中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型
中考数学必会几何模型:半角模型

半角模型

已知如图:①∠2=1

2

∠AOB;②OA=OB.

O

A

B

E

F

1

23

连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′

43

2

1

F'

F

E B

A

O

模型分析

∵△OBF≌△OAF′,

∴∠3=∠4,OF=OF′.

∴∠2=1

2

∠AOB,

∴∠1+∠3=∠2

∴∠1+∠4=∠2

又∵OE是公共边,

∴△OEF≌△OEF′.

(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点;

(2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系;

(3)常见的半角模型是90°含45°,120°含60°.

模型实例

例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN.

(2)作AH⊥MN于点H,求证:AH=AB.

证明:(1)延长ND 到E ,使DE=BM ,

∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ??

?

??=∠=∠=BM DE B ADE AB AD

∴△ADE ≌△ABM .

∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ??

?

??=∠=∠=AN AN EAN M AN EA M A

∴△AMN ≌△AEN . ∴MN=EN .

∴BM+DN=DE+DN=EN=MN .

(2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN .

即EN AD 2

1

MN AH 21?=?.

又∵MN=EN , ∴AH=AD . 即AH=AB .

例2 在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且

∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系.

(1)如图①,当DM=DN时,BM、NC、MN之间的数量关系是_______________;

(2)如图②,当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.

图①图②

解答

(1)BM、NC、MN之间的数量关系是BM+NC=MN.

(2)猜想:BM+NC=MN.

证明:如图③,延长AC至E,使CE=BM,连接DE.

∵BD=CD,且∠BDC=120°,

∴∠DBC=∠DCB=30°.

又∵△ABC是等边三角形,

∴∠ABC=∠ACB=60°.

∴∠MBD=∠NCD=90°.

在△MBD与△ECD中,

∵DB=DC,∠DBM=∠DCE=90°,BM=CE,

∴△MBD≌△ECD(SAS).

∴DM=DE,∠BDM=∠CDE.

∴∠EDN=∠BDC-∠MDN=60°.

在△MDN和△EDN中,

∵MD=ED,∠MDN=∠EDN=60°,DN=DN,

∴△MDN≌△EDN(SAS).

∴MN=NE=NC+CE=NC+BM.

图③

例3 如图,在四边形ABCD 中,∠B+∠ADC=180°,AB=AD ,E 、F 分别是BC 、CD 延 长线上的点,且∠

EAF=

2

1

∠BAD .求证:EF=BE-FD .

证明:在BE 上截取BG ,使BG=DF ,连接AG . ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF .

在△ABG 和△ADF 中, ??

?

??=∠=∠=DF BG ADF B AD AB

∴△ABG ≌△ADF (SAS ). ∴∠BAG=∠DAF ,AG=AF . ∴∠GAF=∠BAD .

∴∠EAF=21∠BAD=2

1

∠GAF . ∴∠GAE=∠EAF . 在△AEG 和△AEF 中, ??

?

??=∠=∠=AE AE FAE GAE AF AG

∴△AEG ≌△AEF (SAS ). ∴EG=EF .

∴EF=BE-FD .

跟踪练习:

1.已知,正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,∠MAN=45°. 求证:MN=DN-BM .

【答案】

证明:如图,在DN 上截取DE=MB ,连接AE , ∵四边形ABCD 是正方形, ∴AD=AB ,∠D=∠ABC=90°. 在△ABM 和△ADE 中, ??

?

??=∠=∠=DE BM ABM D AB AD

∴△ABM ≌△ADE .

∴AM=AE , ∠MAB=∠EAD . ∵∠MAN=45°=∠MAB+∠BAN , ∴∠DAE+∠BAN=45°. ∴∠EAN=90°-45°=45°=∠MAN . 在△AMN 和△AEN 中, ??

?

??=∠=∠=AN AN EAN M AN AE AM

∴△ABM ≌△ADE .

∵DN-DE=EN.

∴DN-BM=MN.

2.已知,如图①在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°,探究线段BD、DE、EC三条线段之间的数量关系.

小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D使问题得到解决.请你参考小明的思路探究并解决以下问题:

(1)猜想BD、DE、EC三条线段之间的数量关系式,并对你的猜想给予证明;

(2)当动点E在线段BC上,动点D运动到线段CB延长线上时,如图②,其他条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

图①图②

【答案】

解答:(1)猜想:DE2=BD2+EC2.

证明:将△AEC绕点A顺时针旋转90°得到△ABE′,如图①

∴△ACE≌△ABE′.

∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB.

在Rt△ABC中,

∵AB=AC,

∴∠ABC=∠ACB=45°.

∴∠ABC+∠ABE′=90°,即∠E′BD=90°.

∴E′B2+BD2=E′D2.

又∵∠DAE=45°,

∴∠BAD+∠EAC=45°.

∴∠E′AB+∠BAD=45°,即∠E′AD=45°.

∴△AE′D≌△AED.

∴DE=D E′.

∴DE2=BD2+EC2.

图①

(2)结论:关系式DE2=BD2+EC2仍然成立.

证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,如图②

∴△AFD≌△ABD.

∴FD=DB,∠AFD=∠ABD.

又∵AB=AC,

∴AF=AC.

∵∠FAE=∠FAD+∠DAE=∠FAD+45°,

∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB )=90°-(45°-∠DAB)=45°+∠DAB,∴∠FAE=∠CAE.

又∵AE=AE,

∴△AFE≌△ACE.

∴FE=EC,∠AFE=∠ACE=45°.

∠AFD=∠ABD=180°-∠ABC=135°.

∴∠DFE=∠AFD-∠AFE=135°-45°=90°.

在Rt△DFE中,DF2+FE2=DE2.

即DE2=BD2+EC2.

图②

3.已知,在等边△ABC中,点O是边AC、BC的垂直平分线的交点,M、N分别在直线AC、BC上,且∠MON=60°.

(1)如图①,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;

(2)如图②,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;

(3)如图③,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.

图①图②图③【答案】

结论:(1)AM=CN+MN;如图①

图①

(2)成立;

证明:如图②,在AC上截取AE=CN,连接OE、OA、OC.

∵O是边AC、BC垂直平分线的交点,且△ABC为等边三角形,

∴OA=OC,∠OAE=∠OCN=30°,∠AOC=120°.

又∵AE=CN,

∴△OAE≌△OCN.

∴OE=ON,∠AOE=∠CON.

∴∠EON=∠AOC=120°.

∵∠MON=60°,

∴∠MOE=∠MON=60°.

∴△MOE≌△MON.

∴ME=MN.

∴AM=AE+ME=CN+MN.

图②

(3)如图③,AM=MN-CN.

图③

4.如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD ,E 、F 分别是线段BC 、CD 上的 点,且BE+FD=EF .求证:∠

EAF=

2

1

∠BAD .

【答案】

证明:如图,把△ADF 绕点A 顺时针旋转∠DAB 的度数得到△ABG ,AD 旋转到AB ,AF 旋转到AG ,

∴AG=AF ,BG=DF ,∠ABG=∠D ,∠BAG=∠DAF . ∵∠ABC+∠D=180°, ∴∠ABC+∠ABG=180°. ∴点G 、B 、C 共线. ∵BE+FD=EF , ∴BE+BG=GE=EF . 在△AEG 和△AEF 中, ??

?

??===EF EG AE AE AF AG ∴△AEG ≌△AEF . ∴∠EAG=∠EAF .

∴∠EAB+∠BAG=∠EAF . 又∵∠BAG=∠DAF ,

∴∠EAB+∠DAF=∠EAF . ∴∠EAF=

2

1

∠BAD .

5.如图①,已知四边形ABCD ,∠EAF 的两边分别与DC 的延长线交于点F ,与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF =45°时,EF 与DF 、BE 之间有怎样的数量关系?(只需直接写出结论)

(2)如图②,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =

1

2

∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出结论并证明.

(3)在(2)中,若BC =4,DC =7,CF =2,求△CEF 的周长(直接写出结论)

解答:

(1)EF=DF-BE (2)EF=DF-BE

证明:如图,在DF 上截取DM=BE ,连接AM , ∵∠D+∠ABC=∠ABE+∠ABC=180° ∵D=ABE ∵AD=AB

在△ADM 和△ABE 中,

DM BE D ABE AD AB =??

∠=∠??=?

∴△ADM ≌△ABE

∴AM=AE ,∠DAM=∠BAE ∵∠EAF=∠BAE+∠BAF=

1

2

∠BAD ,

∴∠DAM+∠BAF=1

2

∠BAD ∴∠MAF=

1

2

∠BAD ∴∠EAF=∠MAF 在△EAF 和△MAF 中

AE AM EAF MAF AF AF =??

∠=∠??=?

∴△EAF ≌△MAF ∴EF=MF

∵MF=DF-DM=DF-BE , ∴EF=DF-BE

(3)∵EF=DF-BE

∴△CEF 的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF =BC+CD+2CF=15

中考数学 几何专题——半角模型

几何模型之半角模型 一、旋转性质 1.图形对应边相等(易得等腰,且等腰均相似) 2.对应角相等 3.对应点与旋转中心连线构成旋转角,旋转角处处相等 二、半角模型 半角模型(90°含45°) 条件模型结论 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①正方形ABCD; ②∠EAF=45°①EF=BE+DF; ②△CEF的周长是正方形周长的一半; ③点A到EF的距离等于正方形的边长. ①正方形ABCD; ②∠EAF=45°EF=DF-BE 三、模型演练 1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD; ③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的 是.

2.在Rt△ABC中,AB=AC,D?E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°; ③BE+DC=DE;④BE2+DC2=DE2,其中正确的是() A.②④ B.①④ C.②③ D.①③ 3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长. 4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是. 5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交

中考数学几何专项复习题-07倍半角模型知识精讲

倍半角模型知识精讲 一、二倍角模型处理方法 1.作二倍角的平分线,构成等腰三角形. 例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形. 2.延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形. 例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形. 例题:如图,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90o. 【解答】见解析 【证法一】如图1,作∠C的平分线CE交AB于点E,过点E作ED⊥AC于点D. 则∠ACE=∠A,AE=CE, ∵AE=EC,ED⊥AC,∴CD=AC, 又∵AC=2BC,∴CD=CB,∴△CDE≌△CBE,∴∠B=∠CDE=90o; 【证法二】如图2,延长AC到点D,使得CD=CB,连接BD,取AC的中点E,连接BE.

由题意可得EC=CD=BC,∠DBE=90o, ∵CD=CB,∠D=∠CBD,∴∠ACB=2∠D, ∵∠ACB=2∠A,∠A=∠D,∴AB=BD, 又∵AE=DC,∴△ABE≌△DBC,∴∠ABE=∠DBC,∴∠ABC=∠EBD=90o. 【证法三】如图3,作∠C的平分线CD,延长CB到点E,使得CE=AC,∴AC=BC+BE. ∵AC=2BC,∴BC=BE,在△ACD与△ECD中,AC=EC,∠ACD=∠ECD,CD=CD, ∴△ACD≌△ECD,∴∠A=∠E, 又∵∠DCB=∠DCA=∠A,∴∠E=∠DCB,∴DC=DE,∴∠ABC=90o. 二、倍半角综合 1.由“倍”造“半” 已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可. 如图,若() 2.由“半”造“倍” 已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可. 如图,在Rt△ABC(∠A<45o)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,

中考数学必会几何模型:半角模型

半角模型 已知如图:①∠2=1 2 ∠AOB;②OA=OB. O A B E F 1 23 连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′ 43 2 1 F' F E B A O 模型分析 ∵△OBF≌△OAF′, ∴∠3=∠4,OF=OF′. ∴∠2=1 2 ∠AOB, ∴∠1+∠3=∠2 ∴∠1+∠4=∠2 又∵OE是公共边, ∴△OEF≌△OEF′. (1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°. 模型实例 例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN. (2)作AH⊥MN于点H,求证:AH=AB.

证明:(1)延长ND 到E ,使DE=BM , ∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ?? ? ??=∠=∠=BM DE B ADE AB AD ∴△ADE ≌△ABM . ∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ?? ? ??=∠=∠=AN AN EAN M AN EA M A ∴△AMN ≌△AEN . ∴MN=EN . ∴BM+DN=DE+DN=EN=MN . (2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN . 即EN AD 2 1 MN AH 21?=?. 又∵MN=EN , ∴AH=AD . 即AH=AB .

中考数学模型--旋转综合之角含半角模型

旋转综合之角含半角模型 初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第三讲:旋转综合之角含半角模型,希望各位同学能从中收益。 基本图形 1、如图所示,在等腰Rt △ABC 中,点 D , E 在斜边上,∠DAE = 45? ,将 连接 EF .则△ADE ≌△AFE , DE 2 = BD 2 + CE 2 △ABD 旋转至△ACF , 2、如图所示,在正方形 ABCD 中,点 E , F 分别在边 BC , CD 上,∠EAF = 45? ,将△ABE 旋转至△ADG ,则△AEF ≌△AGF , EF = BE + DF 角含半角模型的解题步骤 1、找旋转点(含半角的角的顶点),构造旋转; 2、证全等; 3、利用全等、相似得到边角的关系. 例 1 如图,已知等边△ABC 的边长为1 , D 是△ABC 外一点且∠BDC =120? , BD = CD , ∠MDN = 60? .求△AMN 的周长.

解 延长 AC 到 E ,使CE = BM ,连接 DE . 易证 所以 可得 所以 从而 所以△AMN 周长为 △BMD ≌ △CED (SAS). ∠BDM = ∠CDE , DM = DE . ∠NDE = ∠NDM = 60?, △MDN ≌△EDN (SAS). MN = EN = CN + CE = CN + BM , C △AMN = AB + AC = 2. 例 2 如图,正方形 ABCD 的边长为 a , BM , DN 分别平分正方形的两个外角,且满足 ∠MAN = 45? ,连接 MC , NC , MN . (1) 填空:与△ABM 相似的三角形是 , ;(用含a 的代数式表示) (2) 求∠MCN 的度数; (3) 猜想线段 BM , DN 和 MN 之间的等量关系并证明你的结论.

专题20 半角模型(解析版)

中考常考几何模型 专题20 半角模型 倍长中线或类中线(与中点有关的线段)构造全等三角形 如图①: (1)∠2=2 1 ∠AOB ;(2)OA=OB 。 如图②: 连接 FB ,将△FOB 绕点 O 旋转至△FOA 的位置,连接 F ′E 、FE ,可得△OEF ′≌△OEF 。 模型精练 1.(2019秋?九龙坡区校级月考)如图.在四边形ABCD 中,∠B +∠ADC =180°,AB =AD ,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =1 2 ∠BAD ,求证:EF =BE ﹣FD . 【点睛】在BE 上截取BG ,使BG =DF ,连接AG .根据SAA 证明△ABG ≌△ADF 得到AG =AF ,∠BAG =∠DAF ,根据∠EAF =1 2∠BAD ,可知∠GAE =∠EAF ,可证明△AEG ≌△AEF ,EG =EF ,那么EF =

GE =BE ﹣BG =BE ﹣DF . 【解析】证明:在BE 上截取BG ,使BG =DF ,连接AG . ∵∠B +∠ADC =180°,∠ADF +∠ADC =180°, ∴∠B =∠ADF . 在△ABG 和△ADF 中, {AB =AD ∠B =∠ADF BG =DF , ∴△ABG ≌△ADF (SAS ), ∴∠BAG =∠DAF ,AG =AF . ∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =1 2∠BAD . ∴∠GAE =∠EAF . 在△AEG 和△AEF 中, {AG =AF ∠GAE =∠EAF AE =AE , ∴△AEG ≌△AEF (SAS ). ∴EG =EF ,

人教中考数学压轴题解题模型几何图形之半角模型含解析汇报

人教中考数学压轴题解题模型几何图形之半角模型 含解析汇报 The pony was revised in January 2021

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 典型例题精讲 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,使2 AD ,求AG. 【解析】:作GM⊥BD,垂足为M. 由题意可知∠ADG=GDM, 则△ADG≌△MDG. ∴DM=DA=2. AC=GM 又易知:GM=BM.

而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于 10,求正方形ABCD 的面积? 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2 BF x =+. 由222PB PF BF =+. 可得:2221 10(10)4 x x =++. 故6x =. 216256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为 M ,AM AB =,则有EF BE DF =+,为什么? 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即 可.

半角模型专题专练复习进程

半角模型专题专练

半角模型例题 已知,正方形ABCD 中,∠EAF 两边分别交线段BC 、DC 于点E 、F ,且∠EAF ﹦45° 结论1:BE ﹢DF ﹦EF 结论2:S △ABE ﹢S △ADF ﹦S △AEF 结论3:AH ﹦AD 结论4:△CEF 的周长﹦2倍的正方形边长﹦2AB 结论5:当BE ﹦DF 时,△CEF 的面积最小 结论6:BM 2﹢DN 2﹦MN 2 结论7:三角形相似,可由三角形相似的传递性得到 结论8:EA 、FA 是△CEF 的外角平分线 结论9:四点共圆 结论10:△ANE 和△AMF 是等腰直角三角形(可通过共圆得到) 结论11:MN ﹦√2 2EF (可由相似得到) 结论12:S △AEF ﹦2S △AMN (可由相似的性质得到) 结论5的证明: 设正方形ABCD 的边长为1 则S △AEF ﹦1﹣S 1﹣S 2﹣S 3 ﹦1﹣12x ﹣12y ﹣1 2(1﹣x)(1﹣y) ﹦1 2﹣1 2xy 所以当x ﹦y 时,△AEF 的面积最小 结论6的证明: 将△ADN 顺时针旋转90°使AD 与AB 重合 ∴DN ﹦BN ′ 易证△AMN ≌△AMN ′ ∴MN ﹦MN ′ 在Rt △BMN ′中,由勾股定理可得: BM 2﹢BN ′2﹦MN ′2 即BM 2﹢DN 2﹦MN 2 结论7的所有相似三角形:

△AMN ∽△DFN △AMN ∽△BME △AMN ∽△BAN △AMN ∽△DMA △AMN ∽△AFE 结论8的证明: 因为△AMN ∽△AFE ∴∠3=∠2 因为△AMN ∽△BAN ∴∠3=∠4 ∴∠2=∠4 因为AB ∥CD ∴∠1=∠4 ∴∠1=∠2 结论9的证明: 因为∠EAN ﹦∠EBN =45° ∴A 、B 、E 、N 四点共圆(辅圆定理:共边同侧等顶角) 同理可证C 、E 、N 、F 四点共圆 A 、M 、F 、D 四点共圆 C 、E 、M 、F 四点共圆 **必会结论-------- 图形研究正方形半角模型 已知:正方形ABCD ,E 、F 分别在边BC 、CD 上,且?=∠45EAF ,AE 、AF 分别交BD 于H 、G ,连EF . 一、全等关系 (1)求证:①EF BE DF =+;②DG 2﹢BH 2﹦HG 2;③AE 平分BEF ∠,AF 平分DFE ∠. 二、相似关系 (2)求证:①DG CE 2=;②BH CF 2=;③HG EF 2=. (3)求证:④DH BG AB ?=2;⑤HG BG AG ?=2;⑥21=?CF DF CE BE . 三、垂直关系 (4)求证:①EG AG ⊥;②FH AH ⊥;③BE AB HCF =∠tan . (5)、和差关系 求证:①BE DG BG 2=-;②DH DF AD 2=+; ③||2||DG BH DF BE -=-.

人教版八年级数学 几何培优讲义设计 第6讲 夹半角模型 无答案

知识目标 第 6 讲 夹半角模型 知识导航 夹半角,顾名思义,是一个大角夹着一个大小只有其一半的角,如下图所示。 这类题目有其固定的做法,当 取不同的值的时候,也会有类似的结论,下面我们就来看一看这一类问题。夹 半角的常见分类: (1)90 度夹 45 度 (2)120 度夹 60 度 (3)2α夹α 题型一 90 度夹 45 度 【例 1】 如图,正方形 ABCD 中, E 在 BC 上,F 在 CD 上,且∠EAF =45°,求证:(1)BE +DF =EF (2)∠AEB =∠AEF 【练习】在例 1 的条件下,若 E 在 CB 延长线上,F 在 DC 延长线上,其余条件不变,证明: (1)DF -BE =EF (2)∠AEB +∠AEF =180°

夹边角和勾股定理结合会产生很多有趣的结论,比如: (1)已知△ABC 为等腰三角形,∠ACB=90°,M、N 是AB 上的点,∠MCN=45°,求证:AM2+BN2=MN2 (2)如图,正方形ABCD 中,F 为CD 中点,点E 在BC 上,且∠EAF=45°,求证:点E 为线段BC 靠近B 的三等分点. 题型二120 度夹60 度 【例2】已知如图,△ABC 为等边三角形,∠BDC=120°,DB=DC,M、N 分别是AB、AC 上的动点,且∠MDN=60°,求证:MB+CN=MN. 【练习】如图,四边形ABCD 中,∠A=∠BCD=90°,∠ADC=60°,AB=BC,E、F 分别在AD、DC 延长线上,且∠EBF=60°,求证:AE=EF+CF.

真题演练 在等边△ABC 的两边 AB 、AC 所在直线上分别有两点 M 、N .D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC .探究:当 M 、N 分别在直线 AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系以及 △AMN 的周长 Q 与等边△ABC 的周长 L 的关系. (1)当点 M 、N 在边 AB 、AC 上,且 DM =DN 时,BM 、NC 、MN 之间的数量关系是 ; Q 此时 = ;(不必证明) L (2)当点 M 、N 在边 AB 、AC 上,且当 DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明; (3)当 M 、N 分别在边 AB 、CA 的延长线上时,若 AN =2,则 Q = (用含有 L 的式子表示)

半角模型专题--优选专练.doc

半角模型例题 已知,正方形 ABCD中,∠ EAF两边分别交线段 BC、 DC于点 E、F,且∠ EAF﹦ 45°结论 1:BE﹢ DF﹦EF 结论 2:S△ABE﹢ S△ADF﹦S△AEF 结论 3:AH﹦ AD 结论 4:△ CEF的周长﹦ 2 倍的正方形边长﹦ 2AB 结论 5:当 BE﹦DF时,△ CEF的面积最小 22 2 结论 6:BM﹢DN﹦MN 结论 7:三角形相似,可由三角形相似的传递性得到 结论 8:EA、 FA是△ CEF的外角平分线 结论 9:四点共圆 结论 10:△ ANE和△ AMF是等腰直角三角形(可通过共圆得到) 结论 11: MN﹦EF(可由相似得到) 结论 12: S△ AEF﹦2S△ AMN(可由相似的性质得到) 结论 5 的证明: 设正方形 ABCD的边长为 1 则S△AEF﹦1﹣S1﹣S2﹣ S3 ﹦1﹣ x﹣ y﹣ (1 ﹣x)(1 ﹣y) ﹦﹣ xy 所以当 x﹦y 时,△ AEF的面积最小 结论 6 的证明: 将△ ADN顺时针旋转 90°使 AD与 AB重合 ′ ∴DN﹦ BN ′ 易证△ AMN≌△ AMN ′ ∴MN﹦ MN ′ 在 Rt△BMN中,由勾股定理可得: 2′ 2′2 BM﹢BN ﹦MN 22 2 即 BM﹢DN﹦MN 结论 7 的所有相似三角形: △ AMN∽△ DFN△AMN∽△ BME△AMN∽△ BAN△ AMN∽△ DMA△AMN∽△ AFE

结论 8 的证明: 因为△ AMN∽△ AFE ∴∠ 3=∠ 2 因为△ AMN∽△ BAN ∴∠ 3=∠ 4 ∴∠ 2=∠ 4 因为 AB∥CD ∴∠ 1=∠ 4 ∴∠ 1=∠ 2 结论 9 的证明: 因为∠ EAN﹦∠ EBN= 45° ∴A、B、E、N 四点共圆(辅圆定 理:共边同侧等顶角) 同理可证 C、E、N、F 四点共圆 A、M、 F、 D 四点共圆 C、E、 M、 F 四点共圆 **必会结论 --------图形研究正方形半角模型 已知:正方形 ABCD ,E、F分别在边 BC 、 CD 上,且 EAF 45 ,AE、AF分别交BD于H、 G ,连EF. 一、全等关系 ()求证:① 2 2 2 平分,平分 DF BE EF ;②DG﹢ BH﹦ HG;③AE BEF AF DFE . 1 二、相似关系 (2)求证:①CE 2DG ;② CF 2 BH ;③ EF 2HG . (3)求证:④AB2 BG DH ;⑤ AG 2 BG HG ;⑥BE DF 1 . CE CF 2 三、垂直关系 (4)求证:①AG EG ;②AH FH ;③tan HCF AB . (5) 、和差关系 BE 求证:① BG DG 2BE ;② AD DF 2DH ; ③ | BE DF | 2 | BH DG | .

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

初中数学突破中考压轴题几何模型之正方形的 半角模型教案有答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,使2 AD=,求AG. 【解析】:作GM⊥BD,垂足为M. 由题意可知∠ADG=GDM, 则△ADG≌△MDG. ∴DM=DA=2. AC=GM 又易知:GM=BM. 而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P为正方形ABCD内一点,10 ==,并且P点到CD边的距离也 PA PB 等于10,求正方形ABCD的面积? 【解析】:过P作EF AB ⊥于F交DC于E.

人教版八年级下册第18章平行四边形——弦图模型和半角模型专题(Word版,无答案)

一 ) 弦图模型 基本图形】已知正方形 ABCD,过 B,D 两点分别向过点 C 的直线作垂线 , 垂足分别为点 E,F, 则△ BCE ≌△ CDF h, 正方形 ABCD 的四 个顶点分 (1) 当 a=45 °时, 求△EAD 的面积 (2) 当 a=30 °时, 求△EAD 的面积 (3) 当0°

变式训练 】如图,分别以 ABC 的AC 和BC 为一边,在ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 4.如图,直角梯形ABCD 中,AD/BC,∠ADC=90°,是AD 的垂直平分线,交AD 于点M,以腰AB 为边作正方形ABFE,EP⊥l 于点P. 求证:2EP+AD=2CD 二)半角模型 半角模型【用旋转和对称(翻折)的方法解决问题】基本结论:在正方形ABCD中,若M、N 分别在边BC、CD上移动,且满足MN=BM+ DN,则有以下基本结论(需记忆):① . ∠MAN4=5°;② . C CMN 2AB;③ . AM、AN分别平分 ∠BMN和∠DNM. 同样,在正方形ABCD中,若已知∠MAN4=5°,则会有:① . MN=B+MD N; ②C CMN 2AB;③.AM、AN分别平分∠BMN 和∠DNM④; 若继续作AH⊥MN于点H, 则有AH=AB. F

中考模型解题系列之大角夹半角模型

中考模型解题系列之大角夹半角模型 满分100分 答题时间30分钟 1.(本小题100分) (2010重庆改编)等边的两边AB 、AC 所在直线上分别有两点M 、N ,D 为外一点,且 ,,BD=DC.探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及 的周长Q 与等边的周长L 的关系. (I )如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是_____________;此时___________; (II )如图2,点M 、N 在边AB 、AC 上,且当DM DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明; (III )如图3,当M 、N 分别在边AB 、CA 的延长线上时,若AN=,则Q=_________(用、L 表示). 核心考点: 全等三角形的判定与性质 旋转的性质

单选题(本大题共8小题,共100分) 1.(本小题10分)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0

2018北师大版下册数学截长补短和半角模型[原创]

32 H A B F E 1G E F D C B A D C B A O G A B C D A B C 初中几何之截长补短模型 模型 截长补短 如图①,若证明线段AB 、CD 、EF 之间存在 EF=AB+CD ,可以考虑截长补短法。 截长法:如图②,在EF 上截取EG=AB ,再证明 GF=CD 即可。 补短法:如图③,延长AB 至H 点,使BH=CD , 再证明AH=EF 即可。 模型分析 截长补短的方法适用于求证线段的和差倍分关系。截长,指在长线段中 截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法 构造全等三角形来完成证明过程。 模型实例 例1.如图,已知在△ABC 中,∠C=2∠B ,AD 平分∠BAC 交BC 于点D 。 求证:AB=AC+CD 。 例2.如图,已知OD 平分∠AOB ,DC ⊥OA 于点C ,∠A=∠GBD 求证AO+BO=2CO 。 精练1.如图,在△ABC 中,∠BAC=60°,AD 是∠BAC 的平分线,且 AC=AB+BD 。 求∠ABC 的度数。

E A B C D E A B C D F E A B C D A O E A B C D 2.如图,∠ABC+∠BCD=180°,BE 、CE 分别平分∠ABC 、∠BCD 。求证:AB+CD=BC 。 3.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB 。求证AC=AE+CD 。 4.如图,在△ABC 中,∠ABC=90°,AD 平分∠BAC 交BC 于点D ,∠C=30°, BE ⊥AD 于点E 。求证:AC-AB=2BE 。 5.如图,Rt △ABC 中,AC=BC ,AD 平分∠BAC 交BC 于点D ,CE ⊥AD 交AD 于F 点,交AB 于点E 。求证:AD=2DF+CE 。 6.如图,五边形ABCDE 中,AB=AC ,BC+DE=CD ,∠B+∠E=180°。求证:AD 平分∠CDE 。

2019年初中数学突破中考压轴题几何模型之正方形的半角模型教案

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生 和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而(-1), ∴AG=BM=2). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2BF x =+. 由222PB PF BF =+. 可得:2221 10(10)4 x x =++. 故6x =. 216256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF . 由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用,

中考数学压轴题专项汇编专题角含半角模型

专题15 角含半角模型 破题策略 1. 等腰直角三角形角含半角 如图,在△ABC 中,AB =AC ,∠BAC =90°,点D ,E 在BC 上且∠DAE =45° (1) △BAE ∽△ADE ∽△CDA (2)BD 2+CE 2=DE 2 . 45° E A B C D 证明(1)易得∠ADC =∠B +∠BAD =∠EAB , 所以△BAE ∽△ADE ∽△CD A . (2)方法一(旋转法):如图1,将△ABD 绕点A 逆时针旋转90°得到△ACF ,连结EF . 45° F E A B C D 则∠EAF =∠EAD =45°,AF =AD , 所以△ADE ∽△FAE ( SAS ). 所以DE = EF . 而CF =BD ,∠FCE =∠FCA +∠ACE =90°, 所以BD 2+ CE 2=CF 2+CE 2=EF 2=DE 2 . 方法二(翻折法):如图2,作点B 关于AD 的对称点F ,连结AF ,DF ,EF . 45° E A B C D 因为∠BAD +∠EAC =∠DAF +∠EAF , 又因为∠BAD =∠DAF , 则∠FAE =∠CAE ,AF =AB =AC , 所以△FAE ∽△CAE (SAS ). 所以EF = E C .

而DF =BD , ∠DFE =∠AFD + ∠AFE =90°, 所以BD 2+ EC 2= FD 2+ EF 2= DE 2 . 【拓展】①如图,在△ ABC 中,AB =AC ,∠BAC =90°,点D 在BC 上,点E 在BC 的 延长线上,且∠DAE =45°,则BD 2+CE 2=DE 2 . E D 可以通过旋转、翻折的方法来证明,如图: E A D F E A D ②将等腰直角三角形变成任意的等腰三角形:如图,在△ABC 中,AB =AC ,点D ,E 在 BC 上,且∠DAE =1 2 ∠BAC ,则以BD ,DE ,EC 为三边长的三角形有一个内角度数为180° -∠BA C . B 可以通过旋转、翻折的方法将BD ,DE ,EC 转移到一个三角形中,如图: B C E B D

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案

正方形角含半角模型提升 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么 例4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使45EAF ∠=o ,AG EF ⊥于G . 求证:AG AB = 例5.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点 O ,90AOF ?∠=. 求证:BE CF =. (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点 O ,90FOH ?∠=,4EF =.求GH 的长. 【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,?其边长分别为3cm 和5cm ,则CDE ?的面积为________2cm . (6) (7) 2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________. 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ?的面积为14平方厘米,BCE ?的面积为5平方厘米,?那么四边形BEGF 的面积是________. 4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。分别以 AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。 求证:FN EC =。 5.如图 ,ABCD 是正方形.G 是BC 上的一点,DE AG ⊥于 E ,BF AG ⊥于 F . (1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+. 【纵向应用】 6. 在正方形ABCD 中,12∠=∠.求证:BE OF 2 1 = 7. 在正方形ABCD 中,12∠=∠.AE DF ⊥,求证:CE OG 2 1= 8. 如图13,点E 为正方形ABCD 对角线BD 上一点, EF BC ⊥, EG CD ⊥ 求证:AE FG ⊥ 9.已知:点E 、F 分别正方形ABCD 中AB 和BC 的中点,连接AF 和DE 相交于点G , 图2 D G A E B C F 13 A D E F C G B

半角模型专题专练

半角模型例题 已知,正方形ABCD 中,∠EAF 两边分别交线段 BC 、DC 于点 E 、 F ,且∠EAF﹦45 结论 1:BE ﹢DF ﹦EF 结论 2:S △ABE ﹢S △ADF ﹦ S △AEF 结论 3:AH ﹦AD 结论4:△CEF 的周长﹦2倍的正方形边长﹦2AB 结论5:当 BE ﹦DF 时,△CEF 的面积最小 结论 6:BM 2﹢DN 2﹦MN 2 结论 7:三角形相似,可由三角形相似的传递性得到 结论8: EA 、FA 是△CEF 的外角平分线 结论 9:四点共圆 结论10:△ANE 和△AMF 是等腰直角三角形 (可通过共圆得到) 结论 11:MN ﹦√2EF (可由相似得到) 结论 12:S△AEF﹦2S△AMN(可由相似的性质得到) 结论5 的证 明: 设正方形 ABCD 的边长为 1 则 S △ AEF ﹦ 1 ﹣ S 1 ﹣ S 2 ﹣ S 3 ﹦ 1 ﹣ x ﹣ y ﹣ (1 ﹣ x)(1 ﹣ y) 11 结论6 的证明: 将△ADN 顺时针旋转 90°使 AD 与 AB 重合 ∴DN﹦BN ′ 易证△AMN≌△AMN ′ ∴MN﹦MN ′ 在 Rt △ BMN ′ 中,由勾股定理可得: BM 2﹢BN ′2﹦MN ′2 即 BM 2 ﹢ DN 2 ﹦ MN 2 所以当 x ﹦y 时,△AEF 的面积最小 结论7 的所有相似三角形: △AMN∽△DFN △AMN∽△BME △AMN∽△BAN △AMN∽△DMA △AMN∽△AFE

结论8 的证明: 因为△AMN∽△AFE ∴∠3=∠2 因为△AMN∽△BAN ∴∠3=∠4 ∴∠2=∠4 因为AB∥CD ∴∠1=∠4 ∴∠1=∠2 结论9 的证明: 因为∠EAN﹦∠EBN=45° ∴A、 B、E、N 四点共圆(辅圆定理: 共边同侧等顶角)同理可证 C、 E、N、F 四点共圆 A、M、 F、D 四 点共圆 C、E、M、F 四点共圆 **必会结论 ---- 图形研究正方形半角 模型已知:正方形ABCD,E、F分别在边BC、CD上,且EAF = 45,AE、AF分别交BD于H、G,连EF. 一、全等关系 (1)求证:① DF + BE = EF;②DG2﹢BH2﹦HG2;③ AE平分BEF,AF平分DFE . 二、相似关系 (2)求证:①CE = 2DG;②CF = 2BH;③ EF = 2HG. (3)求证:④ AB2=BG DH;⑤AG2= BG HG;⑥ BE DF = 1. CE CF 2 三、垂直关系 (4)求证:① AG⊥EG;② AH⊥FH;③ tan HCF = AB. BE (5)、和差关系 求证:① BG - DG = 2BE;② AD + DF = 2DH;

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 典型例题精讲 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,使2 AD ,求AG. 【解析】:作GM⊥BD,垂足为M.

由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例 2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1(10)2 BF x =+. 由222PB PF BF =+. 可得:2221 10(10)4 x x =++. 故6x =. 216256ABCD S ==.

例 3. 如图,E、F分别为正方形ABCD的边BC、CD上的一点,AM EF ⊥,?垂足为M,AM AB =+,为什么 =,则有EF BE DF 【解析】:要说明EF=BE+DF,只需说明BE=EM,DF=FM即可,而连结AE、AF.只要能说明△ABE≌△AME,△ADF≌△AMF即可. 理由:连结AE、AF. 由AB=AM,AB⊥BC,AM⊥EF,AE公用, ∴△ABE≌△AME. ∴BE=ME. 同理可得,△ADF≌△AMF. ∴DF=MF. ∴EF=ME+MF=BE+DF. 例4.如下图E、F分别在正方形ABCD的边BC、CD上,且45 ∠=,试说 EAF? 明EF BE DF =+。

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(5、26)

正方形角含半角模型提升 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积? 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么? 例 4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使 45EAF ∠=o ,AG EF ⊥于G . 求证:AG AB =

例5.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,90AOF ? ∠=. 求证:BE CF =. (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点 O ,90FOH ?∠=,4EF =.求GH 的长. 【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,?其边长分别为3cm 和5cm ,则CDE ?的 面积为________2 cm . (6) (7) 2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________. 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ?的面积为14平方厘米,BCE ?的面积为5平方厘米,?那么四边形BEGF 的面积是________. 4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。分别以 AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。 求证:FN EC =。 图 2

第5讲角含半角模型(解析版)

中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。 类型一:等腰直角三角形角含半角模型 (1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE (2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(2) (3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..

任意等腰三角形 类型二:正方形中角含半角模型 (1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD. 图示(1)作法:将△ABE绕点A逆时针旋转90° (2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE. 图示(2)作法:将△ABE绕点A逆时针旋转90° (3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠ C=180°,点E,F分别在边BC,CD上,∠EAF=1 2 ∠BAD,连接EF,则:EF=BE+DF. 图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小

相关文档
最新文档