微分中值定理与导数的应用总结

微分中值定理与导数的应用总结
微分中值定理与导数的应用总结

1基础知识详解

先回顾一下第一章的几个重要定理

1、0

lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的

关系

2、=+()o αββαα?: ,这是两个等价无穷小之间的关系

3、零点定理:

条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理:

条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠=

结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得

()f C ζ=。

5、介值定理的推论:

闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。

第三章 微分中值定理和导数的应用

1、罗尔定理

条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得

'()0f ζ=

2、拉格朗日中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=-

3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈

结论:在开区间(a,b)上存在ζ ,使得

()()'()

()()'()

f b f a f

g b g a g ζζ-=

-

拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。

4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。

拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式:

122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便

于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意

正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种:

000,,0*,,0,1,0∞∞∞∞-∞∞∞

每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0

lim ()

x x

f x → 那么就在0x 附近展开。如果极限是

lim ()x f x →∞

,那么就变形成0

lim ()t t f t →,再在0t 附近展开。一般都是化

成0

lim ()t f t →用迈克劳林展开式展开。

那么展开多少步呢一般分子分母展开的幂应该是一样的,便于上下几次方相抵消,分子分母尾部都跟着一个皮亚诺型余项。如果展开了,发现分母是表面外观的2次方,而上面如果展开后分子的结果为0,则还要继续往更高阶次展开。分母一定会跟着分子有同样阶的。。。算吧,很大的计算量。。。

7、用导数判断函数曲线的单调性和单调区间。

条件:闭区间[a,b]连续,开区间(a,b)可导,且导数'()0(0)f x >< 结论1:()f x 在闭区间[a,b]上单增(单减)

结论2:'()0f x =或不存在 则此点一定是可靠而全面的对单调的分界点 8、函数曲线的凹凸性和拐点(左右凹凸变化的分界点) 方法一:条件:区间连续。结论:

若1212()()

(

)22x x f x f x f ++<,则该曲线在(x1,x2)凹 若1212()()

(

)22

x x f x f x f ++>,则该曲线在(x1,x2)凸 方法二:条件:闭区间[a,b]连续,开区间(a,b)存在一阶和二阶导数 结论1:''()0f x > 在[a,b]凹;''()0f x < 在[a,b]凸;

结论2:''()0f x =或不存在 则此点一定是全面的但仅是可能的拐点。然后验证

-''()''()f x f x +、的符号。异号则一定为拐点。

9.函数在区间上的极值点,最值点。 定理1:极值点处的导数0'()0f x = 定理2:

条件:()f x 在0x 点处连续,在0x 附近的去心邻域内可导

结论:00'()0,'()0f x f x +->< 则在0x 点取得极大值。00'()0,'()0f x f x +-<> 则在0x 点取得极小值。若左右邻域内符号不变,则该点无极值。 定理3:

条件:()f x 在0x 点处的一阶导数0'()0f x =

结论:0''()0f x > ,则在0x 点取得极小值。0''()0f x < ,则在0x 点取得极小值。

0''()=0f x ,则该点可能是极值,也可能不是极值。

总结:一阶导数就能得出极值点。二阶导数也能得出,但二阶导数有限制

0'()0f x =。

最值:在极值中挑出个最大的,最小的点,再跟两端的值大小比较一下,得到的就是闭区间最大值,最小值。 10、曲率 曲率定义是:d K ds α

=

,曲率半径用a 表示,是曲率的导数,即1a K

=。 所谓曲率半径,是指如果在该点出以这么半径画一个圆,那么该圆的圆弧点上处处的

曲率都是K 。 如何推导曲率

课本典型题:

2扩展

三个定理的条件都是闭区间连续,开区间可导。然后罗尔定律是f(a)=f(b),结论是导数为0。

拉格朗日中值定理结论是存在导数。柯西定理形象来说是拉格朗日中值定理的变形(见物理意义)。

罗尔定理拉格朗日中值定理柯西定理

微分中值定理这部分看起来特别重要。因为它涉及到几个定理。 罗尔定理常用于以下几种题: 1

)('x f 在(a ,b )上是否存在零点显然,只要找到)()(b f a f =的a 和b 即可。找到了

还能知道至少有几个零点,以及每个零点的区域。如已知)3)(2)(1()(---=x x x x f ,说明0)('=x f 有几个实根范围是什么等。

2 证明)(x f 在(a ,b )上是否存在零点注意1是)('x f 是否存在零点。故可以求出

?=dx x f x F )()(,这样就成了求)('x F 在(a,b)上是否存在零点。和1一样的方法了。

3 证明)(x f 的根不超过多少个。如证明其根不超过3个。那么,记住用反证法+罗尔定理。设根有四个,分别为x1

拉格朗日中值定理常用于证明不等式:

1 证明),(),(),(b a Q b a F b a P <<,想办法把整个式子都变变形,最重要的是把),(b a F 变成两个同函数相减的方式,)()(a f b f -的形式,再用拉格朗日中值定理改为导数的形式与两端比较。

柯西中值定理常用于证明不等式: 1 证明)()(x Q x P > 方法:把原式转换成

1)

()

(>x G x F 或1<的形式。因为柯西中值定理实质是两个函数相除转换成导数相除,因此要想法给弄成除的形式。拉格朗日中值定理是弄成减的形式。然后证明一下两个导数相除大于或者小于1就行了

证明函数恒等)()(x g x f =,),(b a x ∈

证明原则: 1 )(')('x g x f =,),(b a x ∈【当然还有个条件就是f,g 在(a,b)存在导数】

2 找到任意一点),(0b a x ∈,使得)()(00x g x f = 如果],[b a x ∈还需要验证],[)(),(b a x g x f 在连续

2洛必达法则应用有两个条件 ① ∞

=lim 00lim )()(lim

或者x g x f ② A )

(')

('lim

=x g x f ,即必须存在结果,可以是无穷大,也可以是0等,但不能是诸如)1

sin(lim 0

x A x →=之类的没具体的玩意。但是注意,如果用洛必达法则算出就是这类没具体

的玩意,也不能证明该函数除法式无极限。只能证明洛必达法则此时适用性太小。

3洛必达法则应用

① 求1的七种类型的未定式极限 ② 确定无穷小的阶是多少 K 阶无穷小的定义:若0,0lim

>≠=k C k α

β

,则称β是α的K 阶无穷小。

无穷小阶的运算法则:

设f(x)是x的n阶无穷小,g(x)是x的m阶无穷小,则有:

f(x)+g(x)是x的min( n , m )阶无穷小

f(x)*g(x)是x的n+m阶无穷小

f(x)/g(x)是x的abs( n - m)阶无穷小

这一节内容关于应用洛必达法则讨论极限的问题我学的很差。

泰勒中值定理的来源想象:

任何一个函数f(x),在0点附近都可以曲线化直的表示成

)(...)(2210x Rn x b x b x b b x f n n +++++=

用导数一算,恰好有!

)

0(...!2)0('',!1)0(',!0)0()(210n f b f b f b f b n n ==== 故在0x 点处可得泰勒展开公式:

(前提:f(x)在含0x 的某个开区间(a , b )上具有(n+1)阶的导数,这样才能得到拉格朗日余项)

)

()(!

)(...)(!2)())((')()(00)(2

00''000x Rn x x n x f x x x f x x x f x f x f n n +-++-+-+=当n=0时,))((')()(00x x f x f x f -+=ζ其中))(('0x x f -ζ是n=0时的拉格朗日余项 拉格朗日余项为:

),(,)()!

1()

()(Rn 010)1(x x x x n f x n n ∈-+=++ζζ

换成θ表示为:)1,0(),(00∈-+=θθζx x x 这样表示很常见 (不要求精确时)可使用佩亚诺余项:

])[()(Rn 0n x x o x -=(注意:不是拉格朗日余项的n+1次方)

最开始推导时,x 在0处的仿f (x )多项式称为麦克劳林公式,是泰勒公式的简单形式。 使用迈克劳林公式时,对应拉格朗日余项可以改为

)1,0(,)!

1()()(Rn 1

)1(∈+=++θθn n x n x f x 但是注意这仅是迈克劳林时用。故可以不记这

个特殊形式的式子。只记基本的式子 佩亚诺余项x0=0即可。

※常用的麦克劳林公式(泰勒公式涉及大量运算,而却常考这几个式子的变形)

)!

12()1(...!5!3sin 1

2153--+++-=--n x

x x x x n n )(R n 2x +显然n 从1开始

)()!

2()1(...!4!21cos 12242x R n x x x x n n

n ++-+-+-=显然n 从0开始

)()1(...432)1ln(1432x Rn n

x x x x x x n n +-++-+-=+-显然n 从1开始

...!

3)2)(1(!

2)1(113

2

+--+

-+

+=+x x x x ααααααα

)(

)(R !

)

1)...(2)(1(x n x n n n ++---+

αααα显然n 从0开始

)(!

...!212x Rn n x

x x e n x +++++=麦克劳林展开式比较容易,可以现用现推导

大体记一下,然后根据推出的前两个值就能想到全部的结论。一般第二个值如果是负的,就

说明会有(-1)^(k+1)次方等注意。

扩展:

本节课的“泰勒公式(及其扩展公式)”可以做什么 1 对0

型的函数式,可以用泰勒公式求极限,还可以用来确定无穷小的阶。 ①设

0)()(lim lim ==→→x g x f a

x a

x ,并有泰勒公式:

))(()()(n n a x o a x A x f -+-=,其中a x →,A 为非零常数 ))(()()(m m a x o a x B x g -+-=,其中a x →,B 为非零常数

???

?

???<∞>==→m

n m n m n B A

x g x f a x ,,0,)()(lim

,显然这个得零是因为f 比g 更快趋近于0而已 求极限的情况一般都是两个无关的函数相减。如cosx-ln(1+x)啊,cosx-e^x 啊,很多式子还伴随的是除法形式,因为这样能将多余的无穷小系数给约为0.举例中的x 是bx ,x^t 的变形式。 ②若求得泰勒公式))(()()(n

n

a x o a x A x f -+-=,则x →a 时,f(x)是x-a 的n 阶无穷小 2由泰勒公式求)(0)

(x f

n

其实就是将)(x f 用泰勒公式展开后得到第n 阶的通项公式,显然为!

)(!0)(n x x f n x A n

n n n =,因此)(0)

(x f

n 显然值为n A 导出即可。注意的是,有时候并不能得出)(0)(x f n 。而是其他形式,

如展开式n 阶通项为!!)1(2n x A n x n n n n =-,显然结果是!

)1()!2()0()

2(n n f n n -=。得出的结果奇形怪状的都有,有些n 是从3,开始的,这时候就还得考虑()''(),'f f 等。因此也要注意考虑n 。

3由)(x f 含佩亚诺余项的泰勒公式可以得到)()(m x f bx f ,的含佩亚诺余项的泰勒公式,其中b 为常数,m 为自然数,只需令m x t bx t ==,即可。 显然在佩亚诺余项上)()(m x f bx f ,可以随意换项。

4在求)()(x g x f 的三阶麦克劳林式时,显然分别展开3阶的结果为

)()(x g x f =(0A +x A 1+22x A +33x A +O[X3])*(0B +x B 1+22x B +33x B +O[X3])

的式子即可

将其乘开时为取三阶麦克劳林式,只需加阶数3

本节在泰勒公式的变形灵活运用上掌握的不好。本节涉及大量运算,但大部分都是前面给出的五个基本公式的变形。因此一定要熟练背诵使用

寻找拐点还是划分单调区间的点,都是找f’’(x)或者f’(x)等于0,或者不存在的点。定义要求是在(开区间)可导,闭区间连续,但是得到的范围就按连续的区间来,即[闭区间]

1根据定义,求极值总结的三种方法: ①基本定义)()(0x f x f > ②)('0x f 两端异号 ③0)('',0)('00≠=x f x f

若0)(''0=x f 则)(x f 在x0处可能是最大最小值也可能没有极值。说不准。 2可导函数求极值(或最值)的步骤: ①求出导数)('x f

②求出)('x f =0的驻点和不可导点。(如果是求最值还要求定义域端点)

③得出点后求极值要判断驻点不可导点两端导数是否异号。异号的话则该点为极值点。 (求最值还可以不看导数两旁异号,直接带进去求出所有值就比较出最大最小值了) 3若在(任意的一个)定义区间内只有一个驻点是极值点,那么它也一定是最值点。

本节计算实在不过关。对函数的大量运算掌握不精通。

来源:显然,

20

2lim y x ds x ?+?=→?

来源:...)tan '(''=?==

dx

d dx y d y αα,而弧微分中已经求出...=ds ,故==αd ds

K 。

。。就导出来了。这样计算曲率带入公式就很方便了

推导参数方程曲率的时候,注意3

''

'''''''?ψ?ψ?+=y (分母是三次方)另外,注意结果是

绝对值,我在运算时经常忘记变正,带着负号算,特别费力。 求解参数方程的曲率时运算量特别大,一定要一步一步及其谨慎。

普通表达式

参数方程表达式 x=ψ(t) y=Ψ(t)

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

第3章-微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便于 直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

第2章导数与微分总结

1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: lim 丄一x) f °)是描述趋近任意 x 时的斜率。而 x 0 3、I 若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到 的就是这点的斜率一一导数。 4、可导与连续的关系: 1基础总结 lim -= lim x 0 x x 0 f(x X)f(x) x lim x x o f(x ) f (x o ) X o 叫 号严可以刻画趋近具体 x0 时的斜率。 li m o 要注意细心观察发现,

导数的实质是定义在某点的左右极限。 既然定义在了某点上,该点自然存在,而 且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。 不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存 在的。如: f(x) x,x 0 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如: A 旦主^謎I C m F 左电鼓 pg 总生戟乞 f ( x) f (x) -中的f(x))至u 底是神马。比如求上图 lim f(x x) f(x) x 0 x lim f(X X)f(0) 。 x 0 定义里面需要用到f(0)啊!因此,千 中 iim f (x )论) x 1 x x 0 ,这个f(x0)千万要等于2/3,而不是1 ! 定义解决时候一定要注意问。 X X o

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

2.2微分中值定理

§2.2 微分中值定理 一、罗尔定理 设函数()f x 满足 (1)在闭区间[a ,b ]上连续; (2)在开区间(a ,b )内可导; (3)()()f a f b =. 则至少存在一点()a b x ?,,使得()0f x ¢=. 几何意义:条件(1)说明曲线()y f x =在(,())A a f a 和(,())B b f b 之间是连续曲线[包括点A 和点B ]. 条件(2)说明曲线()y f x =在A ,B 之间是光滑曲线,也即每一点都有不垂直于x 轴的切线[不包括点A 和B ] 条件(3)说明曲线()y f x =在端点A 和B 处纵坐标相等。 结论说明曲线()y f x =在A 点和B 点之间[不包括点A 和B ]至少有一点,它的切线平行于x 轴。 注意:构造辅助函数时,可考虑以下形式 (1)()()k F x x f x =(加法) (2)() ()k f x F x x = (加法) (3)()()kx F x f x e =(函数加导数) 【例1】设()f x 在[]0,3上连续,在()0,3内可导,且()()()0123f f f ++=, ()31f =,试证:必存在()ξ∈0,3,使()0f ξ'=。 证 ()f x Q 在[]0,3上连续,()f x ∴在[]0,2上连续,且有最大值M 和最小值m , 于是(0)m f M ≤≤;(1)m f M ≤≤;(2)m f M ≤≤,

故[]1 (0)(1)(2)3 m f f f M ≤ ++≤。 由连续函数介值定理可知,至少存在一点[]c ∈0,2,使得 ()[]1 (0)(1)(2)13 f c f f f = ++= 因此()()3f c f =,且()f x 在[]c ,3上连续,()c ,3内可导,由罗尔定理得出必存在()()03ξ∈?c ,3,,使得()0f ξ'=。 【例2】 设()f x 在[]0,1上连续,在()01,内可导,且()()2 3 1 3 0f x dx f =?. 求证:存在()0,1x ?使()0f x ¢ = 证 由积分中值定理可知,存在轾 ?犏臌 2,13c ,使得()()2 3 1 213f x dx f c ?? =- ??? ? 得到 ()()23 1 3 (0)f c f x dx f ==? 对()f x 在[]0c ,上用罗尔定理(三个条件都满足), 故存在() 0(01)c ,,x 翁,使()0f x ¢= 【例3】(07)设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=。 分析:令()()()()F x f x g x F x =-?在[,]a b 连续,在(,)a b 可导,在题设条件下,要证存在(,)a b ξ∈,()0F ξ''=。已知()()0F a F b ==,只需由题设再证(,)c a b ?∈, ()0F c =。 证明:由题设11[,] (,),max ()()a b x a b M f x f x ?∈==, 22[,] (,),max ()()a b x a b M g x g x ?∈==。

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

高等数学考研大总结之四导数与微分

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()() 00,x f x f y x x x -=?-=?则()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量 增量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极 限不存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0 x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

导数与微分重点知识归纳

导数的概念 例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速 度? 我们知道时间从t0有增量△t时,质点的位置有增量 这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: 若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。 我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度, 即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下 导数的定义 设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地 函数有增量 , 若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。 记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。 若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数 对于区 间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数, 我们就称这个函数为原来函数的导函数。 注:导数也就是差商的极限左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的

概念。 若极限存在,我们就称它为函数在x=x0处的左导数。 若极限存在,我们就称它为函数在x=x0处的右导数。 注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差). 用公式可写为:。其中u、v为可导函数。 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 复合函数的求导法则 例题:求=? 解答:由于,故这个解答正确吗? 这个解答是错误的,正确的解答应该如下: 我们发生错误的原因是是对自变量x求导,而不是对2x求导。 下面我们给出复合函数的求导法则

第二章导数与微分 高等数学同济大学第六版

第二章 导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节 导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 本节主要内容 1 引例变速直线运动的瞬时速度和平面曲线的切线 2 导数的定义 3 左右导数 4 用导数计算导数 5 导数的几何意义 6 函数的可导与连续的关系 讲解提纲: 一、 引例: 引例1:变速直线运动的瞬时速度0 00 ()()lim t t f t f t v t t →-=-;

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

相关文档
最新文档