三维激光扫描点云数据处理及应用技术lw

三维激光扫描点云数据处理及应用技术lw
三维激光扫描点云数据处理及应用技术lw

三维点云处理软件需求说明资料讲解

三维激光扫描仪点云数据处理软件需求说明 点云数据处理软件是专用扫描软件、数据处理软件、CAD软件接口及应用于检测监测、对比分析的软件。 基本描述 点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。 1.可直接操作激光扫描仪进行数据采集、输入及输出。可接受多种数据格式,如AutoCAD dxf、obj、asc、dgn、pds、pdms等,可接受自定义格式的文本文件输入。 2.软件应具高精度和高可靠性,能够进行点云数据拼接、纹理贴图、特征线的提取、具有点云数据渲染、点云数据压缩、三角网模型生成、几何体建模等功能,软件快速、准确、易操作性。 3.可以智能地自动提取出特征线,同时也可提供人工方式进行特征线的提取。 4.能够提供多种断面生成方式,可以方便地生成一系列的断面线。生成的断面可以方便的导出到CAD及其它软件中做进一步加工处理和应用。应能够提供非常精确的量测物体尺寸的方法。 5.需要一体化软件且具备完整功能1). Registration模块:多种点云拼接模式、导线平差、引入地理参考、目标识别2). Office Survey模块:任意点云导入导出;点云的裁剪、取样、过滤;提取线形地物;在办公室任意量测数据;任意纵横断面;点云矢量化;3D等高线及标注;三角格网生成;任意形体建模;隧道及道路;任意体积面积计算;点云着色;纹理贴图;连续正射影像3).Modeling模块:

利用激光点云数据计算采石场开采量方法研究

利用激光点云数据计算采石场开采量方法研究 发表时间:2018-08-09T10:41:29.817Z 来源:《新材料.新装饰》2018年2月下作者:李光 [导读] 为了调查矿山开采现状,估算矿山保有资源量,政府定期要对采石场资源储量进行核实。一般采用免棱镜全站仪进行测量评估,但因地形复杂,测量误差难以避免。而激光扫描技术克服了这些缺点,为储量监测提供了快捷的途径。应用激光扫描技术在土方量计算、矿山地形快速测量、土方变化量监测等方面一些学者进行了系统研究。 (齐齐哈尔矿产勘察开发总院,黑龙江省齐齐哈尔市 161000) 摘要:为了调查矿山开采现状,估算矿山保有资源量,政府定期要对采石场资源储量进行核实。一般采用免棱镜全站仪进行测量评估,但因地形复杂,测量误差难以避免。而激光扫描技术克服了这些缺点,为储量监测提供了快捷的途径。应用激光扫描技术在土方量计算、矿山地形快速测量、土方变化量监测等方面一些学者进行了系统研究。使用三维激光扫描仪对矿堆进行了扫描,对扫描数据进行三维建模后测算矿堆的矿方量。本文分析了利用激光点云数据计算采石场开采量方法。 关键词:激光点云数据;计算采石场;开采量方法; 利用三维激光扫描技术可以获得高密度点云数据进行体积计算,解决了复杂矿山开采与储量的测量精度问题。近年来国内一些学者进行了相关研究,基于三维激光扫描技术的土方量算满足精度要求,给出了在土方量算应用中的相关定量指标。目前采用地面三维激光扫描技术针对采石场的开采量变化研究非常少,计算方法也不太相同。 一、点云数据获取 某采石场开采量的详细数据为了达到扫描的目的和精度要求,结合采石场的环境和地形本身复杂的结构特点,扫描仪获取数据的特点,决定采用全站仪模式对采石场进行扫描?为了保证前后两期坐标的一致性,两期数据都是利用RTK 测量控制点坐标?根据采石场的地形和范围,根据地形情况,将扫描路线设置为闭合导线,共有导线点12 个,每站架设仪器进行扫描,采用中等分辨率 (10 cm/100 m),每站操作时间大约为30 min ,大约测量7 h完成采石场的数据采集工作?一是噪声处理与范围的统一?将扫描的激光点云数据导入随机数据处理软件Cyclone ,对软件自动拼接的点云数据进行质量检查,证明点云数据完整可用。利用软件去噪功能,通过放大与旋转操作,对研究区域外点云粗略删除。计算采石场开采量利用RTK 测量的数据与三维激光扫描的点云数据进行对比,在进行数据处理时,要保证两者范围的一致性,主要以地形图数据为基准,利用CASS 软件确定范围边界线,将处理后的数据保存为txt 格式文件,再导入Cyclone软件,删除研究区域范围以外的点云数据?二是点云数据均一化处理?为了地形图数据精度上大致保持相同,对三维激光扫描的数据进行抽稀处理?在Cyclone软件中,对点云数据进行均一化处理?为了与传统方法保持精度基本一致,便于数据间的研究对比,确定点云间隔为5 m 进行点云均一化处理(见图2)?三是点云数据的精简?利用Cyclone 软件对点云数据去噪处理后,点云数据仍然存在一些噪声点?体外孤点等影响点云质量的因素,可以采用Geomagic 软件进行点云数据的精简?将Cyclone 软件处理得到的结果保存为xyz 格式文件,在Geomagic 软件进行数据精简的主要过程:“数据导入— 点云数据着色—去除体外孤点及非连接项—减少噪音—数据采样— 数据封装”,将处理后的数据保存为vtx 格式文件? 二?利用激光点云数据计算采石场开采量方法 1. 开采量的方法?为了获取采石场两期间进行精确计算的开采量,要对采石场的开采区域范围进行精确的确定,根据点云数据的范围来确定矿山采集区域的模型的区域范围,从而确保建立的矿山采集区域模型范围与实际矿山范围尽量一致来保证矿山开采量的准确性?一是Cyclone 软件求取开采量?Cyclone 软件是具有处理点云数据与建模的功能?依据Cyclone软件提供的计算体积的功能,不能将两期的数据直接进行叠加求差值,需要分别计算每期的体积,然后求差,差值即为采石场开采量?Cyclone 软件求取体积的主要技术:将Geomagic 精简处理后的vtx格式文件后缀修改为txt 格式,然后打开文件,选择所有点云数据,创建TIN 模型;执行命令,软件自动计算点云到参考面的挖方量和填方量,其中挖方量(Cut V olume)为1252641 m3即为计算开采量所需要的数据?因为两期数据计算挖方量的差值为开采量,要求取数据的挖方量,因为提供的数据文件格式是dat 格式,将dat 格式的文件转换为txt 格式,再导入Cyclone 软件,按照以上方法,计算挖方量为1006949 m3 ,将两期的挖方量求差值即为采石场开采量,?二是HD‐3LS‐SCENE 软件求取开采量?HD‐3LS‐SCENE软件支持点云渲染?点云选择?量测分析?堆体体积计算?此次研究主要是根据需求以及数据的密度,设置网格大小,求取每一期堆体体积,然后做差,差值即为采石场的开采量?HD‐3LS‐SCENE 软件主要技术思路:将Geomagic 精简处理后的格式文件后缀修改为txt 格式,再用Cyclone 软件打开,保存为xyz 格式文件?利用导入经Cyclone软件处理后的xyz 格式文件,保存为文件,再打开格式文件,转换为格式文件,通过软件加载格式文件,点击菜单中“点云分析”设置投影点云参数生成DEM ,求取体积,将格式的数据利用Excel 表格处理转换为txt 格式文件,再导入Cyclone 软件,然后保存为xyz 格式文件,按照上述求取体积的步骤求取地形图数据的体积,三是CASS 软件求取开采量?CASS 软件一套集地形?地籍?空间数据建库?工程应用?土石方量算等功能为一体的软件系统?CASS 提供了多种土方计算方法,对不同工程条件可灵活地采用合适的土方计算模型?CASS 软件主要技术思路是:将Geomagic 精简保存的5m点云数据vtx 格式文件后缀修改为格式,再利用Excel 表格将格式文件转换为dat 格式文件保存,利用CASS 软件打开格式文件,将数据转换为格式文件,根据利用CASS 软件将数据转换为格式文件?在CASS 软件选择DTM 法计算两期土方? 2.开采量计算结果分析?针对以上计算结果,从计算开采量的技术可行性?计算的精度?软件操作的难易程度等方面进行对比分析?针对三种软件的性能及计算开采量结果的精度,详细的对比分析阐述如下:1)Cyclone 软件?Cyclone 软件是具有较高知识产权的随机数据处理软件,普通用户获取难?该软件的界面与软件说明书都是英文的,如果没有专门的培训或相关人员的指导,软件使用上比较困难?操作步骤比较繁琐,软件功能比较强大,能够计算采石场开采量?Cyclone在计算开采量方面误差较小?对比三种软件可知:Cyclone 软件在求取开采量方面精度最高,满足工程测量需要?2)HD‐3LS‐SCENE 软件?HD‐3LS‐SCENE 软件在获取方面比较困难,正版软件花费较高,软件试用期都是短暂的?软件操作上比较复杂,计算时间需要40 min ,在三种软件中计算速度最慢?在精度方面相比于其他两个软件,在相同的条件下,精度最低,因此在对精度要求不是很高的情况下,能够使用HD‐3LS‐SCENE 软件计算开采量?3)CASS 软件?该软件运用比较普遍,能够识别多种格式的数据文件?该软件操作简单快捷,在短时间内求取土方量,而且在求取两期土方量的过程中,实现一步到位,减少了后期大量的手工计算。在计算精度方面,CASS 软件获取较高的精度,所以在精度要求不是很高的情况下,CASS软件能够快速求取体积,作为优先考虑的软件。 通过对采石场开采量计算结果表明:利用激光点云数据的采石场开采量计算技术可行、精度满足工程需要。Cyclone 软件使用难度大,

三维激光扫描分类及工作操作规范

三维激光扫描分类及工作 操作规范 Revised by Hanlin on 10 January 2021

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。(1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件

点云数据处理

c++对txt文件的读取与写入/* 这是自己写程序时突然用到这方面的技术,在网上搜了一下,特存此以备后用~ */ #include #include #include using namespace std; i nt main(){ char buffer[256]; ifstream myfile ("c:\\a.txt"); ofstream outfile("c:\\b.txt"); if(!myfile){ cout << "Unable to open myfile"; exit(1); // terminate with error } if(!outfile){ cout << "Unable to open otfile"; exit(1); // terminate with error } int a,b; int i=0,j=0; int data[6][2]; while (! my() ) { my (buffer,10); sscanf(buffer,"%d %d",&a,&b); cout<头文件读:从外部文件中将数据读到程序中来处理对于程序来说,是从外部读入数据,因此定义输入流,即定义输入流对象:ifsteam in就是输入流对象。这个对象当中存放即将从文件读入的数据流。假设有名字为my的文件,存有两行数字数据,具体方法:int a,b; ifstream infile; in("my"); //注意文件的路径infile>>a>>b; //两行数据可以连续读出到变量里in() 如果是个很大的多行存储的文本型文件可以这么读:char buf[1024]; //临时保存读取出来的文件内容string message; ifstream infile; in("my"); if(in()) //文件打开成功,说明曾经写入过东西{ while(in() && !in()) { memset(buf,0,1024); in(buf,1204); message = buf; ...... //这里可能对message做一些操作cout< #i nclude #i nclude using namespace std; //////////////从键盘上读取字符的函数void read_save(){ char c[80]; ofstream outfile("f1.dat");//以输出方工打开文件if(!outfile){ cerr<<"open error!"<=65&&c[i]<=90||c[i]>=97&&c[i]<=122){//保证输入的字符是字符out(c[i]);//将字母字符存入磁盘文件

CARD-1中利用点云数据(激光雷达数据)进行项目设计使用说明

如何在CARD/1中利用点云数据进行项目设计 点云数据是利用激光雷达或其他专业测量仪器对实地进行扫描得到的带有颜色和三维坐标的大量点数据的集合。点云数据是目前国内外使用的最先进的测量数据形式。此数据可以真实的反映地形地貌,让设计者如同置身实地进行工程设计。点云数据,根据测量仪器的不同,点云数据有很多种格式,国外常见的有徕卡、瑞格、天宝等,国内常用的是激光雷达数据,其后缀为LAS。CARD/1能直接读取上述格式的点云数据。下面介绍如何在CARD/1中利用点云数据进行工程设计。 一、导入点云数据 首先,进入【测量】--【管理点云】,弹出边菜单,选择“新建”,弹出建立新点云的窗口, 输入一个名称(由字母和阿拉伯数字组成),可以给一个用于以后辨认的描述,点击确定,弹出读取点云数据的边菜单,这里可以读入多种格式的点云数据,需要根据已有点云数据的格式选择使用,现有点云数据位LAS格式,点击变菜单中的LAS格式进行读入,会弹出选择点云数据文件的对话框,选择窗体菜单中的外部文件,找到需要读入的LAS点云数据,点击打开。

出现导入点云数据的进度条,导入结束会提示导入的总点数,点击确定。 选择边菜单中的“预处理”,弹出对话框, 坐标及高程范围是系统自动获取的,无需修改,块大小是指系统将整个点云数据进行分块管理,每一个分块的面积大小,最小点数/最大点数指的是每一个分块管理的点个数。默认参数可以不用修改,也可以根据点云数据的大小情况来修改。点击确定,系统就会对点云数据进行分块处理。这一步必须做,否则系统无法显示点云数据。 二、显示点云数据 完成上述操作,点云数据就被成果导入到系统中。进入平面视图,设置数据显示,边菜单中勾选“点云数据”,即可看到点云数据平面图。 如果点云数据太大,显示速度慢,可以换一种方式显示,即绘制点云平面图,然后显示绘图对象,这样显示速度会快很多。可以进入【绘制图表】--【平面分页】,建立一个绘图需要的平面分页,可以建一个比较大的分页,包含整个点云区域。然后进入【绘制图表】--【建立点云平面】,在边菜单中点击“点云·选

三维激光扫描仪

利用三维激光扫描仪提取塌陷裂缝 张飞跃 (西安科技大学,陕西西安 710600) 摘要:三维激光扫描技术作为一种新兴的测量技术,是一种先进的、自动化的、非接触式、高精度三维激光技术,是继GPS之后测量技术的又一次革新。由于地面沉降引起的地裂缝是一种日趋普遍且显著的地质问题,对矿区地表作物及生态产生重大影响。利用三维激光扫描仪并结合数字图像技术提取塌陷裂缝是对三维激光技术应用的又一次扩展。论文对三维激光扫描仪进行了详细的介绍说明并通过对矿区实地数据的处理和分析,探索三维激光扫描仪在地表变形监测领域的应用理论和方法。 关键词:三维激光扫描技术,点云数据处理,数字滤波,裂缝信息提取 Using three-dimensional laser scanner to extract Surface crack ZHANG Fei-Yue (xi’an university of science and technology) Abstract:As a new measurement technique,three-dimensional laser scanning technology is an advanced, automated, non-contact, high-precision three-dimensional laser technology, following another GPS measurement technology innovations. Due to cracks caused by ground subsidence is a common and increasingly significant geological problems, there has a significant impact on the mine surface crops and https://www.360docs.net/doc/108319710.html,ing three-dimensional laser scanner and digital image technology to extract collapse crack is another expansion of three-dimensional laser technology .This paper has been illustrated and described in detail by mine field data processing and analysis for three-dimensional laser scanner,to explore the three-dimensional laser scanner application theory and methods in the field of surface deformation monitoring. Key words: Three-dimensional laser scanning technology,Point cloud data processing,Digital Filter,Cracks information extraction 0 引言 三维激光扫描系统是一种集高新科技于一身的空间数据获取系统。利用地面三维激光扫描技术,可以进行复杂地形地貌的地区或是管线设施密集的工厂进行扫描作业,并可以直接实现各种大型的、复杂的、不规则、标准或非标准的实体或实景三维数据完整的采集,进而快速重构出实体目标的三维模型及线、面、体、空间等各种制图数据。同时,还可对采集的三维激光点云数据进行各种后处理分析,如测绘、分析、模拟、展示、监测、虚拟现实等操作。 在矿山开采沉陷研究中,传统地表沉陷观测方法在地表变形盆地主断面上步设一定密度的监测点获取地表变形数据。监测点数量有限,并且在较长的观测周期中出现因监测点难以保护而造成点位丢失的现象,给之后的数据处理工作带来

三维点云数据处理的技术研究

三维点云数据处理的技术研究 中国供求网 【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。 【关键词】大数据;云数据处理;应用 一、前言 随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。 二、大数据领域现状 数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发达国家已经启动了大数据布局。2012年3月,美国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方面投资1(89亿英镑。 同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业

分析、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCognosExpress和InfoSphereBigInsights 数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure 上的HDInsight大数据解决方案,EMC公司的 GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。 在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相 关;2012年12月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012,2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率达51(4%,市场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾

机载激光雷达数据后处理软件(LiDAR_Suite)简介

机载激光雷达数据后处理软件(LiDAR_Suite)简介 LiDAR_Suite是武汉天擎空间信息技术有限公司在国家高新技术发展计划项目基础上,开发的具有完全自主知识产权的机载LiDAR 数据后处理软件(如图1)。 图1:LiDAR_Suite 系统界面 LiDAR_Suite 综合考虑了当前机载激光雷达数据处理与应用的实际,形成了一套从原始点云数据到高质量行业产品、成熟高效的机载LiDAR数据处理工艺流程。LiDAR_Suite 功能齐全,性能稳定,提供了涵盖机载激光雷达数据预处理、基础共性处理和专业应用处理等三个处理层次的丰富功能。具体包括: 1)机载LiDAR 点云数据、影像、矢量及DEM 等多源空间数据的存取与可视 化,提供了和主流LiDAR 数据处理软件、遥感影像处理软件以及GIS软件的数据接口; 2)机载LiDAR 数据质量控制;机载LiDAR 系统检校、点云数据精度评价 和点云数据的无缝航带拼接; 3)海量点云数据的工程化组织管理及其自动批处理;集群环境下的点云数据快 速处理; 4)多种点云数据的自动滤波、分类算法,基于多模式和多视图的点云编辑精细

分类,多模式和可视化的分类精度评价; 5)基于机载LiDAR 点云的高质量数字高程模型和等高线生产; 6)面向机载LiDAR 同机航空数码相机的整区域快速正射影像生产;机载 LiDAR点云与非同机遥感影像的配准; 7)电力行业应用:电力线提取与建模、电力设施周边地物要素采集、危险点间 距量测等; 8)数字城市应用:独立的子模块Building Modeler,实现城市建筑物三维模型的 自动、半自动建立。 LiDAR_Suite采用了当前机载LiDAR最新数据处理技术,采用了模块化设计思想以及插件集成技术,在可视化、人机交互、易操作性、处理精度与效率等方面与现有商业化的主流机载激光雷达数据处理软件相比均具有一定的技术优势,并提供了灵活方便的、面向行业的二次开发功能。LiDAR_Suite兼顾了先进算法自动化处理和人机交互的作用,使系统更具实用性;面向专业应用提供了测绘生产、数字城市建模、电力行业应用等功能。目前,该软件已应用于实际的高精效测绘生产中,完成从原始点云数据到基础测绘产品生产(含DEM、DOM、等高线、部分DLG)以及产品精度评价的全部流程,效果良好(图2为数据生产工程管理示意图,图3为多模式和多视图的点云精细分类编辑示意图,图4为点云自动分类结果,图5为高精度DEM渲染结果,图6为电力悬链线的提取与建模,图7为建筑物半自动建模)。目前,LiDAR_Suite的生产处理成果已应用于国土、交通、水利等领域,并可望在更多领域如资源、环境、灾害、电力、农林等得到广泛应用。

三维激光扫描仪的原理与其应用

三维激光扫描仪 2.1三维激光扫描仪研究背景 自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20世纪获得巨大发展。实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云”,具有快速、简便、准确的特点。基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。 其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。 2.2 三维激光扫描技术研究现状 2.2.1 主要的三维激光扫描仪介绍 随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。主要的有瑞士Leica公司,美国的FARO公司和3D DIGITAL公司、奥地利的RIGEL公司、加拿大的OpTech公司、法国MENSI公司、中国的北京荣创兴业科技发展公司等。这些扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同[2]。主要的分类见图1-1和表1-1。

数据处理点云处理

非接触三维扫描测量数据的处理研究 1 点云数据的处理 1.1 噪声点的剔除和失真点的查找.在非接触三维扫描测量过程中,受测量方式、被测量物体材料性质、外界干扰等因素的影响,不可避免地会产生误差很大的点(噪声点)和失真点(跳点).因此在数据处理的第一步,就应利用相关专用软件所提供的去噪声点功能除去那些误差大的噪声点和找出可能存在的失真点[3].失真点的查找需要一定的技巧和经验,下面介绍3种方法供大家参考:①直观检查法.通过图形显示终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕上的孤点剔除.这种方法适合于数据的初步检查,可从数据点集中筛选出一些比较大的异常点.②曲线检查法.通过截面的首末数据点,用最小二乘法拟合得到一条样条曲线,曲线的阶次可根据曲面截面的形状决定,通常为3~4阶,然后分别计算中间数据点pi到样条曲线的距离‖e‖,如果‖e‖大于等于[ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除(见图1).③弦高差方法.连接检查点的前后2点,计算中间数据点pi到弦的距离‖e‖,如果‖e‖ [ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除.这种方法适合于测量点均匀且较密集的场合,特别是在曲率变化较大的位置(见图2). 图1 曲线检查法剔除坏点 图2 弦高差方法 1.2 数据精简.非接触三维扫描测量的突出特点是点云十分密集,数据量极其庞大(在1m2的范围内有数十万个点).若将如此庞大的数据量直接用于曲面构建不仅需要巨大的计算机资源(普通微机可能无法胜任)和很长的计算时间,而且整个处理过程也将变得难以控制,更何况并非所有的测试数据对曲面的构建都有用.因此,有必要在保证一定精度的前提下,对测试数据进行精简.数据精简的原则是在扫描曲率较大的地方保持较多的数据点,在曲率变化较小的地方保持较少的数据点.不同类型的点云采用不同的精简方式.散乱点云可通过随机采样的方法来精简,而对于扫描线点云和多边形点云可采用等间距、倍率、等量及弦偏差等方法进行精减.此外均匀网格法与非均匀网格法也可用来精减点云数据.其中均匀网格法只需选取其中的某些点,无需改变点的位置,可以很好地保留原始数据,特别适合简单零件表面瑕点的快速剔除.由于均匀网格法没有考虑被测物体的表面形状特征,因此它不适合对形状复杂的重要工程部件测试数据的处理.与之相反,非均匀网格法可以根据被测工程部件外部形状特征的实际需要来确定网格的疏密,因此它可在保证后继曲面构建精度的前提下减少数据量,这在处理尺寸变化较大的自由形体方面显得十分有效. 1.3 数据的平滑处理.点云数据中的随机误差将影响到后续曲面的构建及生成三维实体模

三维激光扫描技术

三维激光扫描技术 三维激光扫描技术 三维激光扫描技术又被称为实景复制技术,作为20 世纪90 年代中期开始出现的一项高新技术,是测绘领域继GPS技术之后的又一次技术革命,通过高速激光扫描测量的方法,大面积、高分辨率地快速获取物体表面各个点的(x.y.z)坐标、反射率、(R.G.B)颜色等信息,由这些大量、密集的点信息可快速复建出1:1的真彩色三维点云模型,为后续的业处理、数据分析等工作提供准确依据。具有快速性,效益高、不接触性、穿透性、动态、主动性,高密度、高精度,数字化、自动化、实时性强等特点,很好的解决了目前空间信息技术发展实时性与准确性的颈瓶。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型,主要通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据,大量的空间点位信息。是快速建立物体的三维影像模型的一种全新的技术手段。三维激光扫描技术使工程大数据的应用在众多行业成为可能。如工业测量的逆向工程、对比检测;建筑工程中的竣工验收、改扩建设计;测量工程中的位移监测、地形测绘;考古项目中的数据存档与修复工程等等。 三维激光扫描原理 三维激光扫描仪利用激光测距的原理,通过高速测量记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。 三维激光扫描技术引入建筑工程的意义 随着三维扫描技术的发展与成熟,它很快成为空间数据获取的一种重要技术手段,并在很多行业引起技术性变革的热潮。目前,国建筑行业处于变革的阶段,BIM在我们从事的行业中引爆,但是都处于一种建模,碰撞分析,检测等方面,但都没有深入衔接现实,忽略施工工地数据流与建筑信息模型间的流通转化,何谈运维,所以bim模型去哪了?并没有贯穿到bim 的全生命周期中去。三维激光扫描技术在BIM中的应用是最基础的一个重要环节,对现场实际数据的采

机载激光雷达数据处理流程

机载激光雷达数据处理 编制:深圳飞马机器人科技有限公司版本号:V0.1 日期:2019-3-22

版权声明 本文档版权由深圳飞马机器人科技有限公司所有。任何形式的拷贝或部分拷贝都是不允许的,除非是出于有保护的评价目的。 本文档由深圳飞马机器人科技有限公司提供。此信息只用于软件业务项目管理的成员或咨询专家。特别指出的是,本文档的内容在没有得到深圳飞马机器人科技有限公书面允许的情况下不能把全部或部分泄露给任何其它单位。

目录 机载激光雷达数据处理 (1) 1.概述 (5) 2.软件准备 (5) 3.数据整理 (6) 3.1.GPS数据 (6) 3.2.LIDAR原始数据 (7) 3.3.影像数据...........................................错误!未定义书签。 3.4.数据整理与存放..............................错误!未定义书签。 4.差分解算 (7) 4.1.GPS数据格式转换 (7) 4.2.影像POS数据处理..........................错误!未定义书签。 4.3.点云轨迹解算 (10) 5.影像数据处理..............................................错误!未定义书签。 6.点云数据预处理 (26) 6.1.新建项目 (26) 6.2.点云解算 (30) 6.3.数据检核 (31) 6.4.特征提取 (33) 6.5.航带平差 (34) 6.6.点云赋色 (35)

6.7.坐标转换 (36) 6.8.点云标准格式(LAS)导出 (38) 7.点云数据后处理 (39) 7.1.数据分块 (39) 7.2.噪声点滤除 (40) 7.3.分类编辑 (41) 7.4.DEM输出 (44) 7.5.EPS采集DLG (45) 7.6.基于点云采集DLG (51) 8.成果精度检查与汇交 (57) 8.1.点云精度检查 (58) 8.2.成果提交(只列出点云成果,不含影像) (58)

(完整word版)三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 三维信息获取技术,也称为三维数字化技术。它研究如何获取物体表面空间坐标,得到物体三维数字化模型的方法。这一技术广泛应用于国民经济和社会生活的许多领域,如在自动化测控系统中,可以测微小、巨大、不规则等常规方法难以测量物体。 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

三维激光扫描数据处理操作说明

三维激光扫描数据处理操作说明 中国地质大学三峡中心 钟成 2015年12月

1. 配置要求 扫描要求:密度高,扫描全面,站间重叠度高。 系统配置:XP系统,32位,有D盘盘符。 软件安装: ILIRS-3D软件包(绿色) polyworks_10_0_3_32bit.exe, chanzhuang.exe和配套库, Geomagic Studio10, TexCapture1.1。 Matlab 10.0 2. 数据预处理 2.1. 数据转换 2.1.1. 数据导入 打开ILIRS-3D软件包中Parser 5.0.1.4中Parser.exe,界面如图2.1.1: 图2.1.1 点击Add找到笔记本中存储扫描数据的文件夹:

出现以下界面: 图2.1.3 工具栏中放大缩小按钮可用于观察扫描范围。 2.1.2. 基本设置 然后点击setting对解压过程进行设置,出现如2.1.4界面。

图2.1.4 其中,Outputfile界面,主要设置输出路径和格式。默认路径在保存点云文件夹下,不用改。默认选择PIF格式,24-bit texture,也就是有颜色信息的点云,如果是8-bit scaled 则是点云强度信息。PIF格式是polyworks支持的格式。如果选择XYZ格式,则以ASCII码形式输出,也可以定义是否需要输出颜色信息。该格式可直接被Geomagic打开。 图2.1.5 2.1. 3. 颜色设置 然后,在最左边列表里选择Color Channel,出现如下界面:

选中, 默认的在会出现相应的照片信息,如果没有,则检查存储扫描数据的文件夹里是否有照片文件。 在里,默认是没有文件内容的,点击,到“ILIRS-3D”软件包,找到文件“10384 CameraCalParam.txt”即可。 2.1.4. 平移参数设置 然后在最左边列表里选择Pan tilt Transform,出现如下界面:

点云滤波方法

点云滤波方法-CAL-FENGHAI.-(YICAI)-Company One1

激光雷达点云数据滤波算法综述 滤波对象及目的:通过机载激光雷达快速获取高精度三维地理数据,对它所获取的点云数据的滤波过程就是将LIDAR点云数据中的地面点和非地面点分离的过程。 滤波方法:对数学形态学的滤波算法、基于坡度的滤波法、基于TIN的LIDAR点云过滤算法、基于伪扫描线的滤波算法、基于多分辨率方向预测的LIDAR点云滤波方法。 (一)LIDAR数据形态学滤波算法: (1)离散点云腐蚀处理。遍历LIDAR点云数据,以任意一点为中心开w×w大小的窗口,比较窗口内各点的高程,取窗口内最小高程值为腐蚀后的高程(2)离散点膨胀处理。再次遍历LIDAR点云数据,对经过腐蚀后的数据用同样大小的结构窗口做膨胀。即以任意一点为中心开w×w大小的窗口,此时,用腐 蚀后的高程值代替原始高程值,比较窗口内各点的高程,取窗口内最大高程值 为膨胀后的高程 (3)地面点提取。设Z p是p点的原始高程,t为阈值,在每点膨胀操作结束时,对该点是否是地面点作出判断。如果p点膨胀后的高程值和其原始高程值Z p 之差的绝对值小于或等于阈值t,则认为p点为地面点,否则为非地面点 该算法有两种滤波方式:一种是按离散点进行滤波,一种是按格网滤波。(1)按离散点滤波:是对每个激光点进行腐蚀和膨胀操作各一次,结构窗口内数据的选取按距离来量度。 (2)按格网滤波:指将每个格网看成一个“像素”,按照数字图像处理中取邻域的方法来开取结构窗口。腐蚀时,格网的“像素值”即为w×w邻域所包含格网的最小高程值;膨胀时,格网的“像素值”即为w×w邻域所包含格网的最大高程值。 优缺点:总体上,数学形态学算法存在的主要问题是坡度阈值的人工选取和细节地形的方块效应。如果阈值设定太大,可能保留一些低矮的地物目标,设定太小,则可能削平地形特征。现在各种阈值的选取一般根据研究者的经验设定,或者根据地形特征设定的,没有考虑全局的特征因素,不具有普适性。解决这些问题的方法是根据地形的起伏大小和高程变化自适应的进行滤波窗口调整。但此方法在大范围地区及地形变化强烈山区的有效性还有待进一步 研究。 实际应用:从应用上,Lindenberger将数字形态学方法引人到机载激光雷达数据滤波中,首先采用水平结构单元对机载激光测高数据进行开运算,过滤剖面式激光扫描数据,然后利用自回归过程改善了开运算结果。 (二)基于坡度变化的滤波算法 滤波基本思想:基于坡度变化的滤波算法是根据地形坡度变化确定最优滤波函数,对于给定的高差值,随着两点间距离的减小,高程值大的激光脚点属于地面点的可能性就越小。

相关文档
最新文档