2 地球体与地图投影

2  地球体与地图投影
2  地球体与地图投影

第 2 章 地球体与地图投影

第1节 地球体

一、地球体的基本特征 (一)地球体的量度 公元前3世纪

● 希腊学者亚里士多德认为大地是个球体。 ● 埃拉托色尼对地球大小作了第一次估算。 ● 这个角度约是圆周的1/50 ● 这个角度约是圆周的1/50

(这个角度约是圆周的1/50)

公元724—725年

张遂(一行)组织测量计算得子午线上的纬度1°的地面距离约132 km ,比现代测量值约长21 km

公元827年

● 阿拉伯回教主Al Mamum (阿尔曼孟)推算出1°子午线弧长,比现代测量值只差1%。 17世纪后

● 牛顿论证地球是一个椭球体。

● 清康熙年间天文–大地测量,实证地球不是正圆球。 ● 法国1735年测量论证地球是椭球。 现代天文测量

● 地球是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。

圆周长

圆周角

弧长弧度50

赛伊尼的子午线长地球周长=亚历山大到

——地球体的自然表面

地球的自然表面并不光滑平顺,珠穆朗玛峰(8 844.43 m)与马里亚纳海沟(11 034 m)之间的高差约达20 km。

由于地球的自然表面凸凹不平,形态极为复杂,难以成为测量与制图的基准面。应寻求一种与地球自然表面非常接近的规则曲面,来代替这种不规则的曲面。

(二)地球体的物理表面

地球不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近似的不规则椭球体。

寻找一种与地球自然表面非常接近的规则曲面,来代替这种不规则的地球面

与重力方向相垂直,可有无数个曲面,每个曲面上重力位相等,重力位相

等的面被称为重力等位面,即水准面。

理想水准面:它是一个无波浪、无潮汐、无水流、无大气压变化,处于流体平衡状态的静止海平面。它没有棱角,没有褶皱

大地水准面:以理想水准面作为基准面向大陆延伸,穿过陆地、岛屿,最终形成的封闭曲面。

( 它实际上是一个起伏不平的重力等位面,是逼近于地球本身形状的一种形体,称大地体)

在实际测量中以似大地水准面代替大地水准面,两者在海洋上完全重合,在陆地上只在山区有2~4 m的差异。

各国也往往选择一个平均海水面代替大地水准面,以其作为统一的高程基准面。

大地水准面的意义:

●地球形体的一级逼近

●可用重力学理论进行研究

●可使用仪器测得海拔

(三)地球体的数学表面

地球椭球体:假想将大地体绕短轴(地轴)飞速旋转,以形成一个表面光滑的球体表面。

它是一个规则的数学表面,所以人们视其为地球体的数学表面,也是对地球形体的二级逼近,用于测量计算的基准面。

地球椭球体基本参数:

长半轴(赤道半径)a

短半轴(极半径) b

椭球体的扁率α= (a-b) / a

第一偏心率e2 = (a2-b2)/a2

第二偏心率 e 2 = (a2-b2)/b2

WGS [world geodetic system] 84椭球体:

a = 6 378.137 km

b = 6 356.7523 km

α= 1/298.257 224

赤道直径= 12 756.3 km

极轴直径= 12 713.5 km

赤道周长= 40 075.1 km

地球表面积= 510 064 500 km2

总地球椭球:与大地体吻合最好的旋转椭球称为总地球椭球,也叫总椭球或平均椭球,大地测量在确定这个总地球椭球时,要其达到与大地体最密合的4个条件:

1.地球椭球体中心和地球的质心重合;

2.地球椭球体的短轴和地球的地轴重合;

3.地球椭球体起始大地子午面和起始天文子午面重合;

4.在确定参数a、α时要满足在全球范围的大地水准面差距的平方和为最小。

二、地理坐标

(一)天文经纬度

表示地面点在大地水准面上的位置

天文纬度?:在地球上定义为铅垂线与赤道平面间的夹角

天文经度λ:是过观测点子午面与本初子午面间的两面角。

通常应用天文测量和天文台授时的方法解决。

(二)大地经纬度

表示地面点在参考椭球面上的位置。

大地经度λ(L):参考椭球面上某点的大地子午面与本初子午面间的两面角。东正西负。

大地纬度?(B):参考椭球面上某点的法线与赤道平面的夹角。北正南负。大地高:指某点沿法线方向到参考椭球面的距离。

?法截面:含A点法线AL的平面所裁成的截面。

?法截弧:法截面和地面的交线形成的弧段称为法截弧。

?子午圈截面:

含A点法线AL和椭球旋转轴PP1的法截面。子午圈曲率半径M。

?卯酉圈截面:

含A点法线AL且垂直子午圈截面的法截面。卯酉圈曲率半径N 。

子午圈曲率半径M (A点上所有截弧的曲率半径中的最小值)

式中:a 为椭球长半径,

e 为第一偏心率,

当椭球选定后,a 、e 均为常数;?为纬度。

可知:M随纬度而变化。

卯酉圈曲率半径N

(A

可知:N

平均曲率半径R:

子午圈曲率半径与卯酉圈曲率半径除在两极相等外,同一点上卯酉圈曲率半径均大于子午圈曲率半径。

纬圈的半径r:

子午线弧长:

即椭圆的弧长。在子午线上任取一点A,其纬度为?A,取与A点无限接近的一点A’,其纬度差值为d?。因为弧AA’甚小,可以把它看成以M(该弧的曲率半径)为半径的圆周。

(三)地心经纬度

地心坐标系统

——原点与地球中心重合

参心坐标系统

——原点与参考椭球中心重合

地心经度:等同大地经度。

地心纬度:指参考椭球面上观测点和椭球质心或中心连线与赤道面之间的夹角。

第2节大地测量系统

一、中国的大地坐标系统

1980年至今:1980西安坐标系

参考椭球体:GRS(1975)

大地原点:陕西省泾阳县永乐镇

GRS—75 椭球参数

a = 6378 140 m

b = 6356 755 m

f = 1/298.257

参考椭球体大地原点坐标

大地原点

大地控制网和大地点坐标

(一)平面控制网

1. 三角测量

以大地原点为基础,在地面上选择一系列控制点,并建立起一系列三角形,组成三角锁和三角网。

天文经纬度天文方向角

大地原点

三角锁的起始边——基线端点

大地测量

三角形各内角

余弦定理

各三角形边长及三角形顶点坐标

1. 三角测量

国家平面控制网含三角点、导线点共154 348个,构成1954北京坐标系、1980西安坐标系两套系统

(二)高程控制网

海拔(绝对高程):地面点对似大地水准面(海平面)的高度

1985国家高程:72.260 4 m

1956年黄海高程:72.289 m

高程起算基准面:

黄海平均海水面

国家水准原点:山东青岛

三、全球定位系统

GPS —— global positioning system

卫星定位优势:

●无需通视及觇标

●提供三维坐标

●定位精度高

●观测时间短

●全天候作业

●操作简便

目前的卫星定位系统

●美国:GPS

●俄罗斯:GLONASS (格鲁纳斯)

●欧盟:GALILEO(加利略)

●中国:北斗卫星导航系统

GPS:由24颗卫星组成,分布在20 200 km高空6个等间隔的轨道上。

●一般情况下可见到6~8颗,全天在地球上任何地点都能进行GPS 定

位。

GLONASS:由24颗工作卫星和3颗备份卫星组成,均匀地分布在3个近圆形的轨道面上,每个轨道面8颗卫星,轨道高度19 100 km。

GALILEO:星座由30颗卫星组成。卫星采用中等地球轨道,均匀地分布在高度约为2.3万km的3个轨道面上,星座包括27颗工作卫星,另加3颗备份卫星。北斗卫星导航系统:(BeiDou(COMPASS)Navigation Satellite System)

——中国自主研发、独立运行、正在建设中的全球卫星导航系统。2012年,系统将首先具备覆盖亚太地区的服务能力;2020年前后,整个系统将具备覆盖全球的定位、导航和授时服务能力。

北斗一号:卫星导航试验系统:

由4颗卫星组成,具备中国及其周边地区的导航定位及通讯能力。

北斗二号:卫星导航定位系统:

正在建设中,将分两阶段完成:2012年形成亚太区域覆盖,2020年实现全球覆盖。整个系统由5颗静止轨道卫星和30颗非静止轨道卫星组成。目前,已成功发射9课卫星。

GPS在大地测量领域主要完成了:

●建立和维持了全球统一的地心坐标系统。

●在局部大地网之间进行了联测和转换。

●与水准测量、重力测量相结合,研究与精化大地水淮面。

●测量全球性的地球动力参数——四维大地测量。

●建立新的城市、矿山等控制测量系统。

第 3 节地图投影(在地球椭球面和平面之间建立点与点之间函数关系的数学方法,称为地图投影。)

如何将地球表面(曲面)展开成平面?

1:用机械的方法将它展开成平面

2:用透视法将球面投射到平面上

3:用数学方法将球面转换为平面

二、地图投影的变形

一)投影变形的性质

长度(距离)变形

角度(形状)变形

面积变形

二)变形椭圆

三)长度比

四)角度变形

五)面积比

三、地图投影的分类

1. 几何投影将地球经纬网透视投影到平面或几何面上。

2. 非几何投影不借助辅助投影面,通过数学解析方法得到

一)按地图投影的构成方法分类

1:方位投影

正轴方位投影(投影面与地轴垂直)

横轴方位投影(投影面与地轴平行)

斜轴方位投影(投影面与地轴斜交)

纬线呈同心圆

经线为同心圆半径

2:圆柱投影

正轴:圆柱轴与地轴重合

横轴:圆柱轴与地轴垂直

斜轴:圆柱轴与地轴斜交

正轴圆柱投影:

纬线是一组彼此平行的直线。

经线是一组垂直于纬线的直线,且经线间隔相等。

等变形线与纬线平行

3:圆锥投影

正轴:圆锥轴与地轴重合

横轴:圆锥轴与地轴垂直

斜轴:圆锥轴与地轴斜交

正轴圆锥投影,纬线为同心圆圆弧,经线为它的半径,且经线之间的夹角与经差成正比。

4:. 非几何投影

正轴伪方位投影

纬线:投影为同心圆。

经线:除中央经线投影成直线外,其余经线均投影成对称于中央经线的曲线,且交于纬线的共同圆心。

伪圆柱投影

纬线:平行直线。

经线:中央经线投影成直线,其余经线均投影成对称于中央经线的曲线。

伪圆锥投影

在圆锥投影基础上,规定纬线仍为同心圆弧,除中央经线仍为直线外,其余经线则投影成对称于中央经线的曲线。

多圆锥投影

借助多个圆锥表面与球体相切设计而成的投影。

纬线为同轴圆弧,其圆心位于中央经线上,中央经线为直线,其余经线则投影成对称于中央经线的曲线。

二)按地图投影变形性质分类

1.等角投影:投影面上某点的任意两方向线夹角与椭球面

上相应两线段夹角相等。

2.等积投影:投影面与椭球面上相应区域的面积相等。

3.任意投影:投影图上,长度、面积和角度都有变形,

既不等角又不等积。

4.等距投影:在特定方向上没有长度变形的任意投影。

1. 等角投影

条件:a=b。

长度变形:μ随方向改变而改变。

角度变形:ω=0(最大角度变形)。

面积变形:随纬度增大而增大。

适用:交通图、风向图、洋流图等

2. 等积投影

条件:P = ab =1。

长度变形:长轴越长短轴越短。

角度变形:变形很大。

面积变形:无变形,P =1。

适用:自然地图和社会经济地图等

3. 等距投影

条件:a=1或b=1。

长度变形:一个主方向不变形。

角度变形:有变形。

面积变形:有变形。

等距投影属于任意投影,在正轴投影中,通常使经线长度比m=1。

任意投影适用:对各种变形精度要求不高的一般参考图和中学教学图等。不同变形性质投影的变形规律

墨卡托投影

——正轴等角圆柱投影,由荷兰地图学家墨卡托(Mercator Gerardus,1512—1594)于1569年所创设,故又名墨卡托投影

特点:不仅保持了方向和相对位置的正确,而且使等角航线在图上表现为直线。这一特性对航海

具有重要的实用价值。

高斯-克吕格投影

条件:

1.中央经线和赤道投影为互相垂直的直线,且为投影的对称轴;

2.具有等角投影的性质;

3.中央经线投影后保持长度不变。

UTM投影

条件:

1.中央经线和赤道投影为互相垂直的直线,且为投影的对称轴;

2.具有等角投影的性质;

3.中央经线投影后长度比为0.999 6。

五、地图投影的选择

一)投影选择的依据

1.制图区域的地理位置、形状和范围

位置:

两极地区:正轴方位投影。

赤道附近:横轴方位投影或正轴圆柱投影。中纬度地区:正轴圆锥投影或斜轴方位投影。

形状:

中纬度地区

地图投影复习资料

地图投影复习资料 基本概念 地图投影是在平面上建立与地球曲面上相对应的经纬网的数学法则。 任务 (1)研究将地球面上的地理坐标描写到平面上,建立地图数学基础的各种可能的方法; (2)讨论这些方法的理论、变形规律、实用价值以及不同投影坐标的相互换算等问题。 大地水准面与大地体(Geoid ) 大地水准面设想当海水面完全处于静止状态下,并延伸到大陆内部,使它成为一个处处与铅垂线(重力线)正交的连续的闭合曲面,这个曲面叫做。由它所包围的球体,叫做大地体。 地球椭球面与地球椭球体(Ellipsoid) 地球椭球体选择一个大小和形状同大地水准面极为接近的,以椭圆短轴为旋转轴的旋转椭球面。这个旋转椭球面可代表地球的形状,又称为地球椭球面或参考椭球面(原面)。由它所围成的球体,称为或地球椭球。 地球椭球体的形状和大小 扁率(Flattening or Compression) 第一偏心率(First Eccentricity) 第二偏心率(Second Eccentricity) 地球椭球面的基本点、线、面和地理坐标 点 两极 (pole) 线 经线(meridian) 纬线(parallel) 面 平行圈(parallel) 子午圈(meridian) : 长半径为ae ,短半径为 be 的椭圆 地理坐标 地理纬度(latitude ) 地理经度(longitude) 子午圈:通过地面任一点的法线可以有无数法截弧,它们 与椭球面相交则形成无数法截弧,其中有一对互相垂直的法截弧,称为主法截弧。主法截弧都是椭圆,其中一个是子午圈。 卯酉圈:与子午圈垂直的另一个圈称为卯酉圈。地球椭球面上的子午圈始终代表南北方向;卯酉圈除了两个极点外,代表东西方向。 子午圈曲率半径:地球椭球体表面上某点法截弧曲率半径中最小的曲率半径

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

浙教版科学 七年级上 第三章 第2节 地球仪和地图

浙教版科学七年级上第三章第2节地球仪和地图 一、单选题 1.下列四幅图中的P点,既位于南半球,又位于西半球的一幅是( ) A. B. C. D. 2.俗话说:找不着北了。从地理学的角度讲,这个地方应当是在:() A. 回归线上 B. 南极点上 C. 赤道上 D. 北极点上 3.地图与实地相比,一般情况都是按一定比例() A. 缩小 B. 放大 C. 相等 D. 根据具体情况有放大也有缩小 4.图中关于A点所处地理位置说法正确的是() A. 东半球、低纬度 B. 西半球、低纬度 C. 东半球、中纬度 D. 西半球、中纬度 5.小科同学特别喜欢科学,他准备按照科学书上的步骤,自制地球仪,他准备好了乒乓球、铁丝、胶 布和橡皮泥。他先在乒乓球的中间用红笔画了一个圈(即图中到点a和点b距离相等的圆圈),则小科同学是想用该圆圈表示() A. 东西半球的分界线 B. 本初子午线 C. 地轴 D. 南北半球的分界线 6.地图是我们日常生活必不可少的工具,手机打车软件中使用的地图是() A. 地形图 B. 电子地图 C. 人口分布图 D. 气候分布图 7.下列各点中,既位于东半球,又位于北半球的是()

A. (30°W,30°N ) B. (10°W,10°N ) C. (170°E,30°S) D. (175°E,10°N ) 8.毛泽东诗句“坐地日行八万里,巡天遥看一千河”,在地球上最合适的地点是() A. 0°纬线 B. 10°N C. 30°N D. 90°N 9.经度的最大范围是() A. 东、西经各90度 B. 东、西经各180度 C. 东、西经和90度 D. 东、西经和180度 10.小明同学把某地(28° N,102° E)的经纬度写成了(28°,102° E),地球上与小明同学写法相吻合的地 点有几处() A. 1处 B. 2处 C. 3处 D. 4处 二、填空题 11.读图回答: (1)图中A点的经纬度是________。 (2)有关B地地理位置的叙述,正确的是( ) A.西半球、南半球、中纬度 B.西半球、北半球、低纬度 C.东半球、南半球,低纬度 D.东半球、北半球、低纬度 12.仔细观察某学校地图,回答下列问题:

2 地球体与地图投影

第 2 章 地球体与地图投影 第1节 地球体 一、地球体的基本特征 (一)地球体的量度 公元前3世纪 ● 希腊学者亚里士多德认为大地是个球体。 ● 埃拉托色尼对地球大小作了第一次估算。 ● 这个角度约是圆周的1/50 ● 这个角度约是圆周的1/50 (这个角度约是圆周的1/50) 公元724—725年 张遂(一行)组织测量计算得子午线上的纬度1°的地面距离约132 km ,比现代测量值约长21 km 公元827年 ● 阿拉伯回教主Al Mamum (阿尔曼孟)推算出1°子午线弧长,比现代测量值只差1%。 17世纪后 ● 牛顿论证地球是一个椭球体。 ● 清康熙年间天文–大地测量,实证地球不是正圆球。 ● 法国1735年测量论证地球是椭球。 现代天文测量 ● 地球是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。 圆周长 圆周角 = 弧长弧度50 赛伊尼的子午线长地球周长=亚历山大到

——地球体的自然表面 地球的自然表面并不光滑平顺,珠穆朗玛峰(8 844.43 m)与马里亚纳海沟(11 034 m)之间的高差约达20 km。 由于地球的自然表面凸凹不平,形态极为复杂,难以成为测量与制图的基准面。应寻求一种与地球自然表面非常接近的规则曲面,来代替这种不规则的曲面。

(二)地球体的物理表面 地球不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近似的不规则椭球体。 寻找一种与地球自然表面非常接近的规则曲面,来代替这种不规则的地球面 与重力方向相垂直,可有无数个曲面,每个曲面上重力位相等,重力位相 等的面被称为重力等位面,即水准面。 理想水准面:它是一个无波浪、无潮汐、无水流、无大气压变化,处于流体平衡状态的静止海平面。它没有棱角,没有褶皱 大地水准面:以理想水准面作为基准面向大陆延伸,穿过陆地、岛屿,最终形成的封闭曲面。 ( 它实际上是一个起伏不平的重力等位面,是逼近于地球本身形状的一种形体,称大地体) 在实际测量中以似大地水准面代替大地水准面,两者在海洋上完全重合,在陆地上只在山区有2~4 m的差异。 各国也往往选择一个平均海水面代替大地水准面,以其作为统一的高程基准面。 大地水准面的意义: ●地球形体的一级逼近 ●可用重力学理论进行研究 ●可使用仪器测得海拔 (三)地球体的数学表面 地球椭球体:假想将大地体绕短轴(地轴)飞速旋转,以形成一个表面光滑的球体表面。 它是一个规则的数学表面,所以人们视其为地球体的数学表面,也是对地球形体的二级逼近,用于测量计算的基准面。

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图分幅与标准

三、高斯-克吕格直角坐标 高斯-克吕格投影是设想用一个椭圆柱横套在地球椭球的外面,并与设定的中央经线相切。 高斯-克吕格投影分带规定:该投影是国家基本比例尺地形图的数学基础,为控制变形,采用分带投影的方法,在比例尺 1:2.5万-1:50万图上采用6°分带,对比例尺为 1:1万及大于1:1万的图采用3°分带。 6°分带法:从格林威治零度经线起,每6°分为一个投影带,全球共分为60个投影带,东半球从东经0°-6°为第一带,中央经线为3°,依此类推,投影带号为1-30。其投影代号n和中央经线经度L0的计算公式为:L0=(6n-3)°;西半球投影带从180°回算到0°,编号为31-60,投影代号n和中央经线经度L0的计算公式为L0=360-(6n-3)°。 3°分带法:从东经1°30′起,每3°为一带,将全球划分为120个投影带,东经1°30′-4°30′,...178°30′-西经178°30′,...1°30′-东经1°30′。 东半球有60个投影带,编号1-60,各带中央经线计算公式:L0=3°n ,中央经线为3°、6°...180°。 西半球有60个投影带,编号1-60,各带中央经线计算公式:L0=360°-3°n ,中央经线为西经177°、...3°、0°。 我国规定将各带纵坐标轴西移500公里,即将所有y值加上500公里,坐标值前再加各带带号以18带为例,原坐标值为y=243353.5m,西移后为y=743353.5,加带号通用坐标为y=18743353.5 四、我国地形图分幅与编号 我国基本比例尺地形图分幅与编号,以1:100万地形图为基础,延伸出1:50万、1:25万1:10万,再以1:10万为基础,延伸出1:5万、1:2.5万及1:1万三种比例尺。 1:100万从赤道起向两极每纬差4°为一行,至88°,南北半球各分为22横列,依次编号A、B、... V;由精度180°西向东每6°一列,全球60列,以1-60表示,如海南所在1:100万图在第5行,第49列,其编号为 E-49 在1:100万图上,按经差3°纬差2°分成四幅1:50万地形图,编为A、B、C、D,如 E-49-A 按经差1°30′纬差1°分成16幅1:25万地形图,编为[1]、...[16],如 E-49-[1]。按经差30′纬差20′分成144幅1:10万地形图,编为1、...144,如 E-49-1。既后三种比例尺各自独立地与1:100万地图的图号联系。 1:10万图上每经差15′纬差10′分成四幅1:5万地形图,编为A、B、C、D,如 E-49-1-A 1:5万图上每经差7′30″纬差5′分成四幅1:2.5万,编为1、2、3、4,如 E-49-1-A-1 1:10万图上每经差3′45″纬差2′30″分成64幅1:1万地形图,编为(1)、...(64),如E-49-1-(1) 1:1万图上每经差1′52″纬差1′15″分成四幅1:5000地形图,编为a、b、c、d,如E-49-1-(1)-a 4.地图符号 一、地图符号的意义 地图符号是地图上各种形状、大小和颜色的图形和文字的总称。它是地图内容体现的一种主要手段。是地图的基本特征之一。 二、地图符号的分类 按几何精确性分类,分为:依比例符号、不依比例符号、半依比例符号。 依比例符号是实地占有较大面积的物体,比例尺缩小后,仍能显示其轮廓,如大面积街区、大湖等。通常以线划表示其外轮廓,并填绘符号或普染颜色。 不依比例符号实地上面积较小一般具有方位意义的物体,缩至图上只能显示一个点。这类符号仅以其定位点表示物体的位臵。 半依比例符号是实地上的狭长物体,其长度能依比例表示,而宽度则需夸大,如狭长街区、铁路、公路、土堤等符号,其宽度在图上均已扩大。在图上只能测其长度,不能测其宽度。 三、地图符号表示地物的原则 符号的“比例”概念:地面物体与符号图形的缩小比率并非总是一致,同一物体在较大比例尺图上能依比例表示,而在较小比例尺图上则为半依比例号和非依比例符号。符号的比例关系具有一定的相对性。 符号的定位:不依比例符号都是扩大了的图形,一般在设计时就已规定了符号的哪一部分代表地物的真实位臵,这些规定的点和线,就叫定位点和定位线。 关于MAPGIS的符号请看功能演示栏目下的编辑子系统中编辑符号库的功能菜单 5.普通地图的内容要素及表示方法: 一、普通地图上的内容要素-数学要素、地理要素和图廓外要素 数学要素——坐标网、地图比例尺、地图定向等 地理要素——包括自然地理要素、社会经济要素和其他标志 自然地理要素有水系、地貌和图质植被; 社会经济要素有居民地、交通网、境界和行政中心; 其他标志为方位物、经济标志、科学文化标志等。 图廓外要素——图名、图号、接图表、图例、图廓、分度带、比例尺、坡度尺及坐标系统等 二、水系及其在图上表示 水系是指海洋、江河、湖泊、水库、水渠、井泉各种自然的人工的水文物体的总称。 关于河流及沟渠的表示:我国1971年《图式》中规定河流单双线的分界宽为0.4mm,即凡双线河就表示真实的河宽。 对中小比例尺地形图(如1:5万)补充规定“实地宽100m以上的合理就扩大绘为双线”(从0.2扩大到0.4)实地河宽100米到200米这段成为符号性双线河(或称记号双线河),它不表示真宽,要注明河宽注记。 对小比例尺图上的河流有两种表示方法,其一,单线配合不依比例尺双线(又称过度性符号)和依比例双线的表示方法;其二,是单线配合单线真形符号表示。 所谓单线真形符号是将河流全部填满与水涯线相同的普染色。 三、居民地及其在图上表示 居民地是指各种建筑物组成的城市、集镇、农村或其他居住区的总称。 当居民地受比例尺限制不能用真形表示时,可用圈形符号来表示居民地的位臵,符号的定位点表示居民地的中心区域,符号与地物的相对关系表示居民地中心区域与地物的相对关系。 四、交通及其在图上表示 交通网是各种运输的总称。它包括陆地交通、水陆交通和空中交通及管线运输几类。 道路符号是线状的,但在比例尺缩小后,它的宽度是夸大的,以我国地形图为例,铁路宽0.6mm,在1:10万图上等于实地60m,在1:50万图上为300m。 五、地貌及其在图上表示 晕渲法,假定光源在固定的方向上,用浓淡渐变的半色调(墨和颜色)在图上显示地貌主体形态,其实质是光彩立体感在地图上的应用。

地图投影和坐标系

地球坐标系与投影方式的理解(关于北京54,西安80,WGS84;高斯,兰勃特,墨卡托投影) 一、地球模型 地球是一个近似椭球体,测绘时用椭球模型逼近,这个模型叫做参考椭球,如下图: 赤道是一个半径为a的近似圆,任一圈经线是一个半径为b的近似圆。a称为椭球的长轴半径,b称为椭球的短轴半径。 a≈6378.137千米,b≈6356.752千米。(实际上,a也不是恒定的,最长处和最短处相差72米,b的最长处和最短处相差42米,算很小了) 地球参考椭球基本参数: 长轴:a 短轴:b 扁率:α=(a-b) / a 第一偏心率:e=√(a2-b2) / a 第二偏心率:e'=√(a2-b2) / b 这几个参数定了,参考椭球的数学模型就定了。 什么是大地坐标系? 大地坐标系是大地测量中以参考椭球面为基准面建立起来的坐标系。地面点的位置用大地经度、大地纬度和大地高度表示:(L, B, H)。

空间直角坐标系是以参考椭球中心为原点,以原点到0度经线与赤道交点的射线为x轴,原点到90度经线与赤道交点的射线为y轴,以地球旋转轴向北为z 轴:(x, y, z) 共同点:显然,这两种坐标系都必须基于一个参考椭球。 不同点:大地坐标系以面为基准,所以还需要确定一个标准海平面。而空间直角坐标系则以一个点为基准,所以还需要确定一个中心点。 只要确定了椭球基本参数,则大地坐标系和空间直角坐标系就相对确定了,只是两种不同的表达而矣,这两个坐标系的点是一一对应的。 二、北京54,西安80,WGS84 网上的解释大都互相复制,语焉不详,隔靴搔痒,说不清楚本质区别。为什么在同一点三者算出来的经纬度不同?难道只是不认同对方的测量精度吗?为什么WGS84选地球质心作原点,而西安80选地表上的一个点作原点?中国选的大地原点有什么作用?为什么选在泾阳县永乐镇?既然作为原点,为什么经纬度不是0?下面是我个人的理解。 首先,三者采用了不同的参考椭球建立模型,即长短轴扁率这组参数是不同的。北京54:长轴6378245m,短轴6356863,扁率1/298.2997381 西安80:长轴6378140m,短轴6356755,扁率1/298.25722101 WGS84:长轴6378137.000m,短轴6356752.314,扁率 1/298.257223563,第一偏心率0.0818********,第二偏心率 0.082095040121 这些参数不同,决定了椭球模型的几何中心是不同的。那么为什么这三种坐标系的参数有这么大差别呢?除了测量精度不同之外,还有一个原因,就是侧重点不一样。 WGS84是面向全球的,所以它尽量逼近整个地球表面,优点是范围大,缺点是局部不够精确。 北京54用的是前苏联的参数,它是面向苏联的,所以它在前苏联区域这个曲面尽量逼近,而其它国家地区偏多少它不管。它以苏联的普尔科沃为中心,离那越远,误差就越大。 西安80是面向中国的,所以它在中国区域这个曲面尽量逼近,而其它国家地区偏多少它不管。而且这个逼近是以西安附近的大地原点为中心的,也就是说,在西安大地原点处,模型和真实地表参考海平面重合,误差为0,而离大地原点越远的地方,误差越大。所谓的大地原点就是这么来的,它是人为去定的,而不是必须在那里,它要尽量放在中国的中间,使得总的误差尽量小而分布均匀。然后,我国在自已境内进行的建筑,测绘,勘探什么的所绘制的图,都以这个大地原点为基准,去建立各种用途的地表坐标系,就能统一起来了。

坐标系统与地图投影--基础知识

空间参照系统和地图投影 导读:正如上一章所描述的,一个要素要进行定位,必须嵌入到一个空间参照系中,因为GIS所描述是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为所有要素的参照系统。因为地球是一个不规则的球体,为了能够将其表面的内容显示在平面的显示器或纸面上,必须进行坐标变换。 本章讲述了地球椭球体参数、常见的投影类型。考虑到目前使用的1:100万以上地形图都是采用高斯——克吕格投影,本章最后又对该种投影类型和相关的地形图分幅标准做了简单介绍。 1.地球椭球体基本要素 1.1地球椭球体 1.1.1地球的形状 为了从数学上定义地球,必须建立一个地球表面的几何模型。这个模型由地球的形状决定的。它是一个较为接近地球形状的几何模型,即椭球体,是由一个椭圆绕着其短轴旋转而成。 地球自然表面是一个起伏不平、十分不规则的表面,有高山、丘陵和平原,又有江河湖海。地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿。陆地上最高点与海洋中最深处相差近20公里。这个高低不平的表面无法用数学公式表达,也无法进行运算。所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面。当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面。但水准面有无数多个,其中有一个与静止的平均海水面相重合。可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面(图4-1)。 图4-1:大地水准面

大地水准面所包围的形体,叫大地球体。由于地球体内部质量分布的不均匀,引起重力方向的变化,导致处处和重力方向成正交的大地水准面成为一个不规则的,仍然是不能用数学表达的曲面。大地水准面形状虽然十分复杂,但从整体来看,起伏是微小的。它是一个很接近于绕自转轴(短轴)旋转的椭球体。所以在测量和制图中就用旋转椭球来代替大地球体,这个旋转球体通常称地球椭球体,简称椭球体。 1.1.2地球的大小 关于地球椭球体的大小,由于采用不同的资料推算,椭球体的元素值是不同的。现将世界各国常用的地球椭球体的数据列表如下: 表4-1:各种地球椭球体模型 椭球体名称年代长半轴(米)短半轴(米)扁率 白塞尔(Bessel) 1841 6377397 6356079 1:299.15 克拉克(Clarke) 1880 6378249 6356515 1:293.5 克拉克(Clarke) 1866 6378206 6356584 1:295.0 海福特(Hayford) 1910 6378388 6356912 1:297 克拉索夫斯基1940 6378245 6356863 1:298.3 I.U.G.G 1967 6378160 6356775 1:298.25 埃维尔斯特(Everest) 1830 6377276 6356075 1:300.8 1.1.3椭球体的半径 地球椭球体表面是一个规则的数学表面。椭球体的大小,通常用两个半径:长半径a和短半径b,或由一个半径和扁率来决定。扁率α表示椭球的扁平程度。扁率的计算公式为:α=(a-b)/a。这些地球椭球体的基本元素a、b、α等,由于推求它的年代、使用的方法以及测定的地区不同,其结果并不一致,故地球椭球体的参数值有很多种。中国在1952年以前采用海福特(Hayford)椭球体,从1953-1980年采用克拉索夫斯基椭球体。随着人造地球卫星的发射,有了更精密的测算地球形体的条件。1975年第16届国际大地测量及地球物理联合会上通过国际大地测量协会第一号决议中公布的地球椭球体,称为GRS(1975),中国自1980年开始采用GRS(1975)新参考椭球体系。由于地球椭球长半径与短半径的差值很小,所以当制作小比例尺地图时,往往把它当作球体看待,这个球体的半径为6371公里。 1.1.4高程 地面点到大地水准面的高程,称为绝对高程。如图2所示,P0P0'为大地水准面,地面点A和B到P0P0'的垂直距离H A和H B为A、B两点的绝对高程。地面点到任一水准面的高程,称为相对高程。如图2中,A、B两点至任一水准面P1P1'的垂直距离H A'和H B'为A、B两点的相对高程。

坐标系统与地图分幅

地理信息系统培训系列之一 坐标系统与地图分幅 一、坐标系统 名词:地理坐标系,投影坐标系,高程坐标系,地球椭球体。 我们先从ArcGIS安装目录下的Coordinate Systems文件夹说起: 1、地理坐标系(Geographic Coordinate Systems) 地理坐标系,也可称为真实世界的坐标系,用于确定地物在地球上位置。用经纬度来表达位置信息。 1)地球椭球体(Spheroid) 因为地球是不规则的近梨形,所以在定义地理坐标系之前,需要对地球做近似逼近。即假想地球绕地轴高速旋转形成一个表面光滑的球体,这就是地球椭球体(也称旋转椭球体或双轴椭球体)。 地球椭球体(Spheroid)的常用四个参数是:地球引力常数(GM)、长半径(a)、扁率(f)和地球自转角速度(w)。四个参数的不同也就形成了不同的椭球体,比如:克拉索夫斯基椭球体、1975地球椭球体(IAG75)、WGS-84椭球体等。 2)大地基准面(Datum) 有了椭球体后还不能形成地理坐标系,还需要一个大地基准面(Datum)将椭球体定位,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家和地区均有各自的基准面,北京54坐标系和西安80坐标系即为我国的两大基准面。

(1)北京54坐标系 我国参照前苏联从1953年起采用北京54坐标系,它与苏联1942年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球(Krassovsky)。到20世纪80年代初,我国已基本完成了天文大地测量,经计算表明,54坐标系统普遍低于我国的大地水准面,平均误差为29米左右。 (2)西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系,为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即1975地球椭球体(IAG75)。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。经过大地基准面定位的椭球体称为参考椭球体。 3)椭球体与基准面的关系 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。地球椭球体和基准面之间的关系以及基准面是如何结合地球椭球体从而实现来逼近地球表面的可见下图所示。 基准面定义椭球体拟合地表某一区域表面 也就是说,由于椭球参数的不同而形成了不同的椭球体,由于一个椭球体可对应多个大地基准形成了不同地理坐标系。 完成了椭球体和大地水准面的定义后,就形成了地理坐标系。

地图学几种投影的主要参数

几种投影的主要参数 Gauss Kruger(高斯-克吕格投影):除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。该投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带赤道的两端。限制长度变形最有效的方法是将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。经差6度为六度带,经差3度为三度带。六度带自0度子午线起自西向东分带,带号为1—60带。三度带基于六度带,自 1.5度子午线起每隔经差3度自西向东分带,带号为1—120带。我国经度围73W—135E,十一个六度带。各带中央经线:75,75+6n。三度带为二十二个。 主要参数:投影代号(Type),基准面(Datum),单位(Unit),中央经度(OriginLongitude),原点纬度(OriginLatitude),比例系数(ScaleFactor),东伪偏移(FalseEasting),北纬偏移(FalseNorthing) Transverse Mercator(横轴墨卡托投影):墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 主要参数有:投影代号(Type),基准面(Datum),单位(Unit),原点经度(Origin Longitude),原点纬度(Origin Latitude),标准纬度(Standard ParallelOne)。 UTM(通用横轴墨卡托投影):是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996,是为了保证离中央经线左右约330km处有两条不失真的标准经线。该投影角度没有变形,中央经线为直线,且为投影的对称轴。UTM投影分带方法是自西经180起每隔经差6度自西向东分带,将地球划分为60个投影带。 主要的参数有:单位(unit),中央子午线(central meridian),中央子午线比例系数(central meridian Scale Factor),基准面(datum),原点纬度(origin laititude),纵坐标北移假定值(False_northing),横坐标东移假定值(False_easting)。 Lamber Conformal Conic(兰勃特等角圆锥投影):兰勃特等角圆锥投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:a) 角度没有变形;b) 两条标准纬线上没有任何变形;c) 等变形线和纬线一致,即同一条纬线上的变形处处相等; d) 在同一经线上,两标准纬线外侧为正变形(长度比大于1),而两标准纬线之间为负变形(长度比小于1)。变形比较均匀,变形绝对值也比较小;e) 同一纬线上等经差的线段长度相等,两条纬线间的经纬线长度处处相等。 其主要投影参数用:投影代号(Type),基准面(Datum),单位(Unit), 中央经度(OriginLongitude),原点纬度(OriginLatitude), 标准纬度1(StandardParallelOne),标准纬度2(StandardParallelTwo), 东移假定值(FalseEasting),北移假定值(FalseNorthing) 从伪圆柱(pseudocylindrical)投影的变形情况来看,往往离中央经线愈远变形愈大.为了减小远离中央经线部分的变形,美国地理学家古德(J.Paul Goode)于1923年提出一种分瓣方法,就是在整个制图区域的几个主要部分中央都设置一条中央经线,分别进行投影,则全图就

第二章 地球体与地图投影分解

第二章地球体与地图投影 2.1 地球体 一、地球的自然表面 浩瀚宇宙之中地球是一个表面光滑、蓝色美丽的正球体。 事实上:通过天文大地测量、地球重力测量、卫星大地测量等精密测量,发现:地球并不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。 二、地球的物理表面 (一)大地水准面(一级逼近) 假想将静止的平均海水面延伸到大陆内部,形成一个连续不断的,与地球比较接近的形体,其表面称为大地水准面。 它实际是一个起伏不平的重力等位面——地球物理表面。 大地水准面的意义 1. 地球形体的一级逼近: 对地球形状的很好近似,其面上高出与面下缺少的相当。 2. 起伏波动在制图学中可忽略: 对大地测量和地球物理学有研究价值,但在制图中,均把地球当作正球体。 3. 重力等位面: 可使用仪器测得海拔高程(某点到大地水准面的高度)。 三、地球体的数学表面(地球椭球体) 大地水准面仍然不是一个规则的曲面。因为重力线方向并非恒指向地心,导致处处与重力线方向正交的大地水准面也不是一个规则的曲面。大地水准面实际上是一个起伏不平的重力等位面。 为了测量成果的计算和制图工作的需要,选用一个同大地体相近的,可以用数学方法来表达的旋转椭球体来代替地球。这个旋转椭球是一个椭球绕其短轴旋转而成,其表面成为旋转椭球面。 椭球体三要素: 长轴a(赤道半径) 短轴b(极半径) 椭球扁率f=(a-b)/a 中国1952年前采用海福特(Hayford)椭球体 1953—1980年采用克拉索夫斯基椭球体(坐标原点是前苏联玻尔可夫天

文台) 自1980年开始采用 GRS 1975(国际大地测量与地球物理学联合会 IUGG 1975 推荐)新参考椭球体系,并确定陕西泾阳县永乐镇北洪流村为“1980西安坐标系”大地坐标的起算点。 四、大地基准面(Geodetic datum) 参考椭球体定义了地球的形状,而基准面则描述了这个椭球中心距地心的关系。基准面是建立在选择的参考椭球体上的,且考虑到了当地复杂的地表情况。因为参考椭球体还是不能够很好的描述地球上每个地方的具体情况,可以理解为基准面就是参考椭球向某个地方的大地水准面逼近的结果,它与参考椭球是多对一的关系。 (1)地心基准面 在过去的15年,使用卫星采集数据给测量学家们提供了一个很好的模拟地球的椭球体,即地心坐标系统。地心坐标系是使用地球的质心作为中心,目前使用最广泛的就是WGS 1984这种地心坐标系。 地球表面、参考椭球体和大地基准面的关系 (2)本地基准面(Local Datum) 本地基准面是将参考椭球体移动到更贴近当地地表形状的位置,参考椭球体上的某一点必然对应着地表上的某一位置,这个点就称作大地起算原点。大地起算原点的坐标值是固定的,其他点的坐标值都可以由该点计算得到。本地坐标系统的起始位置一般就不在地心的位置了,而是距地心一定的偏移量。 每个国家或地区均有自己的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。 我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球 体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系--西安80坐标系。 G PS测量采用的WGS84坐标系采用的是WGS84基准面和 WGS1984椭球体。 五、地理坐标 一、地理坐标——用经纬度表示地面点位的球面坐标。 (一)天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。 天文经度:观测点天顶子午面与格林尼治天顶子午面间的两面角。 在地球上定义为本初子午面与观测点之间的两面角。 天文纬度:在地球上定义为铅垂线与赤道平面间的夹角。

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

浙教版七上科学第2节地球仪和地图练习.docx

第三单元地球与宇宙课题2地球仪和地图 1知识题练 感知地带 1.对地球仪的认识(1)地球仪是人们按照地球的形状,并且以一定的比例缩小而制成的地球的模型。 (2)经线和纬线①在地球仪上,连接南北两极线,叫经线,也叫了午线。经线指示南北方向,呈半圆状,长度都相等。 ②顺着东西方向环绕地球仪一周的圆圈,叫做纬线。纬线指示东西方向,长度不等,赤道最长。 (3)经度和纬度:将过英国伦敦格林尼治天文台旧址的经线设为0。经线,向东为东经度,向西为西经度;将赤知识点1对地球仪的认识 例1图3-2-1中甲地的经、纬度应是() A.120° E, 20° N B.120° E, 20° S C.120° W, 20° N D.120° W, 20° S 思路导引:在地球仪上,利用经纬网确定某地点的地理坐标(地 理位置)是经常性的。教材虽然给出南北半球40' 甲 — 20° 30 110° 120° 130° 10° 和东西半球的分界线,但学生们很难在实际中准确应用。其实大颗要華握一定的 规律,这类题就很容易突破。 解析:本题中虽然给出了经、纬度的度数,但并没有标出南、北纬和东、西经,因此,首先要判断 哪些线条是纬线,哪些是经线。由于在地球仪上,经线指示南北方向,纬线指示东西方向,所以图 中纵线是经线,横线是纬线;对于纬度,可再根据南北纬度的变化规律:向北(上)北纬度度数增 大,南纬度度数减小,可以判断图中的所有纬线都是南纬度。对于经度,可根据东西经度的变化规 律,即向东(右)东经度度数增大,西经度度数减小,可以判断图中的经线都是东经度。两者结合 起来,便可容易找出正确答案。 答案:B 知识点2半球、高低中纬度的划分 例2王强在地图上发现一个地方,南侧是高纬度,北侧是中纬度,西侧是西半球,东侧 是东半球,该地的经纬度是() A.160° E, 60° N B.20° W, 60° C.160° E, 60° S D.20° W, 60° S 领悟:经纬线之间都 是相互垂直的。为了 区分众多的经纬线, 人们采用给它们标 定读数的方法, 就是经纬度。应熟知 道经纬线的 定义、形状、指示方 向、长度等特征,知 道经纬度的排布规 律。 领悟:使用20° W 和 160。E所构成的经 线圈划分东西半球 的目的,是为了避免 把非洲和欧洲的一 些 国家分在两个半

常用地图投影转换公式

常用地图投影转换公式 作者:青岛海洋地质研究所戴勤奋  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T

界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 3.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 3.3 墨卡托投影正反解公式 墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

相关文档
最新文档