选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案
选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

焦点在y 轴上的椭圆的参数方程:

22

22y 1,b a

x +=

练习:已知椭圆4

92

2y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧?

错解:由已知可得a =3,b =2,θ=600,

∴x =acos θ=3cos60°=2

3,y =bsin θ=2sin60°=3。

从而,点M 的坐标为)3,2

3(。

正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4

92

2y x +=1联立, 解得x =31316, y =9331

6。

所以点M 的坐标为(31316,9331

6)。

另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。 代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。

例1 求椭圆)0b a (1b

y a x 22

22>>=+的内接矩形的面积及周长的最大值。

解:如图,设椭圆1b

y a x 22

22=+的内接矩形在第一象限的顶点是

A )sin cos (ααb a ,)2

0(π

α<

<,矩形的面积和周长分别是S 、L 。

ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=,

当且仅当4

a π

=

时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ?

?

=??

=?

5

3

arcsin 23-π=

α时,距离d 有最大值2。

例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段

例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2

1MB AM =,

试求动点M 的轨迹方程。

解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。

则,α=+?+α=++

=

cos 8211021cos 12211x 21x x B A 3sin 42

11921

sin 6211y 21y y B A +α=+

?+α=++=, 动点M 的轨迹的参数方程是?

?

?+α=α

=3sin 4y cos 8x (α是参数),

消去参数得116

)3y (64x 2

2=-+。

例6 椭圆)0b a (1b

y a x 22

22>>=+与x 轴的正向相交于点A ,O 为坐标原

点,若这个椭圆上存在点P ,使得OP ⊥AP 。求该椭圆的离心率e 的取值范围。

解:设椭圆)0b a (1b

y a x 22

22>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A

(a ,0)。 则a

cos a 0

sin b k cos a sin b k AP OP -α-α=

αα=

,。而OP ⊥AP , 于是

1a

cos a 0

sin b cos a sin b -=-α-α?αα,整理得0b cos a cos )b a (22222=+α-α- 解得1cos =α(舍去),或2

22

b

a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e

e 112

2<-<-,解得21e 2

>,于是1e 22<<。故离心率e 的取值范围是?

??

?

??122,。

例7 四边形ABCD 内接于椭圆16

922y x +=1,其中点A(3,0),C(0,4),B 、D 分别位

于椭圆第一象限与第三象限的弧上。求四边形ABCD 面积的最大值。

双曲线的参数方程

与研究椭圆参数方程的方法类似,我们来研究双曲线

②)0,0(12

2

22>>=-b a b y a x

的参数方程。

如图, 以原点O 为圆心, a, b(a>0, b>0)为半径分别作同心圆C 1、C 2。设A 为圆C 1上任一点, 作直线OA, 过A 作圆C 1的切线AA'与x 轴交于点A', 过圆C 2与x 轴的交点B 作圆C 2的切线BB'与直线OA 交于点B'。过点A',B'分别作y 轴, x 轴的平行线A'M, B'M 交于点M,设OA 与OX 所成的角为φ(φ∈[0, 2π)且φ≠π/2,φ≠3π/2), 求点M 的轨迹方程, 并说

出点M 的轨迹。

设Ox 为始边,OA 为终边的角为?,点M 的坐标是),(y x .那么点1A 的坐标为)0,(x ,点1B 的坐标为),(y b .因为点A 在圆1C 上,由圆的参数方程得点A 的坐标为(??sin ,cos a a ),

所以,)sin ,cos (,)sin ,cos (1????a a x AA a a OA --==.因为1AA OA ⊥,所以01=?AA OA ,

从而0)sin ()cos (cos 2=--???a a x a ,解得?cos a x =.记??

sec cos 1

=,(?

sec 是正割函数,它表示余弦函数的倒数,现在只是为推导参数方程才引入,所以不要求引入,仅供同学们学习了解使用)则?sec =x .因为点1B 在角?的终边上,由三角函数的定义有b

y

=

?tan ,即?tan b y =.所以,点M 的轨迹的参数方程为??

?==?

?

tan sec b y a x (?为参数)(2) 因为1cos sin cos 12

22=-???,即1tan sec 2

2=-??,所以,从(2)方程中消去参数?后得到点M 的轨迹的普通方程(1).这是中心在原点,焦点在x 轴上的双曲线.所以(2)就是双曲线(1)的参数方程.此时的参数?的范围为[)π?2,0∈,且2

3,2

π?π

?≠

. 由图可知,参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.

与椭圆类似,122

22=-b

y a x 双曲线上任意一点的坐标可以设为()??tan ,sec b a ,

这是解决与双曲线有关的问题的重要方法.

例1.求点M 0(0, 2)到双曲线x 2-y 2=1的最小距离。

例3 求证:等轴双曲线平行于实轴的弦在两顶点所张的角均为直角. 分析:(1)实轴和虚轴等长的双曲线,叫等轴双曲线,所以等轴双曲线的渐近线,方程为x y ±=,两渐近线的夹角为直角.

(2)此题求证:2

21π

=

∠=∠B AA A BA

证明:设双曲线方程为222a y x =-,取顶点A 2(0,a ),弦AB ∥Ox ,),tan ,sec (ααa a B 则)tan ,sec (ααa a A -.∵,

sec tan ,sec tan 2

2a

a a k a a a k BA A A -=

--=

αα

αα∴122-=?BA A A k k

∴弦AB 对1A 张直角,同理对2A 也张直角.

经验:①掌握等轴双曲线的定义和等轴双曲线方程的设法222a y x =-.②根据题义要能化出较标准的图象.③证明是直角,实际是证明所在直线的斜率积为-1.

例4 已知双曲线)0,0(122

22>>=-b a b y a x ,A ,B 是双曲线同支上相异两点,线段AB 的垂直

平分线与x 轴相交于点P )0,(0x ,求证:a

b a x 2

20||+>.

分析:证明题是学生学习较困难的部分,而不等式是更困难的部分,所以在证明前学会分析条件和结论之间的联系是解题的关键.

解:设A ,B 坐标分别为)tan ,sec (ααb a ,)tan ,sec (ββb a ,则中点为

M ))sec (sec 2(βα+a ,))tan (tan 2

βα+b

,于是线段AB 中垂线方程为

??

????+----=+-

)sec (sec 2)tan (tan )sec (sec )tan (tan 2βαβαβαβαa x b a b y 将)0(,0x P 代入上式,∴)sec (sec 22

20βα++=

a

b a x .

∵2|sec sec |>+βα(∵A ,B 相异),∴a

b a x 2

20||+>.

经验:①中垂线的特点是直线过AB 中点且与线段AB 垂直.②关键点是2|sec sec |>+βα,由此得出结论.

抛物线的参数方程

前面曾经得到以时刻t 为参数的抛物线的参数方程:

)10000(215001002g t t gt y t

x ≤≤??

?

??-==为参数,且

对于一般抛物线,怎样建立参数方程呢?

以抛物线的普通方程px y 22=为例,其中p 为焦点到准线的距离。 设M(x, y)为抛物线上除顶点外的任意一点,以射线OM 为终边的角记作α。

显然,当α在)2

,2(π

π-

内变化时,

点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的点M 与之对应,因此,可以取α为参数来探求抛物线的参数方程.因为点M 在α的终边上,根据三角函数定义可得

αtan =x y ,

由方程px y 22=,αtan =x

y

联立,得到???

????

==αα

tan 2tan 22p y p x (α为参数),这是抛物线(不包括顶点)的参数方程.

如果令αtan 1=t ,),0()0,(+∞?-∞∈t ,则有?

??==pt y pt x 222(t 为参数).

当t=0时,由参数方程?

??==pt y pt x 222

(t 为参数)表示的点正好就是抛物线的顶点(0,0),因此,

当),(+∞-∞∈t 时,参数方程???==pt y pt x 222

(t 为参数)就表示整条抛物线.参数t 表示抛物线上除顶

点外的任意一点与原点连线的斜率的倒数.

说明:1、抛物线的参数方程因参数选择的不同会有不同的形式,要注意所选参数的几何意义.(例如:

抛物线的参数方程为???

????

==ααtan 2tan 22p y p x 时(α为参数),这是不包括顶点的抛物线的参数方程,α是X

轴正半轴到OM (M 为抛物线上的点)所成的角.抛物线的参数方程为???==pt y pt x 222

时(t 为参数),参

数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数).

2、抛物线参数方程要注意和普通方程的等价性,要注意抛物线的完整性.

例1 如图,O 为原点,A,B 为抛物线)0(22>=p px y 异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 于M ,求点M 的轨迹方程.又当点A,B 在什么位置时,ΔAOB 面积最小?最小值是多少?

分析:①注意直线垂直时的条件,斜率积为-1或向量的数量积为0,引出参数间的关系.②注意挖掘三点共线的条件:01221=-y x y x

解:根据条件,设点M ,A ,B 的坐标分别为),(y x ,)2,2(121pt pt ,(22

2

2,2pt pt )(21t t ≠,且021≠?t t ),则),(y x OM =,)2,2(121pt pt OA =,)2,2(22

2pt pt OB =,))(2),(2(122122t t p t t p AB --=.因为OB OA ⊥,所以0=?AB OA ,

即 0)2()2(212221=+t t p t pt ,所以121-=t t ①

因为AB OM ⊥,所以0=?AB OM ,即0)(2))(2(122

1221

=-+-t t py t t px

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

圆锥曲线解题技巧教案整理后1

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 --- ) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题 1、若点()3,P m 在以点F 为焦点的抛物线2 4{4x t y t == (t 为参数)上,则PF 等于( ) A.2 B.3 C.4 D.5 答案:C 解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4. 故选C. 2、参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( ) A.圆的一部分 B.抛物线的一部分 C.双曲线的一部分 D.椭圆的一部分 答案:B 解析:参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤, 表示抛物线的一部分. 3、椭圆5cos ,{3sin x y ?? == (?为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)± 答案:B 解析:椭圆5cos ,{3sin x y ?? == (?为参数)的普通方程为22 1259x y +=,故4c =. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.

4、已知过曲线3cos ,{ 4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4 π,则P 点的坐标是( ) A.(3,4) B.1212,55??- ??? C.? D.1212,55?? ??? 答案:D 解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{ 4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4 π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125 x y ==. 5、已知O 为原点,P 为椭圆4cos ,{ x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3 π,则点P 坐标为( ) A.()2,3 B.()4,3 C.( D.( ,55 答案:D 解析:椭圆4cos , {x y αα== (α为参数)化为普通方程,得22 11612x y +=.由题意可得直线OP 的方程为y = (0x >). 由22(0), {11612y x x y =>+= 解得x y ==∴点P 的坐标为()55 .故选D. 6、参数方程cos 2sin x y θθ=??=? (θ为参数)化为普通方程为( ) A.22 14y x += B.2212y x += C.2214x y += D.2 212x y +=

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

圆锥曲线的参数方程

二 圆锥曲线的参数方程 [学习目标] 1.掌握椭圆的参数方程及应用. 2.了解双曲线、抛物线的参数方程. 3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接] 1.椭圆的参数方程中,参数φ是OM 的旋转角吗? 提示 椭圆的参数方程???x =a cos φ, y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y ) 的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是 OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠3 2π. 3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗? 提示 ???x =2pt , y =2pt 2 (p >0,t 为参数,t ∈R .) [预习导引] 1.椭圆的参数方程

2.双曲线的参数方程 3.抛物线的参数方程 (1)抛物线y 2 =2px 的参数方程是???x =2pt 2 ,y =2pt (t ∈R ,t 为参数). (2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.

要点一 椭圆参数方程的应用 例1 已知A 、B 分别是椭圆 x 236 +y 2 9 =1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程. 解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得?????x =6+0+6cos θ3,y = 0+3+3sin θ3(θ为参数),即?? ?x =2+2cos θ, y =1+sin θ. 故重心G 的轨迹的参数方程为???x =2+2cos θ,y =1+sin θ (θ为参数). 规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便. 跟踪演练1 已知曲线C 1:???x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 2 9=1. (1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线? (2)若C 1上的点P 对应的参数为t = π 2 ,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值. 解 (1)由???x =-4+cos t ,y =3+sin t ,得???cos t =x +4, sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1, C 1表示圆心是(-4,3),半径是1的圆.

《圆锥曲线的参数方程》教学案

2.3《圆锥曲线的参数方程》教学案 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二、重难点: 教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. (1)圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)\()(参数方程为:?? ?+=+=θ θ sin cos r y y r x x 00 (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程. 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆 12 22 2=+ b y a x 参数方程 ?? ?==θ θ sin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角 2.双曲线的参数方程的推导:双曲线12 22 2=- b y a x 参数方程 ?? ?==θ θ tan sec b y a x (θ为参数)

. 3.抛物线的参数方程:抛物线Px y 22 =参数方程?? ?==Pt y Pt x 222 (t 为参数),t 为以抛物线上一点(X ,Y)与其顶点连线斜率的倒数. (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义. B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标. (3)、参数方程求法:(A)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B)选取适当的参数;(C)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D)证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单.与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等. 4、椭圆的参数方程常见形式:(1)、椭圆122 22=+b y a x 参数方程 ?? ?==θ θsin cos b y a x (θ 为参数);椭圆 2 2 221(0)y x b a b a +=>>的参数方程是 c o s s i n (2x b y a θθθθ==≤≤π? 为参数,且0). (2)、以0 ( ,)y x 为中心焦点的连线平行于x 轴的椭圆的参数方程是 00 cos sin ({x a y b x y θθ θ= +=+为参数). (3)在利用???==θθ sin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ). (三)、巩固训练

人教版高中数学《圆锥曲线和方程》全部教案

椭圆及其标准方程 一、教学目标 (一)知识教学点 使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程. (二)能力训练点 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力. (三)学科渗透点 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力. 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、活动设计 提问、演示、讲授、详细讲授、演板、分析讲解、学生口答. 四、教学过程 (一)椭圆概念的引入 前面,大家学习了曲线的方程等概念,哪一位同学回答: 问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?

对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识. 提出这一问题以便说明标准方程推导中一个同解变形. 问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索? 一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如: “到两定点距离之和等于常数的点的轨迹.” “到两定点距离平方差等于常数的点的轨迹.” “到两定点距离之差等于常数的点的轨迹.” 教师要加以肯定,以鼓励同学们的探索精神. 比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图: 取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆. 教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等…… 在此基础上,引导学生概括椭圆的定义: 平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.

高中圆锥曲线教案设计

第二章圆锥曲线与方程 2.1曲线与方程 2.1.1曲线与方程2.1.2求曲线的轨迹方程 学生探究过程: (一)复习引入 大家知道,平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

圆锥曲线 教学案

§2.1圆锥曲线 教学目标 1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程, 掌握它们的定义,并能用数学符号或自然语言的描述。 2.通过用平面截圆锥面,感受、了解双曲线的定义。能用数学符号或自然语言 描述双曲线的定义。 教学重点、难点 重点:椭圆、抛物线、双曲线的定义。 难点:用数学符号或自然语言描述三种曲线的定义 教具 多媒体课件、实物投影仪 内容分析 本节课教材利用平面对圆锥面的不同截法,产生三种不同的圆锥曲线,得出椭 圆、双曲线和抛物线的概念。这样既使学生经历概念的形成过程,更有利于从 整体上认识三种圆锥曲线的内在关系。根据问题的难易度及学生的认知水平, 要求学生掌握椭圆、抛物线的定义,对双曲线只要求了解其定义。这是建立在 学生的最近发展区上的形式化的过程,有利于培养学生的数学化能力,提高数 学素养。 学法指导 教学中向学生展示平面截圆锥面得到椭圆的过程,使学生加深对圆锥曲线的理 解。对用Dandelin双球发现椭圆的特性(由此形成椭圆的定义),可直接给出 放进双球后的图形,再引导学生发现"到两切点距离之和为定值"的特性,这一内 容让学生感知、认同即可,不必对探究、推理过程作过多研究。 教学过程设计 1.问题情境 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条 相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位 置,观察截得的图形的变化情况。 提出问题:用平面去截圆锥面能得到哪些曲线? 2.学生活动 (1)古希腊数学家Dandelin在圆锥截面的两侧分别放置一球,使它们都与截面相切(切点分别为F1,F2),又分别与圆锥面的侧面相切(两球与侧面的公共点分别构成圆O1和圆O2).过M点作圆锥面的一条母线分别交圆O1,圆O2与P,Q两点,因为过球 外一点作球的切线长相等,所以 MF1 = MP,MF2 = MQ, (2)如图,两个球都与圆锥面相切,切点轨迹分别是 ⊙O1和⊙O2;同时两球分别与截面切于点F1 、F2. 设M是截线上任意一点,则MF1、MF2是由点M向两个

圆锥曲线教案课案

椭圆 椭圆及其标准方程 ◆ 知识与技能目标 理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法. ◆ 过程与方法目标 (1)预习与引入过程 当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程. (2)新课讲授过程 (i )由上述探究过程容易得到椭圆的定义. 〖板书〗把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={} 12|2M MF MF a +=. (ii )椭圆标准方程的推导过程 提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系. 无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理. 设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义. 类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()22 2210y x a b a b +=>>. (iii )例题讲解与引申 例 1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22??- ??? ,求它的标准方程. 分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解. 另解:设椭圆的标准方程为()22 2210x y a b a b +=>>,因点

直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程,圆锥曲线的参数方程及其应用 一. 教学内容: 直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。 [基本知识点] (1)直线的参数方程 <1>标准形式: :),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α )t (sin t y y cos t x x 00为参数???+=+=αα <2>一般形式 )1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且 (2)参数t 的几何意义及其应用 标准形式: )y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα 的数量的有向线段到直线上动点M M y)(x,M 0 :t,M M 0故即= <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2| <2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0

<3>设弦M 1,M 2中点为M ;则点M 相应的参数 2t t t 2 1M += (3)圆锥曲线的参数方程 <1>)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+ 轴正方向的旋转角 的几何意义动半径对于其中x α <2> 其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222 ααα???===+ 角)。 <3>)(btg y asec x 为参数双曲线的参数方程为ααα???== <4>抛物线y 2=2px 的参数方程为 )(t pt 2y pt 2x 2 为参数?????== (4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。 <2>互化公式

圆锥曲线教案

圆锥曲线知识点小结 一.圆锥曲线的定义: 椭圆:平面内与两个定点 的距离之和等于定长(大于)的点的轨迹叫做椭圆。这两个定点叫做 椭圆的焦点,两焦点的距离叫做椭圆的焦距。 数学语言: 常数2a=,轨迹是线段; 常数2a< ,轨迹不存在; 双曲线:平面内与两个F 1,F 2的距离之差的绝对值等于常数(小于||F 1F 2)的点的轨迹叫做双曲线。这两个定点 叫做双曲线的焦点,两焦点的距离 叫做双曲线的焦距。 数学语言: a MF MF 221=- (212F F a <) 常数2a=,轨迹是两条射线; 常数2a> ,轨迹不存在; 常数2a=0,轨迹是21F F 的中垂线。 抛物线:平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线.点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线.(注:F 不在l 上) 当F 在l 上时是过F 点且垂直于l 的一条直线。 定义中要重视“括号”内的限制条件 (1)定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中,是椭圆的是( ) A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (2)方程 2222(6)(6)8 x y x y -+-++=表示的曲线是(双曲线的左支)____ 二、圆锥曲线的标准方程 椭圆:焦点在x 轴上时: 12222=+b y a x 焦点在y 轴上时:122 22=+b x a y 注:是根据分母的大小来判断焦点在哪一坐标轴上。 (方程2 2 1Ax By +=表示椭圆 (A ,B ,同正,A ≠B )) 双曲线:焦点在x 轴上时:12222=-b y a x 焦点在y 轴上时:122 22=-b x a y

运用圆锥曲线定义法求轨迹方程教案

运用圆锥曲线的定义求轨迹方程 【学习目标】 1、进一步理解圆锥曲线定义的内涵,加深对圆锥曲线本质特征的理解和认识。学会运用定义判断动点的轨迹并求动点的轨迹方程。 2、在应用圆锥曲线定义解决问题的过程中,体验运用定义法解决问题时的特点,提高快速、准确、灵活的解题的能力。 3、进一步培养自我批判的思维品质,质疑求真的科学态度。 【教学重点】(1)圆锥曲线定义的再认识;(2)圆锥曲线定义在解题中的运用。 【教学难点】如何运用圆锥曲线定义解决相关问题。 【课前导学】 1、圆锥曲线的定义(用数学符号表示) 椭圆的定义 双曲线的定义 抛物线的定义 2、解答下列各题 (1)过点(1,0)A 且与直线l :1-=x 相切的动圆M 的圆心M 的轨迹方程为 (2)在ABC ?中,已知)0,1(),0,1(C A -,若sin sin 2sin A C B +=,则定点B 的轨迹方程为 (3)设向量i 、j 为直角坐标系的x 轴、y 轴正方向上的单位向量,向量(3)a x i y j =+?+? ,(3)b x i y j =-?+? , 若且||||2a b -= ,则满足上述条件的点(,)P x y 的轨迹方程 是 (4)方程|2|21 )1()1(22-+=+++y x y x 表示的曲线是 ( ) A 、 椭圆 B 、双曲线 C 、抛物线 D 、不能确定 【课堂学习】 [例题1] 一动圆与圆1O :4)3(22=++y x 外切,同时与圆2O :100)3(2 2=+-y x 内切,求动圆圆心P 的轨迹方程。

[思考1] 一动圆与圆1O :4)3(22=++y x 外切,圆2O :9)3(22=+-y x 中的一个内切一个外切,求动圆圆心P 的轨迹方程。(同时相切呢?) [思考2] 已知圆1O :4)2(22=+-y x ,动圆M 与圆1O 外切,且与y 轴相切,求动圆圆心M 的轨迹。 [例题2]已知圆22 :(3)100M x y ++=和点(3,0)N ,P 为圆M 上任一点,线段NP 的的垂直平分线交直线MP 于Q ,当点P 在圆M 上运动时,问:点Q 的轨迹是什么?并求其轨迹方程。 [思考] 已知圆22:(3)4M x y ++=和点(3,0)N ,P 为圆M 上任一点,线段NP 的的垂直平分线交直线MP 于Q ,当点P 在圆M 上运动时,问:点Q 的轨迹是什么?并求其轨迹方程。 [例题3] 已知椭圆经过点(0,7),(0,7)A B -,且以点(12,2)C 为一个焦点,求椭圆另一焦点 P 的轨迹所在的曲线方程。 【自主小结】

江苏省高二数学选修1-1教案:2.1 圆锥曲线

教学目标: 1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义,并能用数学符号或自然语言描述. 2.通过用平面截圆锥面,感受、了解双曲线的定义,能用数学符号或自然语言描述双曲线的定义. 教学重点:椭圆、抛物线、双曲线的定义. 教学难点:用数学符号或自然语言描述三种曲线的定义. 教具:多媒体课件、实物投影仪. 教学过程设计: 1.问题情境. 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况,提出问题:用平面去截圆锥面能得到哪些曲线? 2.学生活动. 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于Dandelin双球理论只要让学生感知、认同即可. (1)圆锥曲线的定义. 椭圆:平面内到两定点F1,F2的距离和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.双曲线:平面内到两定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 抛物线:平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点轨迹叫做抛物线,定点叫做抛物线的焦点,定直线l叫做抛物线的准线. (2)圆锥曲线的定义式. 上面的三个结论我们都可以用数学表达式来体现:设平面内的动点为M. (2)已知经过点)0,3(A的动圆M与直线3 l相切,求动圆圆心M的轨迹。 x :- =

1. 平面上到一定点F 和到一定直线l 的距离相等的点的轨迹是 2.已知定点1F 、2F ,且128F F =,动点P 满足128PF PF +=,则动点P 的轨迹是 3.已知定点1F 、2F 满足125,PF PF -=,且128F F =,则动点P 的轨迹是 4.以1F 、2F 为焦点作椭圆,椭圆上一点1P 到1F 、2F 的距离之和为10,椭圆上 另一点2P 满足2122P F P F =,则21P F = 5.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为 6.平面内到定点A (2,0)和B (4,0)的距离之差为2的点的轨迹是 7.在平面直角坐标系内,到点(1,2)和直线23x y +=距离相等的点的轨迹 是 8.已知椭圆上一点P 满足到两焦点1F 、2F 的距离之和为20,则21PF PF ?的最大值为 9.如图,求证:与圆1F 外切,且与圆2F 内切的圆心C 的轨迹为椭圆. 10.设Q 是圆224x y +=上的动点,另有点)0,3(A ,线段AQ 的垂直平分线l 交半径OQ 于点P ,当Q 点在圆周上运动时,则点P 的轨迹是何曲线? F2F1C

相关文档
最新文档