CAN单节点的自通信程序

CAN单节点的自通信程序
CAN单节点的自通信程序

/****************************************************************************** ********

项目:基于CAN总线的自收发通信

说明:主程序部分

功能:外部按键每按下一次,计数值加一,同时计数值在数码管1、2上显示。

在计数值加一后,会使CAN总线上重新发送数据,此时接收端的计数值也同步更新显示

在数码管3、4上(为便于观察,接收显示的值比发送值大3)。

// CAN主要参数: PeliCAN模式,扩展帧EFF模式

// 29位标示码结构:

// 发送数据结构:计数结果,0x02,0x03,0x04,0x05,0x06,0x07,0x08

// 接收数据结构: 待显示数据+其它7个字节的数据

// 本节点的接收代码寄存器值: 0x11,0x22,0x33,0x44

// 本节点的屏蔽代码寄存器值:0x00,0x00,0x00,0x00;可以接收本节点的数据

// 目的节点地址:0x11,0x22,0x33,0x44;可以被本节点接收

模块:can_self.c

作者:PIAE GROUP

注释修改者:特权

修改时间:08.6.17.

******************************************************************************* *******/

/***感谢PIAE工作组提供的源码,这里特权根据自己的编程习惯做了一些修改并添加详细注释***/

#include

#include

#include "define.h"

///////////////////////////////////////////////

//函数:inter0_key (外部中断INT0)

//说明:INT0按键为计数按键

// 每按下一次键,计数值加一

//入口:按键中断

//返回:按键加一

///////////////////////////////////////////////

void inter0_key(void) interrupt 0

{

EA = 0; //关闭中断

Txd_data++; //计数结果增1,即待发送的数据增1

TXD_flag = 1; //发送数据标志位置位,即重新发送数据以更新数码管的显示数值

EA = 1; //重新开启中断

}

///////////////////////////////////////////////

//函数:inter1_can_rxd (外部中断INT1)

//说明:接收数据函数,在中断服务程序中调用

//入口:无

//返回:无

///////////////////////////////////////////////

void inter1_can_rxd( void ) interrupt 2

{

uchar state;

EA = 0; //关CPU中断

IE1 = 0; //由于是中断INT1是电平触发方式,所以需要软件将INT1的中断请求标志IE0清零

state = IR; //IR为SJA1000的中断寄存器

if( state & 0x01) //若IR.0=1--接收中断

{ //接收数据帧

RX_buffer[0] = RBSR;

RX_buffer[1] = RBSR1;

RX_buffer[2] = RBSR2;

RX_buffer[3] = RBSR3;

RX_buffer[4] = RBSR4;

RX_buffer[5] = RBSR5;

RX_buffer[6] = RBSR6;

RX_buffer[7] = RBSR7;

RX_buffer[8] = RBSR8;

RX_buffer[9] = RBSR9;

RX_buffer[10] = RBSR10;

RX_buffer[11] = RBSR11;

RX_buffer[12] = RBSR12;

RXD_flag = 1; //接收标志置位,以便进入接收处理程序

CMR = 0X04; //CMR.2=1--接收完毕,释放接收缓冲器

state = ALC; //释放仲裁随时捕捉寄存器(读该寄存器即可)

state = ECC; //释放错误代码捕捉寄存器(读该寄存器即可)

}

IER = 0x01; // IER.0=1--接收中断使能

EA = 1; //重新开启CPU中断

}

///////////////////////////////////////////////

//函数:main

//说明:主函数

//入口:无

//返回:无

///////////////////////////////////////////////

void main(void)

{

init_mcu();

init_sja1000();

while(1)

{

rxd_deal(); //接收处理程序

txd_deal(); //发送处理程序

led_show(0,Txd_data); //数码管1-2显示发送数据子程序

led_show(1,Rxd_data+3); //数码管3-4显示接收数据子程序

}

}

///////////////////////////////////////////////

//函数:init_mcu

//说明:单片机I/O口初始化

// 主要是各中断寄存器的初始化

//入口:无

//返回:无

///////////////////////////////////////////////

void init_mcu(void)

{

SJA_RST = 1; //CAN总线复位管脚复位无效

SJA_CS = 0; //CAN总线片选有效

EX1 = 1; //开MCU外部中断INT1

IT1 = 0; //MCU外部中断INT1设置为电平触发,该中断口连接CAN总线接收中断口IT0 = 1; //MCU外部中断INT0设置为下降沿触发

EX0 = 1; //开MCU外部中断INT0

EA = 1; //开MCU总中断

SJA_CS = 1; //CAN总线片选无效,使得对数据总线的操作不会影响SJA1000。}

///////////////////////////////////////////////

//函数:init_sja1000

//说明:独立CAN控制器SJA1000的初始化

//入口:无

//返回:无

///////////////////////////////////////////////

void init_sja1000(void)

{

uchar state;

uchar ACRR[4];

uchar AMRR[4];

// 接收代码寄存器

ACRR[0] = 0x11;

ACRR[1] = 0x22;

ACRR[2] = 0x33;

ACRR[3] = 0x44;

// 接收屏蔽寄存器,只接收主机发送的信息

AMRR[0] = 0x00;

AMRR[1] = 0X00;

AMRR[2] = 0x00;

AMRR[3] = 0x00;

// 使用do--while语句确保进入复位模式

do

{

MODR = 0x09; // 设置MOD.0=1--进入复位模式,以便设置相应的寄存器

state = MODR;

}

while( !(state & 0x01) );

// 对SJA1000部分寄存器进行初始化设置

CDR = 0x88; // CDR为时钟分频器,CDR.3=1--时钟关闭, CDR.7=0---basic CAN, CDR.7=1---Peli CAN

BTR0 = 0x31; // 总线定时寄存器0 ;总线波特率设定

BTR1 = 0x1c; // 总线定时寄存器1 ;总线波特率设定

IER = 0x01; // IER.0=1--接收中断使能;IER.1=0--关闭发送中断使能

OCR = 0xaa; // 配置输出控制寄存器

CMR = 0x04; // 释放接收缓冲器

// 初始化接收代码寄存器

ACR0 = ACRR[0];

ACR1 = ACRR[1];

ACR2 = ACRR[2];

ACR3 = ACRR[3];

// 初始化接收屏蔽寄存器

AMR0 = AMRR[0];

AMR1 = AMRR[1];

AMR2 = AMRR[2];

AMR3 = AMRR[3];

// 使用do--while语句确保进入自接收模式

do

{

MODR = 0x04; //MOD.2=1--进入自接收模式,MOD.3=0--双滤波器模式

state = MODR;

}

while( !(state & 0x04) );

}

///////////////////////////////////////////////

//函数:rxd_deal

//说明:接收处理程序;检测接收标志状态位,

// 如果置位则进行接收处理

//入口:无

//返回:无

///////////////////////////////////////////////

void rxd_deal(void)

{

if( RXD_flag ) //RXD_flag=0说明无数据可以接收,RXD_flag=1说明有数据可以接收

{

EA = 0; //关闭CPU中断

RXD_flag = 0; //RXD_flag清零,以便下次查询

Rxd_data = RX_buffer[5]; //CAN总线要接收的数据,也是要在数码管3-4位置显示的数据

EA = 1; //重新开启CPU中断

}

}

///////////////////////////////////////////////

//函数:txd_deal

//说明:发送处理程序;检测发送标志状态位,

// 如果置位则进行发送数据处理

//入口:无

//返回:无

///////////////////////////////////////////////

void txd_deal(void)

{

if( TXD_flag == 1 )//若TXD_flag=1,要求进行数据的发送处理

{

_nop_();

TXD_flag = 0; //RXD_flag清零,以便下次查询

can_txd(); //发送数据帧

_nop_();

_nop_();

} //发送数据帧后,SJA1000将产生接收中断

}

///////////////////////////////////////////////

//函数:can_txd

//说明:发送扩展数据帧

//入口:无

//返回:无

///////////////////////////////////////////////

void can_txd(void)

{

uchar state;

uchar TX_buffer[ N_can ] ; //N_can=13,TX_buffer数组为待传送的数据帧

//初始化标示码头信息

TX_buffer[0] = 0x88; //.7=0--扩展帧;.6=0--数据帧; .0-.3=100--数据长度为8字节TX_buffer[1] = 0x11; //本节点地址

TX_buffer[2] = 0x22;

TX_buffer[3] = 0x33;

TX_buffer[4] = 0x44;

//初始化发送数据单元

TX_buffer[5] = Txd_data; //发送的第1个字节数据,也是数码管要显示的数据(计数结果)

TX_buffer[6] = 0x22; //2

TX_buffer[7] = 0x33; //3

TX_buffer[8] = 0x44; //4

TX_buffer[9] = 0x55; //5

TX_buffer[10] = 0x66; //6

TX_buffer[11] = 0x77; //7

TX_buffer[12] = 0x88; //8

//初始化数据信息

EA = 0; //关中断

//查询SJA1000是否处于接收状态,当SJA1000不处于接收状态时才可继续执行

do

{

state = SR; //SR为SJA1000的状态寄存器

LED_RED = 0; //点亮LED1

}

while( state & 0x10 ); //SR.4=1 正在接收,等待

//查询SJA1000是否处于发送完毕状态

do

{

state = SR;

LED_RED = 0; //点亮LED1

}

while(!(state & 0x08)); //SR.3=0,发送请求未处理完,等待直到SR.3=1

//查询发送缓冲器状态

do

{

state = SR;

LED_RED = 0; //点亮LED1

}

while(!(state & 0x04)); //SR.2=0,发送缓冲器被锁。等待直到SR.2=1

LED_RED = !LED_RED; //熄灭LED1

LED_GRE = !LED_GRE; //点亮LED2

//将待发送的一帧数据信息存入SJA1000的相应寄存器中

TBSR0 = TX_buffer[0];

TBSR1 = TX_buffer[1];

TBSR2 = TX_buffer[2];

TBSR3 = TX_buffer[3];

TBSR4 = TX_buffer[4];

TBSR5 = TX_buffer[5];

TBSR6 = TX_buffer[6];

TBSR7 = TX_buffer[7];

TBSR8 = TX_buffer[8];

TBSR9 = TX_buffer[9];

TBSR10 = TX_buffer[10];

TBSR11 = TX_buffer[11];

TBSR12 = TX_buffer[12];

CMR = 0x10; //置位自发送接收请求

EA = 1; //重新开启中断

}

///////////////////////////////////////////////

//函数:delay

//说明:延时子函数

//入口:uchar time:延时时间time us

//返回:无

///////////////////////////////////////////////

void delay(uchar time)

{

while(time--);

}

///////////////////////////////////////////////

//函数:led_show

//说明:数码管显示函数

// 注意控制P2口的高4位时,不要影响P2口的低4位值//入口:uchar wela: wela=1--高两位显示发送数据

// wela=0--低两位显示接收数据

// uchar number: 要显示的数据

//返回:无

///////////////////////////////////////////////

void led_show(uchar wela,uchar number)

{

uchar digit;

uchar temp;

if(wela) //高位显示,即数码管1-2

{

temp = 0x7b; //temp=01111011B

}

else //低位显示,即数码管3-4

{

temp = 0xde; //temp=11011110B

}

//数码管个位显示

digit = number%10;

P0 = led[digit];

P2 = (temp | 0x0f) & P2; //开个位

delay(5);

P2 = 0xff;

P0 = 0xff; //关闭个位

//数码管十位显示

number /= 10;

digit = number%10;

P2 = ((temp << 4) | 0x0f) & P2; //开十位

P0 = led[digit];

delay(5);

P2 = 0xff; //关闭十位

P0 = 0xff; }

TCP自定义通讯协议

一.设计 1.详细设计: 2个字节的起始字头,1个字节的命令字,1个字节的数据包编号,4个字节的报文总大小, 4个字节的传输数据总大小, 2个字节的文件名大小, 1个字节的保留(备用)字,若干字节的数据块. 2.详细内容 (1)报头的内容: 1.标志位, 2.命令字, 3.数据包的编号, 4.该报文的总大小, 5.该段传输 数据的大小, 6.文件名的大小, 1)命令字: 1.普通图片, 2.普通文档, 3.普通消息, 4.加密图片, 5.加密文档, 6.加密消息. 2)数据包编号: 1.对大文件或长消息体, 以一定的大小进行分割. 一次编号. 3)文件名大小: 1.数据包的数据块中, 刚开头的部位, 进行写文件名, 用来保证每段新数据写入对应的文件. 4)标志位: 1.消息体中需要对与报头,校验字相同的内容进行转义. (2)消息体: 1.文件名或消息名; 2.文件或消息的具体内容. 定义一个规则,发送的时候按照规则封装,接收的时候再按照这个规则解封装(TLV)。 二.TCP报文分段传输的依据: (1)MTU(最大传输单元) 是链路层中的网络对数据帧的一个限制,以以太网为例,MTU为1500个字节。 一个IP数据报在以太网中传输,如果它的长度大于该MTU值,就要进行分片传输,使得每片数据报的长度小于MTU。分片传输的IP数据报不一定按序到达,但IP首部中的信息能让这些数据报片按序组装。IP数据报的分片与重组是在网络层进完成的。

(2)MSS(最大分段大小) MSS是TCP里的一个概念(首部的选项字段中)。MSS是TCP数据包每次能够传输的最大数据分段,TCP报文段的长度大于MSS时,要进行分段传输。 TCP协议在建立连接的时候通常要协商双方的MSS值,每一方都有用于通告它期望接收的MSS选项(MSS选项只出现在SYN报文段中,即TCP三次握手的前两次)。 MSS的值一般为MTU值减去两个首部大小(需要减去IP数据包包头的大小20Bytes和TCP数据段的包头20Bytes)所以如果用链路层以太网,MSS的值往往为1460。而Internet 上标准的MTU(最小的MTU,链路层网络为x2.5时)为576; 如果不设置,则MSS的默认值就为536个字节。很多时候,MSS的值最好取512的倍数。TCP报文段的分段与重组是在运输层完成的。 TCP分段的原因是MSS,IP分片的原因是MTU,由于一直有MSS<=MTU,很明显,分段后的每一段TCP报文段再加上IP首部后的长度不可能超过MTU,因此也就不需要在网络层进行IP分片了。因此TCP报文段很少会发生IP分片的情况。 对于TCP协议来说,整个包的最大长度是由最大传输大小(MSS)决定,MSS就是TCP 数据包每次能够传输的最大数据分段。 为了达到最佳的传输效能TCP协议在建立连接的时候通常要协商双方的MSS值.这个值TCP协议在实现的时候往往用MTU值代替(需要减去IP数据包包头的大小20Bytes和TCP 数据段的包头20Bytes)所以往往MSS为1460。通讯双方会根据双方提供的MSS值得最小值, 确定为这次连接的最大MSS值。

CAN总线通信接口及程序设计毕业设计

机电工程学院 毕业设计说明书设计题目: CAN总线通信接口及程序设计 2012 年 5 月21 日

目次

1 CAN总线介绍 1.1 CAN总线的发展背景 随着汽车产业的发展,需要一种更利于信息数据传输交换的通信协议。汽车中的各种电子控制系统需要较高的技术支持,而随着汽车的发展,汽车是否安全、是否便利、成本是否低、是否舒适都已成为人们首要考虑的事情。但是传统的汽车控制技术已不足以满足人们越来越高的要求,也已不适以汽车的发展方向。20世纪80年代,德国Bosch公司着手研究用于汽车产业的新的通信协议及控制方法,并首先提出了CAN总线控制系统。这一崭新的网络协议使得汽车产业得到了飞速的发展。 CAN总线最明显的特点是最大程度地减少了汽车控制系统中的线束的数量及长度,另外还大大提高了系统控制的可靠性和稳定性。在没有CAN总线协议之前,一辆汽车中用于各种控制通信的线束的总长度达3公里之长,严重影响了汽车的通信速度和通信精度。并且还使汽车的整体结构繁冗复杂,可靠性低,成本高,难以维护。因此CAN总线的出现无疑具有重大的意义和作用。作为一种新的网络通信协议,CAN总线不仅减少了汽车中线束的长度,还提高了汽车的整体性能,极大的促进了汽车产业的发展。 CAN总线刚被提出的时候,仅仅应用于汽车产业上,但CAN总线通信协议的性能和可靠性经过多年的检验,已被应用于越来越多的产业,比如航空、船舶、机床等产业设备方面。仅仅二十多年的发展,CAN总线便已成为自动化领域技术的潮流。 CAN总线是串行通信网络。传统运用的是基于R线构建分布式控制系统,这种传统的控制系统是基于通信节点的地址编码的,因此其结构复杂,直接导致系统的通信效率不高,并且控制的可靠性能低。CAN总线通过每个网络节点进行数据通信,每个节点可以互相收发数据,CAN总线协议对通信数据编码,不对节点地址编码,使各个节点可以同时接收到相同的数据,大大增强了数据通信的实时控制及传输性能。另一方面CAN总线使用起来非常方便。CAN总线的结构十分简单,仅有2根线(CANH和CANL)和外部设备相连,但CAN总线的内部却有非常复杂和智能的通信模块,可以方便快捷准确无误的进行数据

自定义应用层通信协议

1.通信协议的概念及其要素 在OSI开放互联参考模型中,对等实体之间数据单元在发送方逐层封装,在接收方的逐层解析。发送方N层实体从N+1层实体得到的数据包称为服务数据单元(Service Data Unit,SDU)。N层实体只将其视为需要本实体提供服务的数据,将服务数据单元进行封装,使其成为一个对方能够理解的数据单元(Protocol Data Unit,PDU),封装过程实际上是为SDU增加对等实体间约定的控制信息(Protocol Control Information,PCI)的过程。为了保证网络的各个功能的相对独立性,以及便于实现和维护,通常将协议划分为多个子协议,并且让这些协议保持一种层次结构,子协议的集合通常称为协议簇。 网络协议的分层有利于将复杂的问题分解成多个简单的问题,从而分而治之。各层的协议由各层的实体实现,通信双方对等层中完成相同协议功能的实体称为对等实体。对等实体按协议进行通信,所以协议反映的是对等层的对等实体之间的一种横向关系,严格地说,协议是对等实体共同遵守的规则和约定的集合。 通信协议精确地定义了双方通信控制信息和解释信息:发送方能将特定信息(文本、图片、音频、视频)按协议封装成指定格式的数据包,最终以串行化比特流在网络上传输;接收方接收到数据包后,根据协议将比特流解析为本地化数据,从而获取对方发送过来的原始信息。通信协议包括三个要素: (1)语法:规定了信息的结构和格式; (2)语义:表明信息要表达的内容; (3)同步:规则涉及双方的交互关系和事件顺序。 整个计算机网络的实现体现为协议的实现,TCP/IP协议是Internet互联网的核心协议。2.通信协议开发步骤 (1)协议的开发主要包括协议设计、协议形式描述、协议实现和协议一致性测试。协议的开发过程与步骤如图1所示。 图1 协议开发过程与步骤 (2)协议设计过程中的分组发送接收模型如图2所示。

CAN总线在多机通信中的应用

CAN总线在多机通信中的应用 随着微处理器的发展,利用微处理器对工业生产过程进行控制已成为趋势。在工业控制过程中,由于大量数据信息的共享和传输,传统的串行通信模式已不能满足要求。在工业控制领域中,需要一种抗干扰性强、可靠性高、传输速度快和传输距离长的总线结构。CAN总线技术不仅满足上述要求,而且还能实现多点间的信息传递。本文使用PCI9810-cAN适配卡上的CAN总线组成局域网络,实现多微处理器间的信息传递和PC机对多处理器的检控、通信。 1 CAN总线简介 CAN(Controller Area Networks)总线,最早是由德国Bosch公司开发用于局域网控制的总线技术。CAN总线采用传统的双线串行通信方式,具有诊断能力,抗电磁干扰,其最陕传输速率可达1 Mb·s-1,最长通信距离可达10 km(此时的传输速率大约为40 kb·s-1)。在CAN总线组成的局域网络中,通信节点之间不采用主从方式,而是具有总线访问优先权,通信方式灵活,可实现点对点,一点对多点及广播方式传输数据。 2 系统通信模块的硬件设计 CAN总线是由PCI9810-CAN适配卡提供,本文主要完成通信节点的设计。通信节点不仅可以和PC机进行信息交换,还可独立与其他各节点通信。微处理器在需要和主机或其它节点通信时,其通过P0口向SJA1000T的寄存器发送信息,再由PCA82C250把信息传递到CAN总线上。主机和其他通信节点判断接收报文的标识符,将对接收到的信息作相应的处理,从而实现通信功能,。 在设计过程中,为了满足多微处理器间通信的实时性和可靠性要求,结合CAN控制器的特点,对图1作简单介绍: (1)收发器PCA82C250的引脚8(Rs)有3种工作方式:高速,斜率控制和待机。斜率控制方式具有抗射频干扰的功能,所以采用47 kΩ的电阻连接引脚8,实现斜率控制方式。 (2)图1中应为两个高速光电耦合隔离器件6N137,由于6N137输出引脚的驱动能力不够,需要连接一个约390 Ω的上拉电阻,以增加输出引脚的驱动能力。两个光电耦合隔离器件6N137的电源信号采用5 V的DC-DC隔离模块WRA0505P,以增强系统的抗干扰能力。 (3)收发器PCA82C250的CANH和CANL引脚各自由通过一个5 Ω的电阻与CAN总线相连,电阻起到一定的限流作用,保护PCA82C250免受CAN总线上的过流冲击。 (4)收发器PCA82C250的CANH和CANL引脚与电源地之间分别反接一个保护二极管和30 pF的电容,可以起到CAN总线的过压保护作用和过流冲击。 (5)CAN控制器SJA1000T输入方式有2种:Intel输入方式和Motorola输入方式。在此采用Intel输入方式,所以SJA1000T的MODE引脚接高电平。 (6)设计仅用到TX0和RX0引脚,根据SJA1000T 通信协议所要求的输入/输出逻辑电平关系,SJA1000T的TX1脚悬空,RX1引脚的电位必须维持在0.5 Vcc以上,所以在TX1引脚接上约6.8 kΩ和3.6 kΩ分压电阻。 (7)微处理器C51的引脚P2.7接CAN控制器SJA1000T的片选信号/CS,可知CAN控制器SJA1000T 的寄存器首地址为8000H。处理器C41和CAN控制器SJA1000T共用12 MHz的晶振,以提高通信速率。通过上述分析,设计的电路原理图,。 3 系统通信模块的软件设计通信模块的软件由3部分组成:初始化程序,发送程序和接受程序。仅这3部分程序,就能完成通信节点间信息的传递。要将CAN总线应用于更复杂的通信系统中,还要考虑CAN总线的错误处理,超载处理等功能和节点间的计算方法。由于每个通信节点都有自己的MCU,所以它们之间可以自由通信。通过CAN收发器PCA82C250的引脚CANH和CANL对总线输出,使总线表现“显性”,这时可发送信息。判断总线表现为“显性”时,就要为接受信息做好准备。3.1 CAN控制器SJA1000T初始化程序该程序首先进入复位状态,设置SJAl000T的模式寄存器MR为Basic CAN模式,验收码寄存器ACR和屏蔽码寄存器AMR,再设置定时器0和定时器1,输出控制寄存器OCR,

CAN总线通信系统上位机通信软件设计

目次 1 绪论 (1) 1.1 研究背景 (1) 1.2 研究目的和意义 (1) 1.3 国内外发展现状 (2) 1.4 论文结构安排 (2) 2 CAN总线协议分析 (3) 2.1 CAN-bus 规范V2.0 版本 (3) 2.2 CAN控制器SJA1000 (6) 2.3 本章小结 (6) 3 开发环境介绍 (6) 3.1 开发环境 (6) 3.2 CANUSB—Ⅰ/Ⅱ智能CAN接口卡 (7) 3.3 本章小结 (8) 4 CAN通信软件设计 (8) 4.1 驱动程序安装 (8) 4.2 CAN接口卡函数库说明 (8) 4.3 界面设计 (11) 4.4 软件功能实现 (16) 4.5 本章小结 (22) 5 测试及发布 (23) 5.1 软件功能测试 (23) 5.2 程序发布 (24) 5.3 本章小结 (27) 结论 (28) 致谢 (29) 参考文献 (30)

1绪论 现场总线,就是应用于工业现场,采用总线方式连接多个设备,用于传输工业现场各种数据的一类通信系统[1]。CAN(Controller Area Network)总线是现场总线的一个分支,因其具有很高的可靠性和性能价格比,已经成为国际标准,在工业过程监控设备的互连方面得到广泛应用,受到工业界的广泛重视,并已被公认为几种最有前途的现场总线之一。 1.1 研究背景 随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。分散式工业控制系统就是为适应这种需要而发展起来的。这类系统是以微型机为核心,将5C技术——Computer(计算机技术)、Control(自动控制技术)、Communication(通信技术)、CRT(显示技术)和Change(转换技术)紧密结合的产物。它在适应范围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。典型的分散式控制系统有现场设备、接口与计算设备以及通信设备组成,现场总线(Field bus)就是在这种背景下产生的[2]。 1.2 研究目的和意义 从19世纪发明汽车以来,人们就一直在乘坐的舒适性、安全性和操控性方面不停地对其进行改革和创新,车上的电子设备也越来越多。这些电子设备大多是需要协同工作的,这就要求各部件之间能互相通信[1]。 为了解决汽车通信问题,CAN—bus应运而生,凭借可靠、实时、经济和灵活的特点,CAN总线很快在其他行业得到广泛应用,特别是在工业控制领域更是如鱼得水。现在CAN—bus总线已经成为全球范围内最重要的现场总线之一,甚至引领着现场总线的发展。 工业控制系统涉及众多软、硬件模块,给程序的设计和调试带来一定难度。尤其作为上、下位机间联系纽带的CAN总线通信部分,一旦在整个系统运行期间发生问题,若没有良好的人机界面和测试手段,将很难及时准确地找到并排除故障。同样,在控制系统的研制过程中,为了尽可能地减少故障和缩小故障范围,也应设计相应的测试

通信电源规约CSU03B通信协议-通信局电源、空调及环境集中监控管理系统前端智能设备通信协议

CSU03B通信协议更改记录 2006-06-13:V1.0;其中历史告警记录有重大调整,其他与CSU03A兼容。

CSU03B通信协议 本协议以电信总局《通信局(站)电源、空调及环境集中监控管理系统前端智能设备通信协议》(一九九九年三月)为基础制定;与CSU03A通信协议兼容(历史数据和历史告警除外)。 一.物理接口 1.串行通信口采用RS232/RS485,数据传输速率2400bps; 2.信息传输方式为异步方式,起始位1位,数据位8位,停止位1位,无校验。 3.局站监控系统(SU)与设备监控单元(SM)的通信为主从方式。SU呼叫SM并下发命令,SM收到命令后返回响应信息。SU500ms内收不到SM响应或接收响应信息错误,则认为本次通信过程失败。 二.信息类型及协议的基本格式 1.信息分两种类型: (1) 由SU发出到SM的命令信息(简称命令信息); (2) 由SM返回到SU的响应信息(简称响应信息)。 基本格式的注解见表2.2、表2.3。 表2.2 协议的基本格式 说明: COMMAND INFO由以下控制命令码(其中一部分)组成: COMMAND GROUP(1字节):表示同一类型设备的不同组号; COMMAND ID(1字节):表示同一类型设备相同组内的不同监控点; COMMAND TYPE(1字节):表示不同的遥控命令或历史数据传输中的不同控制命令; COMMAND TIME(1字节):表示时间字段。 DA TA INFO由以下应答码(其中一部分)组成: DATAI:含有整型数的应答信息;

RUNSTATE:设备的运行状态; WARNSTA TE:设备的告警状态; DATAFLAG:标示字节;本协议中该字节无效,固定为00H; DATATIME:时间字段。 表2.3返回码RTN 3.数据格式 3.1 基本数据格式 在表2.1基本格式中各项除SOI和EOI是以十六进制解释(SOI=7EH,EOI=0DH),十六进制传输外,其它各项都是十六进制解释,十六进制—ASCII码的方式传输,每个字节用两个ASCII码表示,即高四位一个ASCII码表示,低四位用一个ASCII码表示。 例:CID2=4BH,传送时顺序发送34H和42H两个字节。 3.2 LENGTH数据格式 LENGTH共两个字节,由LENID和LCHKSUM组成,LENID表示INFO项的ASCII 码字节数,当LENID=0时,INFO为空,即无该项。LENGTH传输中先传高字节,再传低字节,分四个ASCII码传送。 校检码的计算:D11D10D9D8+D7DD6D5D4+D3D2D1D0,求和后模16余数取反加1。例:I NFO项的ASCII码字节数为18,即LENID=0000 0001 0010B。 D11D10D9D8+D7D6D5D4+D3D2D1D0=0000B+0001B+0010B=0011B,模16余数为0011B,0011B取反加1就是1101B,即LCHKSUM为1101B。 可得: LENGTH为1101 0000 0001 0010B,即D012H。 3.3 CHKSUM数据格式 CHKSUM的计算是除SOI、EOI和CHKSUM外,其他字符按ASCII码值累加求和,所得结果模65536余数取反加1。 例:收到或发送的字符序列是:“~1203400456ABCDFEFC72C C R R”(“~”为SOI,“C C R R”为EOI),则最后五个字符“FC72C C R R”中的FC72是CHKSUM,计算方法是: ‘1’+‘2’+‘0’+…+‘A’+‘B’+…+‘F’+‘E’ = 31H + 32H + 30H + …+ 41H + 42H + …+ 46H + 45H = 038EH 其中‘1’表示1的ASCII码值,‘E’表示E的ASCII码值。038EH模65536余数是

CAN总线的编码方式

对CAN总线的常见编码格式解析 我们在进行CAN总线的通讯设计过程中,对于通讯矩阵的建立,我们常常会选择一种编码方式,最常见的编码格式是Intel格式和Motorola格式。但是往往人们都是以一种习惯去选择,究竟两种格式具体的区别在哪里呢?我们需要明白两种格式对信号是如何排布的,又是按照什么顺序进行正确解析的。本篇文章就是作者根据在整理通讯矩阵和dbc文件中遇到的一些问题,提出的自己的一些体会和见解,希望大家通过此篇文章对两种格式有更加深刻的理解。 我们在设计初期,都会首先选择一种编码格式,这种选择大多都是根据设计者自己的习惯,具体Intel格式和Motorola格式哪个更有优势的问题,在这里没有区别。但是就使用者而言,需要对接收到数据帧进行正确的解析,否则就无法得到想要的信号。下面我们就来说一下两种格式的区别。 首先我们需要明确一点,无论是Intel格式还是Motorola格式,在每个字节中,数据传输顺序都是从高位(msb)传向低位(lsb)。如下图所示。 byte x bit(8*x+7) bit(8*x) msb lsb 注:x=0,1,2,3 (7) 图1 一般主机厂设计人员在设计初期都会定义好字节的发送顺序,定义Byte0为LSB,Byte7为MSB。第一种情况:先发送Byte0,然后Byte1到Byte7;第二种情况:先发送Byte7,然后Byte6到Byte0。根据我了解到的大部分主机厂都会采取第一种发送方法,很少会采取后者。我们在用CANoe中的CANdb++编辑数据库时,肯定会用到如下图所示的编辑界面。

图2 结合工作中的出现的问题,有的网络设计者会在排布信号的时候出现误区。上图中用的是比较常规的排布方式,即位在字节中的索引是从右至左,还有一种是颠倒过来的,即从左至右。如下图所示。 图3 我们现在以第一种矩阵模式进行说明。在这种情况下,如果主机厂在初期定义先发送LSB,再发送的MSB的形式,那么数据信号可以按照从上到下,从左到右的顺序发送,非常方便,接收器解析起来也比较容易。如果主机厂定义先发送MSB再发送LSB的形式,那样数据传输比较复杂,所以一般都不建议用这种方案。至于设计者常出现的错误我们在下文中会重点说明,下面我们先了解一下Intel 格式和Motorola格式在CANdb++中的区别。

基于STC89C51的CAN总线点对点通信模块设计

基于STC89C51的CAN总线点对点通信模块设计 [导读]随着人们对总线对总线各方面要求的不断提高,总线上的系统数量越来越多,继而出现电路的复杂性提高、可靠性下降、成本增加等问题。为解决上述问题,文中阐述了基于SJAl000的CAN总线通信模块的实现方法,该方法以PCA82C250作为通信模块的总线收发器,以SITA-l000作为网络控制器。并以STCSTC89C5l单片机来完成基于STC89C5l的CAN通信硬件设计。文章还就平台的初始化、模块的发送和接收进行了设计和分析。通过测试分析证明,该系统可以达到CAN的通信要求,整个系统具有较高的实用性。 0 引言 现场总线是应用在生产最底层的一种总线型拓扑网络,是可用做现场控制系统直接与所有受控设备节点串行相连的通信网络。在工业自动化方面,其控制的现场范围可以从一台家电设备到一个车间、一个工厂。一般情况下,受控设备和网络所处的环境可能很特殊,对信号的干扰往往也是多方面的。但要求控制则必须实时性很强,这就决定了现场总线有别于一般的网络特点。此外,由于现场总线的设备通常是标准化和功能模块化,因而还具有设计简单、易于重构等特点。 1 CAN总线概述 CAN (Controller Area Network)即控制器局域网络,最初是由德国Bosch公司为汽车检测和控制系统而设计的。与一般的通信总线相比,CAN总线的数据通信具有突出的可靠性、实时性和灵活性。其良好的性能及独特的设计,使CAN总线越来越受到人们的重视。由于CAN总线本身的特点,其应用范围目前已不再局限于汽车行业,而向自动控制、航空航天、航海、过程工业、机械工业、纺织机械、农用机械、机器人、数控机床、医疗器械及传感器等领域发展。目前,CAN已经形成国际标准,并已被公认为几种最有前途的现场总线之一。它的直线通信距离最大可以达到l Mbps/30m.其它的节点数目取决于总线驱动电路,目前可以达到110个。 2 CAN系统硬件设计 图1所示是基于CAN2.0B协议的CAN系统硬件框图,该系统包括电源模块、MCU部分、CAN控制器、光电耦合器、CAN收发器和RS232接口。硬件系统MCU采用STC89C5l,CAN控制器采用SJAl000,CAN收发器采用PCA82C250,光耦隔离采用6N137。

CAN总线系统智能节点设计

https://www.360docs.net/doc/10803116.html, CAN总线系统智能节点设计 作者:邹继军饶运涛 信息工程系 华东地质学院 摘要:CAN总线上的节点是网络上的信息接收和发送站;智能节点能通过编程设置工作方式、ID地址、波特率等参数。它主要由单片机和可编程的CAN通信控制器组成。本文介绍这类节点的硬件设计和软件设计;其中软件设计包括SJA1000的初始化、发送和接收等应用中的最基本的模块子程序。 关键词:总线节点CAN 控制器 引言: CAN (Controller Area Network)总线,又称控制器局域网,是Bosch公司在现代汽车技术中领先推出的一种多主机局部网,由于其卓越的性能、极高的可靠性、独特灵活的设计和低廉的价格,现已广泛应用于工业现场控制、智能大厦、小区安防、交通工具、医疗仪器、环境监控等众多领域。CAN已被公认为几种最有前途的现场总线之一。CAN总线规范已被ISO国际标准组织制订为国际标准,CAN 协议也是建立在国际标准组织的开放系统互连参考模型基础上的,主要工作在数据链路层和物理层。用户可在其基础上开发适合系统实际需要的应用层通信协议,但由于CAN总线极高的可靠性,从而使应用层通信协议得以大大简化。 CAN总线与其他几种现场总线比较而言,是最容易实现、价格最为低廉的一种,但其性能并不比其他现场总线差。这也是目前CAN总线在众多领域被广泛采用的原因。节点是网络上信息的接收和发送站,所谓智能节点是由微处理器和可编程的CAN控制芯片组成,它们有两者合二为一的,如芯片P8XC592,也有如本文介绍的,独立的通信控制芯片与单片机接口,后者的优点是比较灵活。当然,也

常用几种通讯协议

常用几种通讯协议 Modbus Modbus技术已成为一种工业标准。它是由Modicon公司制定并开发的。其通讯主要采用RS232,RS485等其他通讯媒介。它为用户提供了一种开放、灵活和标准的通讯技术,降低了开发和维护成本。 Modbus通讯协议由主设备先建立消息格式,格式包括设备地址、功能代码、数据地址和出错校验。从设备必需用Modbus协议建立答复消息,其格式包含确认的功能代码,返回数据和出错校验。如果接收到的数据出错,或者从设备不能执行所要求的命令,从设备将返回出错信息。 Modbus通讯协议拥有自己的消息结构。不管采用何种网络进行通讯,该消息结构均可以被系统采用和识别。利用此通信协议,既可以询问网络上的其他设备,也能答复其他设备的询问,又可以检测并报告出错信息。 在Modbus网络上通讯期间,通讯协议能识别出设备地址,消息,命令,以及包含在消息中的数据和其他信息,如果协议要求从设备予以答复,那么从设备将组建一个消息,并利用Modbus发送出去。 BACnet BACnet是楼宇自动控制系统的数据通讯协议,它由一系列与软件及硬件相关的通讯协议组成,规定了计算机控制器之间所有对话方式。协议包括:(1)所选通讯介质使用的电子信号特性,如何识别计算机网址,判断计算机何时使用网络及如何使用。(2)误码检验,数据压缩和编码以及各计算机专门的信息格式。显然,由于有多种方法可以解决上述问题,但两种不同的通讯模式选择同一种协议的可能性极少,因此,就需要一种标准。即由ISO(国际标准化协会〉于80年代着手解决,制定了《开放式系统互联(OSI〉基本参考模式(Open System Interconnection/Basic Reference Model简称OSI/RM)IS0- 7498》。 OSI/RM是ISO/OSI标准中最重要的一个,它为其它0SI标准的相容性提供了共同的参考,为研究、设计、实现和改造信息处理系统提供了功能上和概念上的框架。它是一个具有总体性的指导性标准,也是理解其它0SI标准的基础和前提。 0SI/RM按分层原则分为七层,即物理层、数据链路层、网络层、运输层、会话层、表示层、应用层。 BACnet既然是一种开放性的计算机网络,就必须参考OSIAM。但BACnet没有从网络的最低层重新定义自己的层次,而是选用已成熟的局域网技术,简化0SI/RM,形成包容许多局 域网的简单而实用的四级体系结构。 四级结构包括物理层、数据链路层、网络层和应用层。

基于的CAN总线智能传感器节点设计精修订

基于的C A N总线智能传感器节点设计 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

基于82527的CAN总线智能传感器节点设计 摘要:介绍一种以8051微控制器和82527独立CAN总线控制器为核心组成的CAN总线智能传感器节点的设计方法,并给出其硬件原理图和初始化程序。 关键词:CAN总线 82527 单片机数据采集智能节点 引言 CAN(Controller Area Network,控制局域网)属于工业现场总线,是德国Bosch公司20世纪80年代初作为解决现代汽车中众多的控制与测试仪器间的数据交换而开发的一种通信协议。1993年11月,ISO正式颁布了高速通信控制局域网(CAN)的国际标准(ISO11898)。CAN总线系统中现场数据的采集由传感器完成,目前,带有CAN总线接口的传感器种类还不多,价格也较贵。本文给出一种由8051单片机和82527独立CAN总线控制器为核心构成的智能节点电路,在普通传感器基础上形成可接收8路模拟量输入和智能传感器节点。

1 独立CAN总线控制器82527介绍 82527是Intel公司生产的独立CAN总线控制器,可通过并行总线与Intel和Motrorola的控制器接口;支持CAN规程标准,具有接收和发送功能并可完成报文滤波。82527采用CHMOS 5V工艺制造,44脚PLCC封装,使用温度为-44~+125℃,其引脚的排列和定义参见参考文献[1]。 (1)82527的时钟信号 82527的运行由2种时钟控制:系统时钟SCLK和寄存器时钟MCLK。SCLK 由外部晶振获得,MCLK对SCLK分频获得。CAN总线的位定时依据SCLK的频率,而MCLK为寄存器操作提供时钟。SCLK频率可以等于外部晶振XTAL,也可以是其频率的1/2;MCLK的频率可以等于SCLK或是其频率的1/2。系统复位后的默认设置是SCLK=XTAL/2,MCLK=SCLK/2。 (2)82527的工作模式 82527有5种工作模式:Intel方式8位分时复用模式;Intel方式16位分时复用模式;串行接口模式;非Intel方式8位分时复用模式;8位非分时复用模式。本文应用Intel方式8位分时复用模式,此时82527的30和44脚接地。

CAN总线学习心得--重要

CAN总线学习心得--重要 SJ A1 0 0 0 的常用标准波特率设置,为什么基本上都是单次采样?即使是低速的时候也是这样的,既然T SEG1 的设置周期都很大,比如都大于1 0 了,为什么不让他采样三次呢?答:是不好理解,但那是Ci A 推荐的值。用5 1 系列芯片和两个SJ A1 0 0 0 接口还要外扩一个RAM,请问5 1 的AL E 能否同时与三个芯片的AL E 管脚相连( 地址不同) 有哪位高手做过双SJ A1 0 0 0 冗余的请指教!答:能同时连接。请问CAN 总线在想传输1 0 0 0 m 的情况下, 最快的速度能到多少呢?答: 5 0 k b p s = 1 3 0 0 m。如果一个网络中只有 2 个节点, 其中一个处于监听模式,另一个节点发送报文会使处于监听模式的节点进入中断吗?答:能进入接收中断,你自己的试验也可以证明。想组建一个简单的CAN 网络, 已经有两个节点, 我想问CAN 总线如何组建, 终端电阻安装在哪里?小弟还没有入门, 大虾们指点一下。答1 :直接将节点CANH 和CANL 连到总线上,终端电阻接在总线两端,大约1 2 0 欧。答2 :推荐北航出版《现场总线CAN 原理与应用技术》,研读一下。请问各位老师:我是一名c a n 总线的新手,我正在做c a n 总线的开发,控制器用s j a 1 0 0 0 t ( 我自己两个控制板互通) , 但我在发送数据后将出现总线关闭,我看到发送错误计数器在不断增加,直到0 x f f 最后恢复到0 x 7 f , 谢谢各位老师帮我解答这个问题。或者对我给与启发答1 ;首先调通单个节点。答2 :这是单节点发送没有成功( 或者由于网络中其他节点没有收到帧并在响应场响应) 建议参考网站CAN 应用方案。我想请教各位c a n 远程贞有何作用?如何应用?在什么情况下才需要用到远程贞?谢谢了!答:远程帧的用与不用完全取决你自己的协议,c a n 有远程帧的功能,是可用可不用的!用网站提供的计算波特率的工具算出的数,1 2 k 以上的都正确,无论是自接收还是两个节点通讯都没有任何问题。但是1 2 k 以下的数据一个都不能用,两个节点通讯没有成功的,自接收有1 0 k 的几个数据成功。我们的项目要求必须在1 0 k 以下,最好是5 k ,但是不成功,自己计算的数据也没有成功的。(我们至少试验了3 0 多个,所有情况都考虑了。)我现在怀疑s j a 1 0 0 0 的波特率根本达不到5 k 和相对应的传输1 0 k m。或者可以谁能提供个经过实践检验的正确的总线定时器0 和1 的设置呢?要求低于1 0 k 。答:PCA8 2 C2 5 0 / 2 5 1 可以保证5 KBPS 的速率;比如Z L GCAN 系列接口卡。答:t j a 1 0 5 0 在低速时好像有问题。我用1 0 5 0 进行5 k 的时候不行,用8 2 c 2 5 0 很好,你可以试一试。我本想双机调试,一边收,一边发,但跑程序后,发送方会不断进入复位模式,所以现在进行自测试模式,我先进入复位模式,设置进入PEL I CAN 模式,对寄存器初始化后,设置接收,发送中断使能,最后设置进入自接收,单滤波模式,这样初始化就结束了,我的ACR0 ~ ACR3 为0 x 5 5 , 0 x 5 5 , 0 x 5 5 0 x 5 0 , AMR0 ~ AMR3 为0 x f f , 之后,我就往BUF F ER 里填数,0 x 8 8 , 0 x 5 5 , 0 x 5 5 , 0 x 5 5 , 0 x 5 0 , 0 x 3 0 , 0 x 3 1 , .0 x 3 7 , 之后,启动自接收请求命令,但是程序只进入了中断一次,是发送空中断,接收中断没有产生,我读发送错误寄存器,发现有错误产生,我读接收计数寄存器,为0 ,说明我没有收到数,但我读接收BUF F ER 时,值为0 x 5 5 , 0 x 5 5 , 0 x 5 5 , 0 x f f , 0 x f f , 0 x f f , 0 x f f , 0 x f f , 0 , 0 , 0 , 0 , 0 , 以上测试时,我在CANH 和CANL 之间加入了两个1 2 0 欧的匹配电阻并联在一起的,请各位高手指点呀,谢谢了答:在总线上加个CAN 接口卡会方便许多,或者加个捕获功能的示波器也可以检测波形。仿真环境:k e i l u v 2 编译器:k e i l c 5 1 7 . 0 仿真器:t k s - 5 9 1 s c p u : p 8 7 c 5 9 1 程序大小:8 K 左右兄弟在一片CPU 中烧写了一个,运行一个CAN 总线,I I C 总线测试程序能够正常运行。这个基础上加上应用程序后在仿真机中运行正常,但是烧写到c p u 后插入c p u 程序不能运行,请问是什么原因?另外一个问题:在另外一个项目中条件相同,程序只有4 K, 程序正常跑着,CAN 接口可以检测到输出波形但是却不能正确传输数据,在一块旧板子上就可以,比较两者之后发现电路完全相同测量也正常,只是布局不同,请教原因。答:程序已运行了吧?可能是HEX 文件有错;编制程序时注意P8 7 C5 9 1 的ERAM 设置、6 CL K 设置。位流数据采样自发送节点的8 2 c 2 5 0 的T x 管脚。测试条件:p e l i c a n ,扩展,双滤波模式,对方I D:0 x 8 8 , 0 x 1 1 , 0 x 5 5 , 0 x 1 0 ,发送的对方I D 为:0 x 8 8 , 0 x 1 1 , 0 x 0 0 , 0 x 0 0 ,发送2 字节数据为:0 x 0 5 , 0 x 0 6 采集的位流数据如下:0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 请教位流数据的含义?答:自行计算时要区分位,还需要进行“位填充”的逆运行;简单的方法是将此信号连接

CAN单节点的自通信程序

/****************************************************************************** ******** 项目:基于CAN总线的自收发通信 说明:主程序部分 功能:外部按键每按下一次,计数值加一,同时计数值在数码管1、2上显示。 在计数值加一后,会使CAN总线上重新发送数据,此时接收端的计数值也同步更新显示 在数码管3、4上(为便于观察,接收显示的值比发送值大3)。 // CAN主要参数: PeliCAN模式,扩展帧EFF模式 // 29位标示码结构: // 发送数据结构:计数结果,0x02,0x03,0x04,0x05,0x06,0x07,0x08 // 接收数据结构: 待显示数据+其它7个字节的数据 // 本节点的接收代码寄存器值: 0x11,0x22,0x33,0x44 // 本节点的屏蔽代码寄存器值:0x00,0x00,0x00,0x00;可以接收本节点的数据 // 目的节点地址:0x11,0x22,0x33,0x44;可以被本节点接收 模块:can_self.c 作者:PIAE GROUP 注释修改者:特权 修改时间:08.6.17. ******************************************************************************* *******/ /***感谢PIAE工作组提供的源码,这里特权根据自己的编程习惯做了一些修改并添加详细注释***/ #include #include #include "define.h" /////////////////////////////////////////////// //函数:inter0_key (外部中断INT0) //说明:INT0按键为计数按键 // 每按下一次键,计数值加一 //入口:按键中断 //返回:按键加一 /////////////////////////////////////////////// void inter0_key(void) interrupt 0 { EA = 0; //关闭中断 Txd_data++; //计数结果增1,即待发送的数据增1 TXD_flag = 1; //发送数据标志位置位,即重新发送数据以更新数码管的显示数值 EA = 1; //重新开启中断 } ///////////////////////////////////////////////

基于CAN总线智能节点设计

基于CAN总线智能节点设计 The design of intelligent nodes Based on CAN Bus 李光忠1,吴士涛2 LI GUANG-ZHONG,WU SHI-TAO (1. 山东农业大学信息科学与工程学院,山东 泰安 271018; 2. 山东科技大学,山东 泰安 271000) (1. College of Information Science and Engineering, Shandong Agriculture University,Taian 271018 China;2. Shandong University of Science and Technology,Taian 271000 China) 摘要:CAN总线是一种应用极为普及的现场总线。文中提出了一种CAN总线通信接口的设计方案。CAN总线智能节点用单片机AT89S52和SJA1000控制器为核心组成。分别从硬件电路设计和SJA1000软件初始化、发送、接收设计方面进行了分析,实现了相应的网络控制功能,具有较高的实用性。 关键词:CAN总线,智能节点,系统设计 中图分类号:TP336 文献标识码:B Abstract:Can-Bus is popular as a field Bus.In this paper,a new modern CAN-bus communication interface is designed. Intelligent node of CAN-bus is mainly made up of MCU AT89S52 and SJA1000 controller.The hardware principle and the programming methods for initialization,transmitting and receiving modules of SJA1000 are introduced.The design can perform the control function.It is a practical design. Key words:CAN Bus,Intelligent node,system design 0 引言 CAN是控制器局域网络(Controller Area Network)的简称,是一种有效支持分布式控制或实时控制的串行通信网络。CAN总线作为智能设备的联系纽带,把挂在总线上作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本控制的综合自动化系统。本文给出了一种基于AT89S52和SJA1000的CAN总线智能节点设计方案,并对软硬件设计进行了相应的说明。 1 系统硬件设计 智能节点能够通过监测设备采集的现场数据,并根据接收到的命令或者主动将数据发送到CAN总线。通过事先设置验收码和验收屏蔽码可以控制智能节点从总线上接收数据或命令。 CAN总线系统智能节点硬件电路由3部分构成:微控制器AT89S52、独立CAN通信控制器SJA1000和CAN总线驱动器82C250。 微处理器AT89S52负责SJA1000的初始化,通过控制SJA1000实现数据的接受和发送等通信任务。SJA1000作为独立CAN总线控制器具有完成CAN高性能通信协议所要求的全部必要特性。使用简单总线连接的SJA1000可完成物理层和数据链路层的所有功能。其硬件与软件设计包括与基本CAN工作模式(BasicCAN)兼容,同时它新增加的增强CAN工作模式(PeliCAN)可以支持CAN 2.0A及CAN 2.0B协议。CAN总线收发器PCA82C250提供协议控制器和物理传输线路之间的接口。它可以用高达1Mb/s的速率在两条有差动电压的总线电线上传输数据。 硬件电路如图1所示。

几种总线的总结之CAN 总线

CAN总线 CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO118?8)。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境 基本概念 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 编辑本段CAN总线优势 CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之目前许多RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 网络各节点之间的数据通信实时性强 首先,CAN控制器工作于多主方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差; 缩短了开发周期 CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会在出现在RS-485网络中的现象,即当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。而且,CAN具有的完善的通信协议可由CAN

相关文档
最新文档