面垫圈,以及固紧螺母组成。

★维护要点

1.每班必须对耳轴进行干油润滑;

2.球铰四周的保护罩不允许破坏,防止钢渣侵蚀球铰;

3.炉壳与托圈之间不允许积渣,以保证托圈的散热效果;

4.托圈侧面的圆孔为应力孔,为托圈工作时自然消除应力,不允许被渣或其它东西堵死;

5.托圈止动座两侧的调整垫要定期检查是否掉落,以免引起炉壳与托圈的相对运动而酿成事故。

2.3 倾动机构及扭矩平衡装置

能适应托圈变形的全悬挂倾动装置,它由下列几部分组成:驱动电动机、一次减速机、二次减速机、扭力杆式扭矩平衡装置和润滑装置等。

一次减速机共有四台,借其法兰凹缘固定在二次减速机的外壳上。在其输出轴上安装的小齿轮与安装在耳轴上的悬挂大齿轮相啮合,组成二次减速机。

安装小齿轮的输出轴端部支承在二次减速机靠近炉体侧的二次减速机壳上的轴承中。

二次减速机内的悬挂大齿轮用两组切向键固定在转炉耳轴上。

扭力杆柔性缓冲支承装置是平衡转炉倾动时引起悬挂减速机(二次减速机)壳体旋转的旋转力矩平衡装置。它借助于扭力杆本身的扭转变形随时吸收

7 / 35

和缓冲倾动机械正向或反向旋转时交替产生的两个方向的冲击。并将二次减速机壳上的旋转反力,通过扭力杆支承座作为垂直力传递到基础上。

扭力杆一方面通过接近其两端的支座固定在基础上(扭力杆在其支座内可以自由扭转)。另一方面,它通过其两端的扭转臂(曲柄),借助两根分别连接在二次减速机机壳底部两侧的拉(或压)杆与二次减速机壳相连。

为了防止过载,引起扭力杆的损坏,在二次减速机壳的下方,设置有止动支座(保护挡铁)。当倾动力矩过正常倾动力矩三倍时,二次减速机壳底部与止动支座接触,扭力杆不再承受更大的扭矩,同时,止动支座(保护挡铁)可以在缓冲装置被破坏后,防止一次减速机360度旋转,造成更大的破坏。

四台驱动电动机是直流电动机,采用可控硅直流调压控制速度。

四台驱动电动机中,当一台发生故障时,短时间内其它3 台电动机工作,但出钢时间要延长。并且,如果3 台电动机传动时间过长或重复频繁,则会降低整个装置的使用寿命。

整个装置设有紧急复位电源,强制炉体复位。这样,在出钢过程中,当由于停电事故炉子无法复位时,可切换事故电源将其并入电源,使炉体复位。

整个装置的润滑方式是,一次减速机的齿轮和轴承的润滑都采用油池飞溅润滑。二次减速机的齿轮和轴承都采用稀油润滑系统强制给油润滑。

★知识点

1.扭力杆在倾动系统中的作用?

2.转炉供电系统停电时,转炉是通过什么原理复位的,要注意什么问题?

★操作要点

摇炉过程中,在接近出钢位和测温取样位时,应采用低档速度摇炉,防止钢水从炉口溢出。

★维护要点

1.扭力杆东西侧下部连接座的8个M36调节螺杆,在调整时与曲柄端面保持1毫米左右的间隙,不能顶在曲柄上;

2.倾动弹性胶圈及螺杆要经常检查,有损坏及脱落者必须及时进行更换;

3.稀油站的油泵要经常检查,发现响声异常及漏油严重时,必须及时倒换备用泵,并进行检修;

4.对液压推的油位要定期检查,油位低时要及时补充;发现内泄者必须更换;

5.倾动抱闸的间隙必须适中,不能过大也不能过松,防止溜车及磨损闸皮。

★思考题

转炉倾动不动作时,怎样操作复位及注意事项。

3 转炉配套系统

3.1 转炉中压水系统

转炉中压水系统是属转炉净循环水系统中的一部分,其主要流程为:总进水管――分配水箱――炉体进水、挡火门及溢流水封槽,其中炉体的水又分为炉口、托圈及炉帽进水,而整个回水大部分集中后回到了供水站,循环使用,只有溢流水封槽回水流到地沟,不循环再用,整个系统循环率达90%。其中3#炉因挡火门均为铸铁板式,不用水冷,其中压水用量大幅减少。

系统主要参数:

9 / 35

(1)炉体进水量:≥120m3/h

(2)挡火门(前后门):≥110m3/h.

(3)溢流水封:≥30 m3/h.

(4)水压力:≥0.5MPa

在系统的分配水箱上,至每个分系统却有单独的蝶阀(闸阀)控制,如果处理某一部分漏水故障时,可单独停水处理,如焊补水冷炉口时,可关掉炉体进水阀,再打开回水管上DN50的快排阀,则可进行焊补处理。

3.2 挡火大门

3.2.1 挡火大门结构

挡火大门是转炉二次烟气除尘的重要设备,它阻止烟气及尘埃的外溢,改善了炉前的工作环境,它分为炉前门、炉后门,其中炉前门为两扇,铸铁板式隔热。挡火门由走行装置、水平轮支承装置钢结构框架及冷却水板(或铸铁板)等几部分构成,传动走行装置采用的是电机直联型摆线针轮减速机带动主动车轮的方式,每张门上部都装有水平轮,水平轮运行于固定在门顶厂房上的轨道中,水平轮起辅助支承及导向作用,整个门都运行在炉前(炉后)轨道中

3.3 炉下车辆

炉下车辆主要包括铁水车、渣罐车、钢水车、过跨车四大类。

3.3.1 主要技术性能指标:

★知识点

1.转炉中压水系统组成及特点;

2.挡火门的传动方式及结构特点;

3.钢水车和渣车的传动结构特点。

★维护要点

1.挡火门

1.1 车轮应定期加注润滑油脂,防止车轮轴承损坏而影响挡火门的行走;

1.2 挡火门电机的碳刷及滑环要经常性检查及修磨,以免影响挡火门的走行速度;

2.炉下车辆

2.1 车轮、减速机及电机运行时是否有异响,如有要及时停车检查处理;

2.2 减速机定期加注润滑油并达油标,车轮也要定期加注干油;

2.3 各接手螺栓是否有松动或脱落,如有要及时紧固或更换;

2.4 车轮是否有裂纹,如有应立即停止生产并倒换备用车;

11 / 35

2.5 车体经常清渣,以减少传动负荷及避免护罩压坏而导致电机和减速机的损坏。

★思考点

1.挡火门行走缓慢或有卡阻时应怎样检查和处理。

2.实现渣车自动清渣有什么好的建议。

4 散状料系统设备

在氧气转炉生产过程中,需要大量的散状原料。所谓散状原料主要是指炼钢过程中所使用的造渣材料和冷却剂等,如石灰、铁皮、萤石、矿石以及烘炉用的焦炭。这些原料用量很大,如一个三座80吨氧气顶吹转炉车间,正常生产时,每昼夜要消耗700—900吨左右的散状料。为了保证氧气转炉正常生产,必须有可靠的设备和合适的工艺方式将所需的散状料及时的投入炉内。否则,将影响冶炼工艺、钢的品种规格与质量、以及钢的成本和产量。

一般情况下,散状原料由火车、卡车或带式输送机运入厂房外的低位料仓中,再用带式输送机或斗式提升机将散状料运至转炉炉顶高位料仓。

散状料被运至炉顶后,用带式输送机卸料小车或振动管输送机将其卸入相应高位料仓。高位料仓多装有静电容量料面指示计或同位素极限开关装置,用以指示料面控制上料。或者通过计算机进行上料控制。

高位料仓中的散状料经阀门或振动给料器卸入称量漏斗称量,再由振动给料器、可逆式带式输送机(或采用重力下料)将料卸入汇总漏斗,再经氮封和水冷溜槽卸入转炉。为了向炉内加料均匀,一般在左右两侧各设置一个溜槽。

为了防止上料和加料而产生的粉尘,一般需要在上料和加料装置附近设置除尘装置。

散料系统的主要工艺设备为带式输送机。带式输送机是大中型转炉散状料的基本供料设备。它具有运输能力大,功率消耗少,结构简单,工作平稳可靠,装卸料方便,维修简便又无噪音等优点。缺点是占地面积大,橡胶材料及钢材需要量大,不易在较短距离爬升较大高度,密封比较困难。

带式输送机的结构及主要部件:

我国钢铁厂目前通用的固定式带式输送机主要采用TD型,TD型带式输送机由输送带、驱动装置、滚筒、托辊、张紧装置、清扫器和支架等组成。

4.1 输送带

输送带起牵引和承载作用。通常上段为承载段,下段为空载段。

输送带有普通橡胶带、耐热橡胶带和塑料带三种。转炉车间散状料运输通常用普通橡胶带。它可以输送温度不超过50°C的物料。塑料带不仅具有耐磨、耐酸碱、耐油、耐腐蚀等性能,而且塑料的原料可以立足于国办,大有发展前途,塑料带的工作温度适合用于转炉散状料的运输情况。

橡胶带的接法有硫化法和卡子连接两种。采用硫化法时,其接头强度可达胶带本身强度的85—90%。用卡子连接时,其接头强度为胶带本身强度的60—65%,亦有的资料介绍只有35—40%,总之比较低,所以,一般都采用硫化法。

4.1.1 驱动装置

TD型带式输送机的驱动装置多由电动机、减速器、柱销联轴器、十字滑块联轴器及护罩等组成。

上述驱动装置比较笨重和占地面较大。因此,现在采用有电动滚筒。其电动机和减速机均装入滚筒内部。

13 / 35

电动滚筒具有结构紧凑、重量轻、便于布置、操作安全等优点。它适用于环境温度不超过40°,物料温度不超过50°和场合,但不防爆。

4.1.2 滚筒

滚筒按作用可分为传动滚筒与改向滚筒两种,按制造方法可分为钢板焊接滚筒和铸造滚筒。

1、传动滚筒

是动力传递的主要部件,输送带借与滚筒间的摩擦力实现运行。传动滚筒一般设在输送机头部,如布置受限制时,也可设在尾部。滚筒表面有光面和胶面之分。胶面滚筒又分为包胶和铸胶两种。在功率不大,环境湿度小的情况下可采用光面滚筒;在环境潮湿,功率又大,容易打滑的情况下采用胶面滚筒。其中铸胶滚筒质量较好,胶层厚而耐磨。有条件的地方,应选用和生产铸胶滚筒。包胶滚筒也可达到同样的使用性能,虽使用寿命短,但现场可自行更换。

为使输送带良好对中,一般传动滚筒制成中部凸起的圆鼓状。

2、改向滚筒

用来使输送带改向和张紧,如用于尾部180°改向并作张紧用,或用于垂直张紧作90°改向。用于传动滚筒下作45°改向以增大包角的改向滚筒称为增面滚筒。

尾部张紧改向滚筒的安装,见张紧装置。其直径与传动滚筒直径之比为0.8。

4.1.3 托辊

为了适应不同物料的输送要求,输送带的断面有两种形式:平形和槽形。

平形断面用于输送带的装卸段及输送成件物品,上下托辊为单根圆柱形辊子。

输送散状物料时,为了有效利用带宽及防止散落,多用由三个短圆柱形辊子组成的托辊组使输送带形成槽形断面。此时,下托辊仍为单根圆柱辊子。

托辊的结构、形式、节距以及安装调整的质量对输送带的工作情况、寿命及消耗功率有直接影响。

我国标准的托辊由钢管、两端堵头、滚珠轴承和托辊轴组成。

上托辊架是用螺栓与垫片夹紧在中间架的槽钢上,这种方式便于安装及调整。转炉炼钢车间散状料输送常用的TD型输送机的上托辊架是用螺栓固定在中间架角钢上的。

为了防止输送带跑偏,有时采用自动调心托辊组。在上分支每隔20米,下分支每隔30米设一组,托辊架装在滚珠止推轴承上,能绕垂直轴灵活转动。当输送带跑偏碰到侧面的导向辊时,支架旋转输送带回复正常位置。但实际上效果不明显,反而使输送带边沿磨损增加,因此目前应用较少。要防止输送带跑偏,在输送机安装过程中要注意头、尾滚筒轴,中间托辊轴严格保证平行对正,输送带接头正确,两侧周长相等,头、尾滚筒及托辊表面保持清洁。

4.1.4 张紧装置

张紧装置的作用是保证输送带有足够的张力,使输送带和滚筒间产生必要的摩擦力以达到要求的牵引效果,避免输送带承载后在两组托辊间垂度过大,以及输送带受拉伸变长后仍能继续使用。

张紧装置分为螺旋式、小车式、重锤式三种。

重锤式张紧装置适用于在采用小车式张紧装置有困难的情况。它的优点是利用了输送机通廊的空间位置,便于布置。缺点是改向滚筒多,而且物料容易掉入输送带与张紧滚筒之间而损坏输送带。特别是输送潮湿或粘性较大的物料时,由于清扫不净,这种现象更为严重。

4.1.5 转炉散状料系统带式输送机其它的辅助装置主要有卸料小车和制动装置。卸料小车可以满足带负荷往复行走的要求。其带速一般不宜超过 2.5米/秒。制动装置主要为带式逆止器和带液压的抱闸系统(如我们厂2#皮带的制动方式,而0#、1#、3#皮带的制动为液压推)。

15 / 35

★维护要点

1.皮带跑偏的调整;

2.皮带托辊的润滑及更换;

3.皮带减速机油位的检查,减速机、电机及连接接手运行过程中工况的监测;

4.2#皮带减速机的液力耦合器油位及保险塞的检查;

5.皮带表面裂纹的监测。

★思考点

怎样调整皮带的跑偏。

5 混铁炉

混铁炉供应铁水的优点是,铁水成分和温度都较均匀,有利于炼钢操作,此外,对于冶金工厂调节和均衡高炉与转炉间的铁水供求亦很有利,但对于炼钢车间,设置混铁炉或混铁炉车的基本目的却是贮存和混匀铁水。

混铁炉的本体结构基本由三部分组成,即炉体、倾动机械及支撑底座。

5.1 炉体

炉体是由可拆的中部凸起的端盖和开有兑铁水口、出铁口的圆筒用法兰连接成的圆筒体,接近筒体两端分别用螺钉装有偏心箍圈。

炉体内砌有耐火砖衬。耐火砖衬与炉壳之间填有硅藻土粉填料层借以隔热和缓冲炉衬受热膨胀对炉壳产生的压力。填料层向里砌有硅藻土砖用来隔热。

硅藻土砖里面是粘土砖,粘土砖里面是直接与铁水接触的工作层。工作层是用镁砖砌筑的。整个炉体的重量(炉体自重及铁水、渣重等)都通过接近筒体两端的偏心箍圈,借圆辊组成的弧形滚道传递到直接固定在基础上的支撑底座上。

炉体上的兑铁水口装有炉门,在炉体的两端盖上开有窥视孔、人孔、通煤气孔。在出铁口上部也开有通煤气孔。

5.2 倾动机械

混铁炉倾动机械通常是由电动机、制动器(联轴器带制动轮)、减速器、齿形联轴器、连接轴、开式齿轮副、齿轮齿条副组成。

混铁炉在工作过程中最大操作回转角为 30 °左右。极限回转角度:向前47°,向后5°,工作强度不高,在平炉车间每 30分-60 分钟倒一次铁水,在转炉车间较频繁。倾动速度一般采用每分钟 30°左右的极低速度。按齿条线速度考虑,是 46-48 毫米/秒,倾动机械通过齿条的上下往复运动带动混铁炉倾转。

5.3 支撑底座

支撑底座是由支座及辊圈所组成,也有的在辊圈两侧焊有护罩,以防铁水飞溅到辊圈上。

辊圈是由铸钢辊子、辊轴和两侧夹板所组成。辊子的圆柱面加工光洁度应达到△ 5 。辊子和辊轴相配合的两端装有滑动轴承套。滑动轴承套是用铸铁或轴承合金制做的,辊子轴承的润滑采用集中干油润滑。辊子在辊圈上安装好后,彼此应保持严格平行,每个辊子与支座表面的接触长度不得小于辊子全长

17 / 35

的 80% 。夹板上的孔应该是 2 块或 4 块夹板叠合在一起加工,以保证各辊装于其上后,彼此严格平行。

支座是混铁炉最重要的焊接件。混铁炉的全部重量经辊圈由支座传至基础。支座焊接后必须退火处理,支座的滚动表面加工光洁度需达到△4 ,不允许有擦伤或被留下来加工的地方。加工出现的尖角和飞边都应用砂轮磨掉。

支座安装在基础上时需用水准仪严格校正左、右两支座的水平性和平行性。

5.4 主要参数

混铁炉主要技术参数指标如下:

公称容量: 912 t

炉膛容铁量: 880 t

炉壳直径: 6.96 m

炉衬内径: 5.8 m

铁水最大深度: 4000 mm

最大操作角度: 30 °

炉体前倾极限角度: 47 °

炉体后倾极限角度: 5 °

传动机构传动比:397.8

齿条线速度: 0.056 m/s

炉门提升速度: 7.64 m/最小

炉门提升高度: 1200 mm

鼓风机型号: 9 — 19 — 9 — 3 (右 90 °)流量 6886 m3/h

兑铁水车速度: 14 m/最小

兑铁水小车行程: 9000 mm

★知识点

1.混铁炉传动系统的组成。

★维护要点

1.倾动减速机运行是否正常,有无振动过热或杂音,油箱油位是否正常;制动轮的连接螺栓是否松动,运转时是否窜动大;

2.开式齿轮副、齿轮齿条副运行时,是否有“啃齿”现象,各轴承座连接螺栓及底座螺栓是否有松动或断裂现象,齿轮地沟严禁积水积渣;

3.助燃风机是否正常,有无松动开焊现象,叶轮是否有卡壳,风机轴承箱是否过热,油位是否正常,电机接手是否有窜动现象;

4.炉门升降过程中是否有卡阻,各导向滑轮是否有钢绳掉道、卡死现象,钢绳是否有明显的断丝断股;

5.手动松闸机构是否可靠灵活,滑轮工作是否正常,钢绳有无;

6.各煤气、压缩空气管路有无漏气现象。

★思考点

混铁炉摇炉不动作时,有可能是哪些故障引起的。

6 活动烟罩及提升装置

在氧气顶吹转炉的吹炼过程中,当氧气经氧枪喷入熔池后,与铁水中的碳等发生激烈氧化生成大量的 CO 和 CO

,随同其它少量气体构成炉气。同时,

2

19 / 35

在吹炼过程中,由于熔池温度很高,使部分铁与杂质蒸发,铁蒸汽随即被氧化和冷却而成极细的氧化铁微粒。另外,当大量 CO 从熔池中浮出时引起熔池沸腾也带出有微细的液滴,这些液滴同样随即被氧化而随炉气排出炉外。

根据国内生产实践统计,一般每炼一吨钢可收得 60% CO 的煤气约标准立方,含铁量达 60% 的氧化铁炉尘 10 — 20 公斤;蒸汽 60 — 70 公斤。这些含有大量炉尘和CO的炉气直接排入大气中,不仅会造成厂区周围的严重污染,危害人的身体健康和其它生物的繁殖生长,而且也是资源的一种极大浪费。因此,有必要对氧气转炉的炉气进行处理(降温、除尘),回收其余热、煤气和炉尘。

转炉炉气的处理有燃烧法和未燃法两种。

燃烧法是炉气排出炉口后,即混入大量空气进行充分燃烧,而后再进行净化、冷却排出。

未燃法是炉气排出炉口后,控制空气的渗入,防止炉气中的大量CO燃烧成CO

,所以炉气的温度与燃烧法相比也较低,约为1400—1800°C。

2

6.1 活动烟罩和固定烟罩

炉气从转炉炉口喷出后,不论采用那一种净化冷却处理方法,都必须首先经过活动烟罩和固定烟罩,而后再进入废热锅炉或半废热锅炉利用废热,之后才进入净化冷却系统。

对于未燃法的活动烟罩,一般都要求能够上、下升降,以使在回收炉气时,能保证炉气在烟罩上的内外压大致相等,避免炉气外逸或空气吸入。因此,要求烟罩在吹炼阶段能调节到需要的间隙,而在吹炼结束,出钢、出渣、加废钢、兑铁水时,烟罩应能正常升起,不妨碍炉体倾动。并且,当需要更换

炼钢工艺的发展历程

炼钢工艺的发展历程 2008年12月8日摘自冶金自动化网 炼钢方法(1) 最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。 炼钢方法(2) 1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。 炼钢方法(3) 1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。 炼钢方法(4) 1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。 炼钢方法(5) 1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。 炼钢方法(6)

瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法, 如图1所示。 图1 BOF法 炼钢方法(7) 1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP (Quiet BOP) ,如图2所示。 图2 Q-BOP法 炼钢方法(8) 在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。 图3 转炉顶底复合吹炼法 炼钢方法(9) 我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。

转炉设备

课程名称:转炉设备 编制: 校对: 审定:

目录: 前言2页 第一章:培训目的 第一节基本知识目标2页第二节能力目标2页第二章:转炉设备 第一节转炉炼钢设备组成方框图- 4页 第二节顶底复吹转炉炼钢设备特点 5页 第三节转炉生产工艺流程图 6页 第四节转炉设备的组成 5页 第四章转炉设备安装、试车 第一节制作单位预装 15-16页第二节现场设备安装 16-17页第三节空载荷试运转 17-18页第四节转炉试运转应满足的条件和技术要求 18页 第五章转炉开新炉和冶炼 第一节转炉开新炉需要具备的条件 18页 第二节冶炼过程中的操作要求 18-19页第三节设备动行中故障的排除方法 19页 第四节操作过程中紧急状态下的处理方法 20页 第五节设备交接班规定 21页 第六章转炉设备常见问题和解决办法 21--23页 1

前言 根据分厂培训计划编写了这本教材,以便我们一起共同掌握转炉炼钢主要工艺设备和机械设备的相关知识和主要工艺操作技能、解决常见的故障处理方法,通过培训能够更进一步的提高使用和维护转炉炼钢设备的能力,并使我们的操作工人和点检员分析和排除故障的能力有所提高。 同时,通过学习,进一步让点检人员了解如何更好的与一线员工的沟通。 2

第一章培训目标 第一节基本知识目标 1.1.1了解氧气顶吹转炉设备组成和配套设备的构造。 1.1.2熟悉和掌握转炉设备结构、工艺参数、设备操作和维护。 第二节能力目标 1.2.1了解转炉设备选型依据、设备结构特点等方面的能力。 1.2.2对转炉设备发生故障的问题点有准确判断能力。 1.2.3提高杜绝转炉设备故障、减少故障、处理故障的能力。 第二章转炉设备 第一节转炉炼钢设备组成方框图 3

转炉炼钢设计-开题报告(终极版)

湖南工业大学 本科毕业设计(论文)开题报告 (2012届) 2011年12月19日

顶底复吹技术,工艺成熟,脱磷效果好,在后续的生产中采用多种精炼方法,其中LF、RH 、CAS—OB、VOD、VAD的应用可以很好的控制钢水的成分和温度,生产纯净钢,不锈钢等,连铸工艺能够实现连续浇铸,提高产量,降低成本,同时随着连铸技术的发展,近终型连铸,高效连铸等多种连铸技术得到应用,大大的提高了铸钢的质量,一定范围内降低了企业的成本。经现代技术和工艺生产出来的如板材,管线钢,不锈钢等的质量得到了很大的保障,市场的信誉度高,市场需求量大。 故设计建造年产310万t合格铸坯炼钢厂是可行的,也是必要的。 2.2 主要研究内容 研究内容包括设计说明书和图纸两个部分。 2.2.1 设计说明书 (1)中英文摘要、关键词 (2)绪论 (3)厂址的选择 (4)产品方案设计 (5)工艺流程设计 (6)转炉容量和座数的确定 (7)氧气转炉物料平衡和热平衡计算 (8)转炉炼钢厂主体设备设计计算(包括转炉炉型、供气及氧枪设计、精炼方法及设备、连铸设备) (9)转炉炼钢厂辅助设备设计计算(包括铁水供应系统、废钢供应系统、出钢出渣设备、烟气净化回收系统) (10)生产规模的确定及转炉车间主厂房的工艺布置和尺寸选择(包括车间主厂房的加料跨、炉子跨、精炼跨、浇注跨的布置形式及主要尺寸的设计确定)(11)劳动定员和成本核算 (12)应用专题研究 (13)结论、参考文献 2.2.2 设计图纸 (1)转炉炉型图 (2)转炉炼钢厂平面布置图 (3)转炉车间主厂房纵向剖面图 2.3 研究思路及方案 (1)根据设计内容,书写中英文摘要、关键词。 (2)查阅专业文献,结合毕业实习,收集当前转炉炼钢工艺技术、车间设

氧气转炉炼钢工艺及设备

教学大纲 一说明 1、教学要求: 本教材根据氧气转炉炼钢生产操作的特点,力求理论联系实际,通俗易懂,使其具有先进性、实用性。 通过本书的学习,使学生掌握氧气转炉炼钢的一些基本知识。 2、教学内容的确定: 根据专业的需求,将全部讲解。 3、教学中应注意的问题: ⑴系统地、全面地、有重点地、难易适中地将本书的内容讲给学生; ⑵学习完每章节后,要通过习题练习、巩固和加强学生所学的内容。进行基础教育的同时,注重培养学生的素质,提高学生独立解决问题的能力; ⑶除了要通过作业了解学生对所学内容的掌握情况外,还要通过考试对学生进行考查与考核。 二教学内容 第一章氧气转炉炼钢用原材料 教学目标:通过本章学习,使学生掌握氧气转炉炼钢用金属材料、非金属材料。教学重点:氧气转炉炼钢用金属材料的性能、造渣材料、氧化剂、冷却剂、增碳剂的性能 教学难点:用金属材料、生产石灰常见的几种石灰煅烧窑 教学内容: 1.1 金属料 1.2非金属料 第二章氧气顶吹转炉炼钢工艺操作 教学目标:通过本章学习,使学生掌握吹炼一炉钢金属成分和炉渣成分的变化规律及吹炼过程的三个阶段、装入制度、供氧制度及主要参数和供 氧操作、氧气流股的运动规律、枪位对吹炼过程的影响、炉渣对炼 钢操作的影响、造渣方法、渣料加入量和加入时间的确定、炉渣的 形成、泡沫渣在炼钢过程中的作用、渣量计算、白云石造渣、转炉

炼钢温度控制及确定、转炉炼钢热量来源、冷却剂的种类及效应和 用量确定、物料平衡、热平衡、终点碳的控制方法和判断及温度判 断、脱氧方法及操作、影响合金吸收率的主要因素、铁合金加入量 计算、吹损与喷溅、操作事故与处理、开新炉前的准备工作及炉衬 烧结过程、烘炉法、出刚挡渣技术、某些钢种生产。熟悉钢与铁的 区别。 教学重点:吹炼一炉钢金属成分和炉渣成分的变化规律及锤炼过程的三个阶段、装入制度、喷嘴的类型和作用、氧气流股的运动规律、枪位对 吹炼过程的影响、供氧制度的主要参数和供氧操作、炉渣对炼钢操 作的影响、造渣方法、渣料加入量和加入时间的确定、成渣过程、 加速石灰熔化的途径、泡沫渣形成的基本因素、吹炼过程中泡沫渣 的控制、渣量计算、白云石造渣的目的、确定白云石的加入量、转 炉炼钢出钢温度的确定及过程温度和终点温度的控制、转炉炼钢热 量来源、冷却剂的种类及效应和用量确定、物料平衡、热平衡、终 点碳的控制方法和判断及温度判断、高拉补吹法、结晶定碳法、耗 氧量和供氧时间作参考、脱氧方法及操作、影响合金吸收率的主要 因素、铁合金加入量计算、吹损及其组成和喷溅及其控制与预防、 事故产生的原因和处理方法、炉衬烧结过程、烘炉法、出刚挡渣的 目的和方法、挡渣球法挡渣操作、碳素钢、16Mn、硬线钢、H08、 硅钢生产 教学难点:金属和炉渣的成分变化规律、喷嘴的类型与作用、流股的运动规律、供氧操作、渣料加入量和加入时间的确定、成渣过程、吹炼过程中 泡沫渣的控制、渣量计算、确定白云石的加入量、出钢温度确定、 过程和终点温度确定、冷却剂用量确定、热平衡和物料平衡计算、 终点碳和温度的判断、脱氧操作、铁合金加入量计算、吹损的组成、 常见事故的处理方法、挡渣球法挡渣操作、碳素钢、16Mn、硬线钢、 H08、硅钢生产 教学内容: 2.1一炉钢的吹炼过程 2.2装入制度 2.3供氧制度 2.4造渣制度 2.5温度制度 2.6终点控制 2.7脱氧合金化

120t转炉炼钢电气自动化方案

120t转炉炼钢工程电气自动化方案

11.5 电气自动化及仪表 11.5.1概述 建设120吨氧气顶吹转炉,一台板坯连铸机。予留一台4机4流方坯连铸机。 11.5.2供配电 11.5.2.1供电原则 根据就近供电的原则,炼钢厂区设35kV变电所一座(详见35KV 变电所叙述部分),转炉车间的高压电源均来自35kV变电所. 依据低压配电深入负荷中心原则,按负荷情况在厂区内分散设变电所和配电设施. 35kV变电所以放射式主供炼钢车间变电所、吊车变电所、除尘变电所、水泵房变电所、连铸车间变电所、煤气加压站变电所、OG风机、转炉二次除尘风机、二次除尘风机、地下料仓除尘风机等。 11.5.2.2低压变电所设置 根据厂区负荷分配情况,设7座车间变电所。 1).设两台1600 kVA变压器,负责厂房跨的所有吊车供电. 2). 在转炉加料跨旁建一转炉车间变电所,其中设两台1250 kVA 变压器,负责整个转炉车间低压供电. 3). 在二次除尘设两台500 kVA变压器,负责一、二次除尘系 统低压供电. 4). 在循环水泵房建一低压变电所,设四台1600 kVA变压器, 和一台1000 kVA变压器(其中1000 kVA变压器高压电源由厂方提

供,用于事故水电源),负责整个转炉及板坯连铸机的水处理系统低压供电; 5). 在地下料仓皮带通廊下建一低压变电所,设2台630 kVA变压器,负责地下料仓、污泥脱水间、沉淀池等系统的低压供电; 6). 在连铸跨新建的两台连铸机附近建一低压变电所,设两台1250 kVA变压器,负责两台连铸机低压供电。 7)在煤气加压站附近建一低压变电所,设两台630 kVA变压器,负责煤气加压站及煤气柜的低压供电 8)在空压站毗邻建一低压变电所,设两台1250 kVA变压器,负责空压机等的低压供电.该变电所按二期设计. 所有的变压器6 kV高压电源均引自35kV变电所。 各个变电所低压负荷如下:

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

转炉炼钢设备

1 概述 1.1氧气顶吹转炉炼钢特点 氧气顶吹转炉炼钢又称 LD 炼钢法,通过近几十年的发展,目前已完全取代了平炉炼钢,其之所以能够迅速发展的原因,主要在于与其它炼钢方法相比,它具有一系列的优越性,较为更突出的几点如下: 1.生产效率高 一座容量为80 吨的氧气顶吹转炉连续生产24 小时,钢产量可达到日产3000 — 4000 吨,而一座 100 吨的平炉一昼夜只能炼钢 300 — 400 吨钢,平均小时产量相差甚远,而且从冶炼周期上看,转炉比平炉、电炉的冶炼周期要短得多。 2.投资少,成本低 建氧气顶吹转炉所需的基本建设的单位投资,比同规模的平炉节约30% 左右,另外投产后的经营管理费用,转炉比平炉要节省,而且随着转炉煤气回收技术的广泛推广和应用,利用转炉余热锅炉产生蒸气及转炉煤气发电,使转炉逐步走向“负能”炼钢。 3.原料适应性强 氧气顶吹转炉对原料情况的要求,与空气转炉相比并不那么严格,可以和平炉、电弧炉一样熔炼各种成分的铁水。 4.冶炼的钢质量好,品种多 氧气顶吹转炉所冶炼的钢种不但包括全部平炉钢,而且还包括相当大的一部分电弧炉钢,其质量与平炉钢基本相同甚至更优,氧气顶吹转炉钢的深冲性能和延展性好,适宜轧制板、管、丝、带等钢材。 1 / 35

5.适于高度机械化和自动化生产 由于冶炼时间短,生产效率高,再加转炉容量不断扩大,为准确控制冶炼过程,保证获得合格钢水成分和出钢温度,必须进行自动控制和检测,实现生产过程自动化。另外,在这种要求下,也只有实现高度机械化和自动化,才能减轻工人的劳动强度,改善劳动条件。 1.2 转炉炼钢机械设备系统 氧气顶吹转炉炼钢法,是将高压纯氧[压力为0.5~1.5MPa ,纯度99.5% 以上,(我厂为99.99% )],借助氧枪从转炉顶部插入炉内向熔池吹氧,将铁水吹炼成钢。氧气顶吹转炉的主要设备有: 1.转炉本体系统: 包括转炉炉体及其支承系统——托圈、耳轴、耳轴轴承和支承座,以及倾动装置,其中倾动装置由电动机、一次减速机,二次减速机、扭矩缓冲平衡装置等组成。 2.氧枪及其升降、氧气装置及配套装置。 氧枪包括枪体、氧气软管及冷却水进出软管。 根据操作工艺要求氧枪必须随时升降,因此需要升降装置,为保证转炉连续生产,必须设有备用枪,即通过换枪装置,随时将备用枪移至工作位置,同时要求备用枪的氧气,进出水管路连接好。 3.散装料系统: 氧气顶吹转炉炼钢使用的原料有: (1)金属料——铁水、废铁、生铁块; (2)脱氧剂——锰铁、硅铁、硅锰、铝等; (3)造渣剂——石灰、萤石、白云石等;

转炉炼钢知识问答

转炉炼钢知识问答 1 转炉炼钢的原材料 1-1 转炉炼钢用原材料有哪些,为什么要用精料? 炼钢用原材料分为主原料、辅原料和各种铁合金。氧气顶吹转炉炼钢用主原料为铁水和废钢(生铁块)。炼钢用辅原料通常指造渣剂(石灰、萤石、白云石、合成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、硅钙合金、金属铝等。 原材料是炼钢的物质基础,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,采用精料以及原料标准化,是实现冶炼过程自动化、改善各项技术经济指标、提高经济效益的重要途径。根据所炼钢种、操作工艺及装备水平合理地选用和搭配原材料可达到低费用投入,高质量产出的目的。 转炉入炉原料结构是炼钢工艺制度的基础,主要包括三方面内容:一是钢铁料结构,即铁水和废钢及废钢种类的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;三是充分发挥各种炼钢原料的功能使用效果,即钢铁料和造渣料的科学利用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度稳定工序质量,降低各种物料消耗,增加生产能力的基本保证。1-2 转炉炼钢对铁水成分和温度有什么要求? 铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。 A铁水的化学成分 氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。 (1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中WSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中SiO2含量过高,也

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

转炉炼钢连铸精益生产实践

转炉炼钢连铸精益生产实践 随着炼钢工艺技术及信息化、智能化的不断发展,炼钢-连铸过程工艺流、时间流、物质流的系统协同优化,已成为炼钢企业生产过程管控的重点研究方向。为此,莱钢炼钢厂根据自身工艺装备水平和产品特点,围绕生产组织、质量控制、成本管控、设备点检、安全管理进行系统优化创新和管理升级,形成五位一体”的协同生产管控模式,并 通过实施各工序关键工艺精准控制,实现了优质、高效、低耗的精益冶炼模式,在产品质量、关键指标、成本控制等方面,取得了良好效果,精益生产水平不断提高。 1工艺装备 莱钢炼钢厂现有2座1880m3高炉、1座3200m3高炉,3座120t转炉、1座150t转炉,以及大H型钢生产线、1500mm热轧宽带生产线和4300mm宽厚板生产线,年产钢500万吨。炼钢工序主要工艺装备情况如表1所示。 炼钢厂主要工艺袈裔 主要生产品种包括:普通碳素结构钢、低合金高强度结构钢、优质碳素结构钢、船板钢、汽车大梁钢、耐磨钢、管线钢、压力容器钢等。 2工艺流程 莱钢炼钢厂冶炼钢种多,对应的产品规格与性能要求又存在较大差异,由图1可见, 现场工艺装备复杂,在生产组织过程中各工序间交叉作业频繁,行车作业率高,故工艺选择较为复杂,生产组织协同性差,造成生产成本高、能耗高,质量控制不稳定。

圈1嫌钢连铸生产流祁 3炼钢-连铸过程协同优化研究 针对炼钢-连铸生产过程控制,围绕生产组织、质量控制、成本管控、设备点检、安全管理进行系统优化创新和管理升级,形成五位一体”的协同生产管控模式,在产品 质量、关键指标、成本控制等方面取得了良好效果,精益生产水平不断提高。 3.1以生产时刻表”为主线,建立精益生产组织模型 按照不同钢种的工艺流程、各工序标准工艺时间以及炼钢-连铸协同配置要求,建 立专线化生产、生产时刻表和调度组织模型,实现了均衡、稳定、高效、低耗的精益生产组织模式。 1)炼钢生产时刻表运行系统 以炼钢、精炼、连铸各工序标准时间序为基准,建立像火车时刻表”一样的生产 时刻表”实现了生产过程的动态、精准控制。 2)专线化生产组织模型 根据合同订单计划,依托炼钢MES系统,运用当量周期、炉机匹配度等分析评价指标,对转炉、精炼及连铸产能、节奏、生产组织模式进行系统分析研究,建立专线化生产组织模型。 3.2以参数群控制为核心,建立质量识别系统 依托一级、二级控制系统,建立健全全流程工艺参数自动采集系统,对生产过程工艺参数进行自动采集识别。根据各工序工艺控制特点,制定各工序关键控制点控制标准及不合项扣分标准,根据每炉钢实际参数控制情况,对每炉铸坯质量进行综合打分判定。 通过建立从铁水到铸坯的全流程关键工艺参数标准模型,过程工艺参数自动采集,对工艺参数实时

炼钢工艺流程图

炼钢工艺流程 1炼钢厂简介 炼钢厂主要将铁水冶炼成钢水,再经连铸机浇铸成合格铸坯。现有5座转炉,5台连铸机,年设计生产能力为500万吨,现年生产钢坯400万吨。其中炼钢一分厂年生产能力达到240万吨;炼钢二厂年生产能力为160万吨。 2炼钢的基本任务 钢是以Fe为基体并由C、Si、Mn、P、S等元素以及微量非金属夹杂物共同组成的合金。 炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和夹杂,提高温度,调整成分,炼钢过程通过供氧造渣,加合金,搅拌升温等手段完成炼钢基本任务,“四脱两去两调整”。 3氧气转炉吹炼过程 氧气顶吹转炉的吹氧时间仅仅是十分钟,在这短短的时间内要完成造渣,脱碳、脱磷、脱硫、去气,去除非金属夹杂物及升温等基本任务。 由于使用的铁水成分和所炼钢种的不同,吹炼工艺也有所区别。氧气顶吹转炉炼钢的吹炼过程,根据一炉钢吹炼过程中金属成分,炉渣成分,熔池温度的变化规律,吹炼过程大致可以分为以下3个阶段: (1)吹炼前期。(2)吹炼中期。(3)终点控制。 炼好钢必须抓住各阶段的关键,精心操作,才能达到优质、高产、低耗、长寿的目标。 装入制度 装入制度是保证转炉具有一定的金属熔池深度,确定合理的装入数量,合适的铁水废钢比例。

3.1.1装入量的确定 装入量是指转炉冶炼中每炉次装入的金属料总重量,它主要包括铁水和废钢量。目前国内外装入制度大体上有三种方式: (1)定深装入;(2)分阶段定量装入;(3)定量装入 3.2.2装入次序 目前永钢的操作顺序为,钢水倒完后进行溅渣护炉溅渣完后装入废钢,然后兑入铁水。 为了维护炉衬,减少废钢对炉衬的冲击,装料次序也可以先兑铁水,后装废钢。若采用炉渣预热废钢,则先加废钢,再倒渣,然后兑铁水。如果采用炉内留渣操作,则先加部分石灰,再装废钢,最后兑铁水。 供氧制度 制订供氧制度时应考虑喷头结构,供氧压力,供氧强度和氧枪高度控制等因素。 3.2.1氧枪喷头 转炉供氧的射流特征是通过氧枪喷头来实现的,因此,喷头结构的合理选择是转炉供氧的关键。氧枪有单孔,多孔和双流道等多种结构。永钢使用的是4孔拉瓦尔喷头形式喷枪。 3.2.2氧气压力控制 氧气压力控制受炉内介质和流股马赫数的影响。经测定,炉内介质压力一般为—,流股马赫数在—之间。因此目前在转炉上使用的工作压力为—,视各种扎容量而定。一般说来,转炉容量大,使用压力越高。 3.2.3氧气流量和供氧强度 (1)氧气流量:

转炉工作原理及结构设计要点

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

转炉炼钢工艺流程介绍

转炉炼钢工艺流程介绍 ---- 冶金自动化系列专题 【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 [查看全文] 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 [查看全文] 转炉冶炼工艺流程简介:

炼钢工艺流程

【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 转炉冶炼工艺流程简介:

转炉炼钢

转炉炼钢文献综述

内蒙古科技大学毕业设计说明书(毕业论文) 摘要 根据炼钢厂设计要求及设计任务书的要求,本设计阐述了230万吨合格铸坯的转炉车间的设计工艺,并且介绍了近年来国内外转炉炼钢的现状和发展。本设计主要对转炉炼钢生产的生产规模、产品方案、工艺流程、车间组成和车间布置进行设计,并对120吨转炉炉型、原料供应系统进行了详细计算。对厂房各跨宽度,长度进行了估算。此外,对转炉车间的一些主要的附属设备进行了选择并对其技术性能进行讲解。 随着现代炼钢技术的发展,新建转炉炼钢车间要求炼钢过程洁净、高效、负能耗、设备可靠等等。设计中为实现上述目标,借鉴了国内外大中型转炉炼钢厂的一系列先进且成熟的技术,同时参阅了大量的文献资料。设计的炼钢车间理论上能够生产绝大多数钢种,但是结合实际考虑经济效益,主要生产重轨钢和一部分高附加值的碳素结构钢及合金结构钢等,以满足230万吨合格铸坯全连铸炼钢厂的匹配。 关键词:转炉炼钢重轨钢冶炼

文献综述 1.1 引言 21世纪钢铁工业的发展面临着机遇和挑战。根据市场预测:至2010年发达国家钢材消费年均增长量为0.7%;而发展中国家将达到3.8%;太平洋地区的增长为4.57%。世界钢材市场消费量的缓慢增长,为钢铁工业发展,特别是太平洋地区发展中国钢铁工业发展提供了良好的机遇。 21 世纪国际钢铁工业发展面临的严峻挑战, 主要来自三个方面: (1)钢铁生产能力过剩,残酷的市场竞争将使一些落后的钢铁厂倒闭; (2)环境保护对钢铁工业发展产生巨大压力,一些污染严重的落后工艺将被强制淘汰;(3)世界钢材价格呈下降趋势。 进入21 世纪, 面对机遇和挑战,钢铁企业必须努力发展高效生产工艺,降低生产成本,提高产品质量和减轻对环境的污染,才可能立于不败之地[1]。 1.2 我国转炉炼钢的发展及现状 1.2.1我国钢产量 作为转炉炼钢主要炉料的生铁逐年增长, 为转炉炼钢钢产量的大幅度增长提供了良好而充裕的原料条件, 与世界各主要产钢国家相比, 我国铁钢比较高, 近年来我国生铁产量及铁钢比如表1.1所示。

120吨转炉炼钢车间设计

炼钢车间设计 氧气顶吹转炉炉型设计及各部分尺寸 1.1 转炉炉型及其选择 转炉由炉帽、炉身、炉底三部分组成、由于炉帽(截锥形)和炉身(圆柱形)的形状没有变化。把炉型分为筒球型、锥球型和截锥型等三种。 (a)(b)(c) (1)筒球型。熔池由球体和圆柱体两部分组成。炉型形状简单,砌砖方便,炉壳容易制造,被国内外大、中型转炉普遍使用。 (2)锥球型。熔池由球缺体和倒截锥体两部分组成。与相同容量的筒球型比较,锥球型熔池较深,有利于保护炉底。在同样的熔池深度的情况下,熔池直径可以比筒球型大,增加了熔池反应面积,有利于去磷、硫。我国中小型转炉普遍采用这种炉型。 (3)截锥型。熔池为一个倒截锥体。炉型构造较为简单,平的熔池较球型底容易砌筑。在装入量和熔池直径相同的情况下,其熔池最深,因此不适用于大型容量炉。我国30t 以下的转炉采用较多。 经过比较,由于筒球型转炉砌筑方便且炉壳容易制造以及考虑到本设计所需熔池容量为120t ,所以选择了筒球型。 1.2 转炉炉型各部分尺寸确定 1.2.1 熔池尺寸 (1)、熔池直径D 。熔池直径指转炉熔池在平静状态时金属液面的直径。它主要与金属装入量和吹氧时间有关。我国设计部门推荐的计算熔池直径的经验公式为: t G K D

式中 D ——熔池直径,m ; G ——新炉金属装入量,t ,可取公称容量; K ——系数,参见下表1-1; t ——平均每炉钢纯吹氧时间,min ,参见下表1-2。 熔池直径为: m t G K D 66.474.27.116120 7.1=?=?== (2)熔池深度h 。熔池深度指转炉熔池在平静状态时,从金属液面到炉底 的深度。对于一定容量的转炉,炉型和熔池直接确定后,可以用几何公式计算熔 池深度h 。 因为所取为筒球型转炉,所以通常球缺体的半径R 为熔池直径D 的1.1~1.25 倍。本设计去1.1,当R=1.1D 时,熔池体积V 池和熔池直接D 及熔池深度h 有 如下关系: V 池=0.79hD 2-0.046D 3 根据炉子容量与钢水密度可以确定V 池,钢水密度可以根据经验公式计算如 下:取钢水温度为1600。 )273(8358.08523+-=T ρ =8523-0.8358×(1600+273) =8523-1565 =6959㎏/m 3 V 池=1.2×105÷6959=17.24 m 3 因此232366.479.066.4046.024.1779.0046.0??+=+=D D V h 池 =21.89÷17.16=1.28m 1.2.2 炉身尺寸 转炉炉帽以下,熔池面以上的圆柱体部分成为炉身。其直径与熔池直接是 一致的,故须确定的尺寸是炉身高度H 身。 2224.6614.3)24.1706.22108(4)(44?--?=--== D V V Vt D V H ππ池帽身身 19.688 .274= =4.03m

转炉炼钢工艺流程

转炉炼钢工艺流程 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。

当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成:

炼钢转炉设计

——任务要求:含C 3.9%,Si 0.6%,50t复吹转炉 专业班级:冶金工程3班 学生姓名:李源祥 指导教师:杨吉春 完成时间:2011年11月25日

1.炼钢课程设计目的与内容 一、炼钢课程设计的目的 炼钢课程设计属于钢铁冶金专业的实践性教学环节,要求学生查阅相关资料,在指导老师的具体指导下,合理选择工艺参数、配料,使物料平衡、热平衡等工艺过程,及其绘图等,使学生经物料平衡计算,了解加入炉内参与炼钢过程的全部物料与产物之间的平衡关系。经热平衡计算后,了解炼钢过程的全部热量来源与支出之间的平衡关系。经炉型设计和绘图,掌握炉型对尺寸的计算方法。对提高学生工程实践及独立分析解决问题的能力,培养创新意识,同时,加深了学生对炼钢原理,炼钢工艺等专业知识的理解,提高专业水平具有重要意义。 二、炼钢课程设计的内容 1.转炉炼钢的物料平衡与热平衡计算; 2.复吹转炉炉型设计计算及绘图。 3.设计具体要求:铁水含C 3.9%,含Si 0.6%,50t炉型图。

2.转炉炼钢的物料平衡和热平衡计算 2.1 物料平衡计算 2.1.1 计算原始数据 基本原始数据有:冶炼钢种及成分、铁水和废铁的成分、终点钢水成分;造渣用溶剂及炉衬等原材料成分;脱氧和合金化用铁合金的成分及回收率;其他工艺参数。 表2-1 钢种、铁水、废钢和终点钢水的成分设定值 注:本计算设定的冶炼钢种为Q235A。 [C]和[Si]按实际生产情况选取;[Mn]、[P]和[S]分别按铁水中相应成分含量的30%、10%和60% 留在钢水中设定。 注:炉衬配比:(镁碳砖),镁砂:80~85% 碳:15~20% 碳的有效成分:99.56%,余为挥发分:0.44% 。 表2-3 铁合金成分(分子)及其回收率(分母) 注:①10%的C与氧气生成CO2

第二章 氧气顶吹转炉炼钢工艺

第二章氧气顶吹转炉炼钢工艺基本要求:了解转炉的吹炼过程;掌握氧气射流对熔池的物理化学作用;掌握顶吹转炉的各项操作制度;掌握复吹转炉的冶金特点;了解转炉自动控制。 重点与难点:顶吹转炉的各项操作制度;复吹转炉的冶金特点。 §2—1 一炉钢的吹炼过程 一.钢与铁的区别及炼钢的任务 1.钢与铁的性能比较 钢和铁都是铁碳合金,同属于黑色金属,但它们的性质有明显不同。生铁硬而脆,焊接性差。钢具有很好的物理化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛; 用途不同对钢的性能要求也不同,从而对钢的生产也提出了不同的要求。 2.钢与铁性能差别的原因: C固熔体,碳和其它合金元素的含量不同。在钢中碳元素和铁元素形成Fe 3 随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。 钢和生铁含碳量的界限通常是: 生铁: [C]=1.7~4.5% 钢: [C]≤ 1.7% 生铁和钢的化学成分 化学成分% 材料 C Si Mn P S 炼钢生铁 3.5~4.0 0.6~1.6 0.2~0.8 0.0~0.4 0.03~0.07 碳素镇静钢0.06~1.50 0.1~0.37 0.25~0.80 ≤0.045 ≤0.05 沸腾钢0.05~0.27 ≤0.07 0.25~0.70 ≤0.045 ≤0.05

3.炼钢的基本任务: ⑴脱碳; 将铁水中的碳大部分去除,同时随着脱碳的进行,产生大量CO气泡,在CO排出过程中,搅拌熔池促进化渣,同时脱除[H]、[N]和夹杂。 ⑵去除杂质(去P、S和其它杂质); 铁水中[P]、[S]含量高,而钢中[P]会造成“冷脆”,[S]造成“热脆”。通常大多数钢种对P、S含量均有严格要求,炼钢必须脱除P、S等有害杂质。 ⑶去除气体及夹杂物; 在炼钢过程中通过熔池沸腾(碳氧反应、底吹惰性气体搅拌)脱除H]、[N]和非金属夹杂物。 ⑷脱氧合金化; 在炼钢过程中因为脱碳反应的需要,要向钢液中供氧,就不可避免地使后期钢中含有较高的氧,氧无论是以液体形态还是以氧化物形态存在于钢中都会降低钢的质量,所以必须在冶炼后期或出钢过程中将多余的氧去除掉。 在冶炼过程中,铁水中的Si、 Mn大部分氧化掉了,为了保证成品钢中的规定成分,要向钢水中加入各种合金元素,这个过程与脱氧同时进行,称为合金化。 ⑸升温(保证合适的出钢温度)。 铁水温度一般在1250~1300℃,而钢水的出钢温度一般在1650℃以上,才能顺利浇注成铸坯,因此炼钢过程也是一个升温过程。 3.完成炼钢各项任务的基本方法 ⑴氧化 为了将铁水等炉料中的硅、锰、碳等元素氧化掉,可以采用“吹氧”方法,即直接喷吹氧气、或加入其它氧化剂,如铁矿石、铁皮等。 ⑵造渣 为了去除炉料中的P、S等杂质,在炼钢过程中加入渣料(石灰、白云石、熔剂等),形成碱度合适,流动性良好,足够数量的炉渣,一方面完成脱除P、S的任务,同时减轻对炉衬对侵蚀。

相关文档
最新文档