广东工业大学化工原理下册总结

广东工业大学化工原理下册总结
广东工业大学化工原理下册总结

一、填空与选择题试题范围(30分)

1、蒸馏定义及概念,实现精馏的理论依据(国庆+李军PPT )

定义:利用液体混合物中各组分挥发性的差异来分离液体混合物的传质过程。 概念:是质量传递过程(传质过程),即由浓度差引起的物质转移过程

精馏的理论依据(13~14):即多次蒸馏。液体混合物经过多次部分汽化和多次部分冷凝后,几乎被完全分离。

2、进料热状况的种类,q 值大小与进料状况的关系;q 线的物理意义,不同进料状况下 q 线的变化(国庆+李军PPT )

进料的汽化潜热

需的热量

进料汽化为饱和蒸汽所饱和液体焓饱和蒸汽焓原料焓饱和蒸汽焓=--=--=-=

L V F V I I I I F L L q '

对于饱和液体、气液混合物以及饱和蒸汽而言,q 值就等于进料的液相分率。

进料焓值(温度)增加,q 值减小, 则 q 线与精馏操作线的交点(相应加料热状态下两操作线的交点)沿着精馏操作线朝 x 、y 减小的方向移动。从塔设备的角度,这意味着加料板位置下移。

3、精馏塔计算时,塔内上升蒸汽量与R 的关系

回流比D L R = L ——精馏段下降液体的摩尔流量,kmol/h ;D ——馏出液摩尔流量,kmol/h

4、相对挥发度与饱和蒸气压的关系(国庆PPT )

00B

A p p =α 0

0,B A p p —分别为组分A 、B 的液体蒸汽压,Pa ,即纯液体的饱和蒸汽压;

5、在y -x 相图上,相对挥发度α大小与平衡线、对角线、组分的分离难易程度等之间的关系(李军PPT )

y

y

x x

x

y )1(,

)1(1--=

?-+?=

αααα

1=α时,x y = ;

对于大多数溶液,两相平衡时,y 总是大于 x ,故平衡线位于对角线上方。平衡线偏离对角线越远,表示该溶液越易分离。恒沸点时,x-y 线与对角线相交,该点处汽液相组成相等。

α越大,组分在汽、液两相中的摩尔分数相差越大,分离也越容易

6、精馏塔实际板数计算(李军PPT )

全塔板效率 ET (总板效率)为完成一定分离任务所需的理论塔板数 N 和实际塔板数 NT 之比

若已知一定操作条件下的全塔效率,便可求得实际板数。

7、二元理想混合液精馏,平衡关系已知,全回流下两板间的液相组成计算 全回流时,精馏塔顶y1=x1,利用相平衡关系求相对应的x 或y

n 1n x y =+ ——精馏段操作线与对角线重合 m m

x y '='+1 ——提馏段操作线与对角线重合

8、全回流的概念

塔顶上升蒸汽冷凝后全部回流至塔内的操作方式。全回流时操作线和平衡线的距离为最远,达到相同的分离程度所需的理论板数最少

9、吸收的定义及概念(国庆+李军PPT )

定义:利用气体在液体中溶解度的差异来分离气体混合物的传质过程。

概念:是质量传递过程(传质过程),即由浓度差引起的物质转移过程(不知道)

蒸馏中气相中重组分向液相传递,液相中轻组分向气相传递,是双相传递;吸收中溶质分子由气相向液相单相传递,惰性组分及溶剂组分处于“停滞”状态。

10、脱吸因数S 概念。

脱吸因数L

mV

S = m ——相平衡常数;V ——惰性气体的摩尔流量,kmol/s ;L ——溶剂的摩尔流量,kmol/s

11、吸收剂用量、液气比、传质推动力、传质单元数、填料层高度、吸收塔的费用等之间的关系(国庆+李军PPT )

↑↑↑↑↓↓↓↑

↓↓↓↓↑↑↑操作费,设备费填料层高度,接触面积传质单元数推动力操作费设备费,填料层高度,接触面积传质单元数推动力,,,,,,,,,,

V L

L V

L

L

12、双膜理论要点及特定体系(如氧气、二氧化碳气体、氨气等)的吸收控制类型(国庆+李军PPT )

双膜理论

1. 气液两相间存在稳定的相界面,界面两侧各有一层有效膜,溶质以分子扩散的传质方式由气相主体进入液相主体。 2. 在相界面处,气液两相达到平衡。

3. 在膜层以外的两相主流区由于流体湍动剧烈,传质速率高,传质阻力可以忽略不计,相际的传质阻力集中在两个膜层内。在气液两相主体中,溶质浓度均匀。 吸收控制

当溶质溶解度很大,即H 很大时,G G k K ≈ ,传质阻力主要在气膜,称为气膜控制传质过程。如水吸氨。 当溶质溶解度很小,即H 很小时,L L k K ≈ ,传质阻力主要在液膜,称为液膜控制传质过程。如水吸氧。

13、享利定律概念,亨利系数E 与溶解度大小的关系,E 、m 随系统中压强和温度的变化趋势(李军PPT )

概念:在一定的温度和压力(不太高)下,稀溶液中溶质在气相中的平衡分压与其在液相中的溶解度成正比

亨利系数E 与溶解度大小的关系)

(1

A S A L S M M c EM H -+=

ρ,对稀溶液

S S EM H ρ≈

在一定温度下达到平衡时,溶液的浓度随气体压力的增加而增加。

温度下降则气体的溶解度增高

亨利系数的值随物系的特性及温度而异。物系一定,E 值一般随温度的上升而增大

14、吸收过程的控制因素计算

一、 物料衡算

由()()2121X X L Y Y V -=-, 得 ()2

211X

Y Y L

V X +-=或 2

211X V

L Y X V L Y -=-

式中:V ——惰性气体的摩尔流量,kmol/s ;L ——溶剂的摩尔流量,kmol/s

Y 1,Y 2分别为进出塔气体中溶质组分的摩尔比; X 1,X 2 分别为出进塔液体中溶质组分的摩尔比

回收率Φ:溶质被吸收的百分率,

即 121121Y Y Y VY VY VY -=-=φ 所以 ()φ-=112Y Y

二、 吸收操作线方程

11X V

L

Y X V L Y -+=

或 22X V L Y X V L Y -+= 显然,吸收操作线为一直线。

式中:V L ——液气比。 最小液气比

2121min X X Y Y V L --=???

??*

15、湿空气的性质,湿度图的构成使用。

焓I :1kg 干空气和其所带的Hkg 水汽的焓

绝干气kg kJ H

t H HI I I v g /2490)88.101.1(++=+

=

湿度图

等H 线:与纵轴平行 等I 线:与斜轴平行 等t 线 等Φ线 水汽分压线

已知一对独立参数,求状态点

t 和t w t 和t d t 和?

16、恒速干燥,降速干燥的影响因素(李军PPT )

恒速干燥:由水份汽化速率控制(取决于物料外部的干燥条件)

降速干燥:取决于湿份与物料的结合方式,以及物料的结构,物料外部的干燥条件对其影响不大

17、结合水分、非结合水分、自由水分、平衡水分的概念,它们之间的关系及参数表达。

平衡水分:物料在不饱和空气中不能汽化的水分。当物料中水分的蒸汽压降至空气中水汽分压时,水分不再蒸发(汽化)。 自由水分:物料在不饱和空气中能汽化的水分,即总水分与平衡水分之差。

结合水分:物料中细胞壁内的水分、毛细管中的水分以及结晶水。由于结合力强,其蒸汽压低于同温度下纯水的饱和蒸汽压,所以分离较

困难。

非结合水分:物料表面的水分以及较大孔隙中的水分。由于结合力弱,其蒸汽压等于同温度下纯水的饱和蒸汽压,所以分离较容易。 它们之间的关系及参数表达:(214,图4-10)

18、关于湿空气性质的相关计算公式。

见15题

19、干燥速率曲线与物料表面温度的关系(李军PPT )

预热段:物料吸热升温以提高汽化速率

恒速干燥段:物料温度恒定在 tw ,X~t 变化呈直线关系,气体传给物料的热量全部用于湿份汽

化。

降速干燥段: 气体传给物料的热量仅部分用于湿份汽化,其余用于物料升温

20、空气经干燥系统的预热器后,其状态的变化

物料含水量下降,表面温度升高,但变化不大

21、恒定干燥条件(李军PPT )

一定的气-固接触方式下,固定空气的温度、湿度,流过物料表面的速度

22、不饱和空气的温度、湿度、相对湿度、水气分压的关系

见15题

23、干燥器的临界含水量(李军PPT )

概念:恒速干燥终了时的含水量。Xc 决定两干燥段的相对长短,是确定干燥时间和干燥器尺寸的基础数据,对制定干燥方案和优化干燥过程十分重要。

影响因素:Xc 与物料的厚度、大小以及干燥速率有关,所以不是物料本身的性质。一般需由实验测定。物料层越厚,临界含水量越大,转入降速段越早,干燥时间越长。减小物料层厚度、加强对物料的搅拌均可减小临界含水量。

24、理想干燥、等焓干燥(李军PPT )

理想干燥:气体放出的显热全部用于湿分汽化。如果散热损失可视为零且物料的初始温度与产品温度相同,则加热物料所消耗的热量为

零;或当干燥器的补充加热量恰等于加热物料和散热损失的热量,则干燥过程可视为理想干燥过程。理想干燥过程可近似为等焓过程

A

t

w

as t t ,%100=?A

t

%

100=??A

t

d

t %

100=?

等焓干燥:又称绝热干燥过程。

a.不向干燥器重补充热量,即QD=0.

b.忽略干燥器向周围散失的热量,即QL=0.

c.物料进出干燥器的焓相等,即G(I2’- I1’)=0

d.沿等I线,空气t1 、t2,即可确定H1 、H2。

25、实现干燥的必要条件(李军PPT)

只要物料表面的湿份分压高于气体中湿份分压,干燥即可进行,与气体的温度无关。

二、问答题(10分)

湿度图的应用(李军PPT)

1、由测出的参数确定湿空气的状态

a水与空气系统,已知空气的干球温度t和湿球温度tw,确定该空气的状态点A(t,H)。

b水与空气系统中,已知t和td,求原始状态点A(t,H)。

c水与空气系统中,已知t和φ,求原始状态点A的位置

2、已知湿空气某两个可确定状态的独立变量,求该湿空气的其他参数和性质

干燥流程预热器的作用(李军PPT)

预热器的作用在于加热空气。根据加热方式可分为两类:

直接加热式:如热风炉。将燃烧液体或固体燃料后产生的高温烟气直接用作干燥介质;

间接换热式:如间壁换热器。

干燥过程图解(李军PPT)

等焓干燥(李军PPT)

等焓干燥过程又称绝热干燥过程。

a.不向干燥器重补充热量,即QD=0.

b.忽略干燥器向周围散失的热量,即QL=0.

c.物料进出干燥器的焓相等,即G(I2’- I1’ )=0

d.沿等I线,空气t1 、t2,即可确定H1 、H2。

干燥机理(对流干燥过程原理,李军PPT)

温度为 t、湿份分压为 p 的湿热气体流过湿物料的表面,物料表面温度 ti 低于气体温度 t。由于温差的存在,气体以对流方式向固体物料传热,使湿份汽化;在分压差的作用下,湿份由物料表面向气流主体扩散,并被气流带走。

影响干燥过程的因素(李军PPT)

1物料尺寸和气固接触方式:减小物料尺寸,干燥面积增大,干燥速率加快。

2干燥介质条件:通过强化外部干燥条件 (t↑,H↓,u↑) 来增加传热传质推动力,减小气膜阻力,可提高恒速段 (表面汽化控制) 的干燥速率,但对降速段 (内部扩散控制) 的改善不大。

3物料本性:物料本性不影响恒速段的干燥速率;物料结构不同,与水分的结合方式、结合力的强弱不同,降速段干燥速率差异很大。

临界含水量的概念及其影响因素(李军PPT)

概念:恒速干燥终了时的含水量。Xc 决定两干燥段的相对长短,是确定干燥时间和干燥器尺寸的基础数据,对制定干燥方案和优化干燥过程十分重要。

影响因素:Xc 与物料的厚度、大小以及干燥速率有关,所以不是物料本身的性质。一般需由实验测定。物料层越厚,临界含水量越大,转入降速段越早,干燥时间越长。减小物料层厚度、加强对物料的搅拌均可减小临界含水量。

干燥过程的平衡关系和速率关系、干燥速率曲线(李军PPT)

平衡关系:

1平衡状态:当湿含量为 X 的湿物料与湿份分压为 p 的不饱和湿气体接触时,物料将失去自身的湿份或吸收气体中的湿份,直到湿份在物料表面的蒸汽压等于气体中的湿份分压。

2.平衡含水量:平衡状态下物料的含水量。不仅取决于气体的状态,还与物料的种类有很大的关系。

速率关系

干燥速率U:干燥器单位时间内汽化的湿分量

干燥速率曲线

干燥速率U 或干燥速度N 与湿含量X 的关系曲线。干燥过程的特征在干燥速率曲线上更为直观。以临界湿含量Xc 为界,可将干燥过程只分为恒速干燥和降速干燥两个阶段。

恒速干燥段:由物料内部向表面输送的水份足以保持物料表面的充分湿润,干燥速率由水份汽化速率控制(取决于物料外部的干燥条件),故恒速干燥段又称为表面汽化控制阶段。

三、吸收计算题(20分)

1、物料衡算、液气比和最小液气比、吸收液的出口浓度

2、填料层高度的计算(对数平均推动力法和脱吸因数法);传质单元数、传质单元高度的计算

3、操作条件的改变对吸收率和填料层高度的影响

四、精馏计算题(20分)

1、物料衡算

○1相关参数的计算方法:

q、L、V、L’、V’、F、D、W、x D、x F、x W、R等

○2对塔板或塔体作物料衡算

2、操作线方程的建立(精馏段操作线和提馏段操作线,全回流操作线)

3、理论板数的计算(逐板计算法和图解法)

4、塔径的计算

5、塔板效率(默弗里板效率、总板效率)的计算

五、干燥计算题(20分)

1、湿空气性质的计算(H、 、H v、H C、I)

2、干燥过程的物料衡算:水分蒸发量、干空气用量及总空气用量计算(质量、体积)、产品量、热量衡算(预热器热量、补充热量)

3、干燥速率曲线

4、干燥时间的计算

化工原理典型习题解答

化工原理典型习题解答 王国庆陈兰英 广东工业大学化工原理教研室 2003

上 册 一、选择题 1、 某液体在一等径直管中稳态流动,若体积流量不变,管内径减小为原来的一半,假定管内的相对粗糙度不变,则 (1) 层流时,流动阻力变为原来的 C 。 A .4倍 B .8倍 C .16倍 D .32倍 (2) 完全湍流(阻力平方区)时,流动阻力变为原来的 D 。 A .4倍 B .8倍 C .16倍 D .32倍 解:(1) 由 2 22322642d lu u d l du u d l h f ρμμ ρλ= ??=??= 得 1624 4 212 212 212212121 2==??? ? ??=???? ??????? ??==d d d d d d d u d u h h f f (2) 由 2222u d l d f u d l h f ? ??? ? ??=??=ελ 得 322 55 2121421 2211221 2==??? ? ??=????? ??==d d d d d d d u d u h h f f 2. 水由高位槽流入贮水池,若水管总长(包括局部阻力的当量长度在内)缩 短25%,而高位槽水面与贮水池水面的位差保持不变,假定流体完全湍流流动(即流动在阻力平方区)不变,则水的流量变为原来的 A 。 A .1.155倍 B .1.165倍 C .1.175倍 D .1.185倍 解:由 f h u p gz u p gz ∑+++=++2 22 2 22211 1ρρ 得 21f f h h ∑=∑ 所以 ()()2 222222 11 1u d l l u d l l e e ?+?=?+? λλ 又由完全湍流流动 得 ?? ? ??=d f ελ

化工原理下复习小结

蒸 馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1. 拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1-x A ) 根据道尔顿分压定律:p A =Py A 而P =p A +p B 则两组分理想物系的气液相平衡关系: B A A B P p x p p -= -———泡点方程 0A A A p x y P = ———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2. 用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v 可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即 B A B B =A A p p x x υυ= 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: A A B A B A B B B A y x p p x x y x υαυ= == 对于理想溶液: 0 A B p p α= 气液平衡方程:1(1)x y x αα= +- α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3. 气液平衡相图 (1)温度—组成(t -x -y )图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x -y 图 x -y 图表示液相组成x 与之平衡的气相组成y 之间的关系曲线图,平衡线位于对角线的上方。平衡线偏

化工原理终极总结

第一章流体与输送机械 1、基本研究方法:实验研究法、数学模型法 2、牛顿粘性定理: 应用条件: 3、阻力平方区:管内阻力与流速平方成正比的流动区域; 原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。 4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。 流动边界层分离的弊端:增加流动阻力。 优点:增加湍动程度。 5、流体黏性是造成管内流动机械能损失的原因。 6、压差计: 文丘里 孔板 转子 7、离心泵工作原理: 离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能

量,使叶轮外缘的液体静压强提高。液体离开叶轮进入泵壳后,部分动能转变成为静压能。当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。 8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。 9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。 10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能) 11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。 12、大型泵的效率通常高于小型泵是由于:容积效率大。 13、叶轮后弯的优缺点 优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。 缺点:产生同样的理论压头所需泵的体积大。 14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关; b 压头仅取决于管路特性。(耐压强度) c 不能在关死点运转。 d 很好的自吸

(完整版)化工原理下册习题及章节总结(陈敏恒版).doc

第八章课堂练习: 1、吸收操作的基本依据是什么?答:混合气体各组分溶解度不同 2、吸收溶剂的选择性指的是什么:对被分离组分溶解度高,对其它组分溶解度低 3、若某气体在水中的亨利系数 E 值很大,说明该气体为难溶气体。 4、易溶气体溶液上方的分压低,难溶气体溶液上方的分压高。 5、解吸时溶质由液相向气相传递;压力低,温度高,将有利于解吸的进行。 6、接近常压的低浓度气液平衡系统,当总压增加时,亨利常数 E 不变, H 不变,相平衡常数 m 减小 1、①实验室用水吸收空气中的O2 ,过程属于( B ) A 、气膜控制B、液膜控制C、两相扩散控制 ② 其气膜阻力(C)液膜阻力 A 、大于B、等于C、小于 2、溶解度很大的气体,属于气膜控制 3、当平衡线在所涉及的范围内是斜率为m 的直线时,则 1/Ky=1/ky+ m /kx 4、若某气体在水中的亨利常数 E 值很大,则说明该气体为难溶气体 5 、总传质系数与分传质系数之间的关系为l/KL=l/kL+1/HkG ,当(气膜阻力 1/HkG) 项可忽略时,表示该吸收过程为液膜控制。 1、低含量气体吸收的特点是L 、 G 、Ky 、 Kx 、T 可按常量处理 2、传质单元高度HOG 分离任表征设备效能高低特性,传质单元数NOG 表征了(分离任务的难易)特性。 3、吸收因子 A 的定义式为 L/ ( Gm ),它的几何意义表示操作线斜率与平衡线斜率之比 4、当 A<1 时,塔高 H= ∞,则气液两相将于塔底达到平衡 5、增加吸收剂用量,操作线的斜率增大,吸收推动力增大,则操作线向(远离)平衡线的方向偏移。 6、液气比低于(L/G ) min 时,吸收操作能否进行?能 此时将会出现吸收效果达不到要求现象。 7、在逆流操作的吸收塔中,若其他操作条件不变而系统温度增加,则塔的气相总传质单元 高度 HOG 将↑,总传质单元数NOG将↓,操作线斜率(L/G )将不变。 8、若吸收剂入塔浓度 x2 降低,其它操作条件不变,吸收结果将使吸收率↑,出口气体浓度↓。 x2 增大,其它条件不变,则 9、在逆流吸收塔中,吸收过程为气膜控制,若进塔液体组 成气相总传质单元高度将( A )。 A. 不变 B.不确定 C.减小 D. 增大 吸收小结: 1、亨利定律、费克定律表达式 及温度而异,单位与压强的 2、亨利系数与温度、压力的关系; E 值随物系的特性单 位一致; m 与物系特性、温度、压力有关(无因次) 3、 E 、 H 、 m 之间的换算关系 4、吸收塔在最小液气比以下能否正常工作。 5、操作线方程(并、逆流时)及在y~x 图上的画法 6、出塔气体有一最小值,出塔液体有一最大值,及各自的计算式 7、气膜控制、液膜控制的特点 8、最小液气比(L/G)min 、适宜液气比的计算 9、加压和降温溶解度高,有利于吸收 减压和升温溶解度低,有利于解吸

化工原理知识点总结

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v:考虑流量泄漏所造成的能量损失;水力效率?H:考虑流动阻力所造成的能量损失;机械效率?m:考虑轴承、密

封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 ? (1)正位移泵 ? 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ

广东工业大学化工原理下册总结

一、填空与选择题试题范围(30分) 1、蒸馏定义及概念,实现精馏的理论依据(国庆+李军PPT ) 定义:利用液体混合物中各组分挥发性的差异来分离液体混合物的传质过程。 概念:是质量传递过程(传质过程),即由浓度差引起的物质转移过程 精馏的理论依据(13~14):即多次蒸馏。液体混合物经过多次部分汽化和多次部分冷凝后,几乎被完全分离。 2、进料热状况的种类,q 值大小与进料状况的关系;q 线的物理意义,不同进料状况下 q 线的变化(国庆+李军PPT ) 进料的汽化潜热 需的热量 进料汽化为饱和蒸汽所饱和液体焓饱和蒸汽焓原料焓饱和蒸汽焓=--=--=-= L V F V I I I I F L L q ' 对于饱和液体、气液混合物以及饱和蒸汽而言,q 值就等于进料的液相分率。 进料焓值(温度)增加,q 值减小, 则 q 线与精馏操作线的交点(相应加料热状态下两操作线的交点)沿着精馏操作线朝 x 、y 减小的方向移动。从塔设备的角度,这意味着加料板位置下移。 3、精馏塔计算时,塔内上升蒸汽量与R 的关系 回流比D L R = L ——精馏段下降液体的摩尔流量,kmol/h ;D ——馏出液摩尔流量,kmol/h 4、相对挥发度与饱和蒸气压的关系(国庆PPT ) 00B A p p =α 0 0,B A p p —分别为组分A 、B 的液体蒸汽压,Pa ,即纯液体的饱和蒸汽压; 5、在y -x 相图上,相对挥发度α大小与平衡线、对角线、组分的分离难易程度等之间的关系(李军PPT ) y y x x x y )1(, )1(1--= ?-+?= αααα 1=α时,x y = ; 对于大多数溶液,两相平衡时,y 总是大于 x ,故平衡线位于对角线上方。平衡线偏离对角线越远,表示该溶液越易分离。恒沸点时,x-y 线与对角线相交,该点处汽液相组成相等。 α越大,组分在汽、液两相中的摩尔分数相差越大,分离也越容易 6、精馏塔实际板数计算(李军PPT ) 全塔板效率 ET (总板效率)为完成一定分离任务所需的理论塔板数 N 和实际塔板数 NT 之比

《化工原理》公式总结

第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ222212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ ρρ222212112121+ 5. 雷诺数:μρ du =Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ=? 8. 局部阻力计算:流道突然扩大:2211?? ? ??-=A A ξ流产突然缩小:??? ??-=2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 221r r t t l Q λπ-=或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +- =ln 2λπ(由公式4推导)

6. 三层圆筒壁定态热传导方程:3 4123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数22 3μ ρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ? ????? ??=λμμρλα8.0023.0,其中当加热时,k=0.4,冷却时k=0.3 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:2 1211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程: 212121211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:???? ??-=--2 2111112211ln p m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:???? ??+=--2 2111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2 221ln p m c q KA t T t T =-- 第四章 蒸发 1. 蒸发水量的计算:110)(Lx x W F Fx =-= 2. 水的蒸发量:)1(1 0x x F W -= 3. 完成时的溶液浓度:W F F x -= 0 4. 单位蒸气消耗量:r r D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热

化工原理判断题题库【化工原理试题库】

1、精馏分离的依据是各组分的挥发度的差异,要使混合物中的组分得到完全分离,必须进行多次地部分汽化和部分冷凝。 2、相对挥发度的表示式?=_?A.对于二组 B 分溶液的蒸馏,当?=1 时,能否能离不能 3、q的定义式是进料的液化分率,饱和液体进料q=_饱和蒸汽进料q=_0_蒸汽是液体的3倍的混合进料时q=_0.25_。 4、二组分的连续精馏操作,精馏段操作线方程为y?0.75x?0.245,提馏段操作线方程为y?25x?0.02,当q=1时,则xW?xD 5、在连续精馏中,其它条件均不变时,仅加大回流,可以使塔顶产品xD提高_,若此时加热蒸汽量V不变,产品量D将下降。若在改变R的同时,保持塔顶采出量不变,必需增加蒸汽用量,那么冷却水用量将_增加__。 6、压力增加_.温度下降将有利于吸收的进行。 7、完成下列方程,并指出吸收糸数的单位。NA?k.?Ci?C? k的单位_m_ NA?KG.?P?P KG 的单位__. ms.atm 8、吸收过程中的传质速率等于分子散速率的条件是层流或静止。 9、饱和空气在恒压下冷却,温度由t1降至t2,其相对湿度?不变,绝对湿湿度H下降_,露点下降,湿球温度下降。 10、萃取操作的依据是_组分在萃取剂中的溶解度的差异.萃取操作选择溶剂的主要原则是_对被萃取组分有较好的选择性与稀释剂互溶度愈小愈好_,易回收便宜无毒性__. 1、直接水蒸汽加热的精馏塔适用于_待分离的混合物为水溶液且水是难挥发组分的情况_,与间接蒸汽相比,相同要求下,所需理论塔板数将__理论板数要多。 2、平衡线表示塔的任一截面上气、液两相的易挥发组分在气、液两相间的浓度关系,操作线表示了易挥发组分在塔内的下一块塔板中上升的气相中的组成与上一块塔板上的液相组成之间的操作线关系 3、溶液中各组分之挥发度可用它在___气相中的分压_和与之平衡的液相__縻尔分率之比来表示,若是理想溶液,则同温度下的饱和蒸汽压来表示。 4、对拉乌尔定律产生正偏差是由于不同种分子之间的引力小于同种分子之间的引力所造成的。 5、对拉乌尔定律产生负偏差是由于不同种分子之间的引力大于同种分子之间的引力所造成的。 6、在板式塔的设计中,为了减少雾沫夹带,我们可以适当地增大塔径以减少空塔气速,也可以适当地增大板间距。

【评分细则】《广东工业大学轻工化工学院2018年度龙慧创新创业奖学金评选办法》

广东工业大学轻工化工学院“龙慧创新创业奖学金”评审办法为支持学校教育事业,鼓励学生的创新创业能力,龙慧贸易有限公司自2015年起,每年捐赠人民币3万元,共三年,设立“龙慧创新创业奖学金”,奖励轻工化工学院品学兼优,在创新创业方面有突出表现的研究生、本科生,双方根据协议制定本评审办法。 一、奖励对象 龙慧创新创业奖学金用于奖励品德兼优,在创新创业方面有突出表现的、学习满一年的在册优秀研究生、本科生。 二、奖学金奖项及金额设置 注:若本科(研究生)某个奖项评奖名额不足额(即报名候选人中符合条件者少于该项名额),则剩余的名额授予符合该奖项的研究生(本科)候补人员。

三、评审条件 1.热爱祖国,拥护中国共产党领导 2.遵守宪法和法律,遵守学校各项规章制度 3. 本科生要求学习成绩优秀,无不及格科目,上一学年度综合测评排名位于同级本专业的前50%以内;研究生要求在读期间无黄牌警告; 4.在社会实践、创新能力、综合素质等方面表现突出; 5.在创新创业相关比赛中有突出贡献的同学优先考虑。 四、评选细则 1.本奖学金的特等奖以项目为单位进行评选,不参与积分计算;其他奖项以个人为单位进行评选,以积分计算排序;若参评者参加了集体项目获奖,积分只能累计在所在项目的第一作者身上,且只奖励第一作者为轻工化工学院的作品; 2.若是集体项目,以项目为单位进行奖励,只奖励第一作者为轻工化工学院的作品; 3.同一个项目参加同一个比赛,只按最终获奖级别最高的成绩计算; 4.某一年度的龙慧创新创业奖学金,时间范围从该年度1月1日起至该年度12月31日; 5.本奖学金以积分计算,达到以下要求可以申请对应的奖项,如

广东工业大学工《工程化学》套题和重点

一.名词解释 (1)金属键:金属元素的原子电离能教低,他的价电子可脱离原子,且不固定在某 一离子附近,即在整个晶格自由运动,这些自由电子吧金属原子和离 子结合在一起,我们称这种作用为金属键。金属键没有方向性和饱和 性。 (2)热力学第一定律:热力学第一定律又称为能量守恒与转化定律,他可以表述为: 能量的形式可以相互转化,但不会凭空产生,也不会凭空消 失。 △U=U2 —U1=Q+W U1、U2分别表示系统变化前后两个状态的热力学能;Q表示变 化过程中系统所吸收的热;W表示环境对系统所做的功。 (3)熵:熵S是介观粒子即原子和分子等原子结合态单元的混乱度在宏观上的一种度量,熵值的变化△S是介观离子混乱度变化在宏观上的表现。 在统计人力学中,把介观粒子的状态数用Ω表示。 一个系统中,介观粒子的状态数(用Ω表示)越多,他们的运动显得混乱, 所以Ω又称混乱度。 (4)同离子效应:在弱酸或弱碱等弱电解质溶液中,加入与弱酸或弱碱解离后具有 相同离子的易溶强电解质,使弱电解质解离度降低的现象称同离 子效应。 (5)范德华力:在小分子中的分子间作用力被称为范德华力,可分为取向力、诱导 力、和色散力三种。 极性分子:分子中正负电荷中心不重合,从整个分子来看,电荷的分布是不均 匀的,不对称的,这样的分子为极性分子,以极性键结合的双原子 分子一定为极性分子,极性键结合的多原子分子视结构情况而定如 CH4就是非极性分子。 极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电 子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一 方,因而吸引电子能力较弱的原子一方相对的显正电性,这样的共 价键叫做极性共价键,简称极性键。 偶极:表示分子的极性。 取向力:由于极性分子具有偶极,因此两个极性分子相互接近时,同极相斥, 异性相吸,使分子发生相对转动,这叫做取向。在已取向的偶极分 子之间,由于静电引力使之相互吸引,当接近到一定距离后,排斥 和吸引达到相对平衡,从而使体系的能量达到最小值。这种靠永久 偶极产生的相互作用力,叫做取向力。 诱导力:在极性分子和非极性分子之间以及极性分子和极性分子之间都存在 诱导力。非极性分子由于受到极性分子偶极电场的影响,使正、负 电荷重心发生位移,从而产生诱导偶极。诱导偶极同极性分子的永 久偶极间的作用力叫做诱导力。诱导力也会出现仔离子和分子以及 离子和离子之间。 色散力:由于分子中的电子在核周围的高速运动和核的振动,使任何一个分 子包括非极性分子都在不停地发生着瞬间的正、负电荷重心的相对 位移,从而产生“瞬间偶极”。这种由于存在“瞬间偶极”而产生 的相互作用力称为色散力。

化工原理知识点总结复习重点完美版

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 +=+ρρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s

m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηe N N = (运算效率进行简单数学变换) 应用解题要点: 1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000

化工原理重要公式总结

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 22 11 += +ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=++ +2 222 222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μ μρdG du ==Re 阻力损失 22 u d l h f λ= ?? ??d q d u h V f ∞∞ 层流 Re 64 =λ 或 232d ul h f ρμ= 局部阻力 22 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρ P ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242) (8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P = η 最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体)(饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV += τ , 其中 φμ 012r K S -?=P 恒速过滤 τ2 2 2 KA VV V e =+

恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑= V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μ ρρ18)(2g d u p p t -=, 2Re

化工原理知识点总结整理

化工原理知识点总结整理 一、流体力学及其输送 1、单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2、四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3、牛顿粘性定律:F=τA=μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4、两种流动形态:层流和湍流。流动形态的判据雷诺数 Re=duρ/μ;层流过渡湍流。当流体层流时,其平均速度是最大流速的1/2。 5、连续性方程:A1u1=A2u2;伯努力方程: gz+p/ρ+1/2u2=C。 6、流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7、流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较

大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。转子流量计的特点恒压差、变截面。 8、离心泵主要参数:流量、压头、效率(容积效率hv:考虑流量泄漏所造成的能量损失;水力效率hH:考虑流动阻力所造成的能量损失;机械效率hm:考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9、常温下水的密度1000kg/m3,标准状态下空气密度 1、29 kg/m31atm =Pa=101、3kPa=0、1013MPa= 10、33mH2O=760mmHg(1)被测流体的压力 > 大气压表压 = 绝压-大气压(2)被测流体的压力 < 大气压真空度 = 大气压-绝压= -表压 10、管路总阻力损失的计算1 1、离心泵的构件: 叶轮、泵壳(蜗壳形)和轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体

化工原理复习总结知识点

第1章 流体流动 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m3 1atm =101325Pa====760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 静压强的计算 柏努利方程应用 层流区(Laminar Flow ):Re < 2000;湍流区(Turbulent Flow ):Re > 4000; 2000

化工原理知识点总结复习重点 完美版

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称 压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 += +ρ ρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: η e N N = (运算效率进行简单数学变换) 应用解题要点:

1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000 本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。 流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合 流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡。由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧加大。 管截面速度大小分布: 无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大。 层流:1、呈抛物线分布;2、管中心最大速度为平均速度的2倍。 湍流:1、层流内层;2、过渡区或缓冲区;3、湍流主体 湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为层流内层或层流底层。自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体。层流内层的厚度随 Re 值的增加而减小。 层流时的速度分布 max 2 1 u u = 湍流时的速度分布 max 8.0u u ≈ 四、流动阻力、复杂管路、流量计: ● 计算管道阻力的通式:(伯努利方程损失能) 范宁公式的几种形式: 圆直管道 2 2u d l h f λ= 非圆直管道 22 u d l W p f f ρλρ==? 运算时,关键是找出λ值,一般题目会告诉,仅用于期末考试,考研需扩充 ● 非圆管当量直径: 当量直径:e d e d =4H r (4倍水力半径) 水力半径:H r = Π A

化工原理上知识总结及重要公式

《化工原理》基本概念、主要公式 第一、二、三章(流体流动) 基本概念: 连续性假定质点拉格朗日法欧拉法稳态与非稳态流动轨线与流线系统与控制体粘性的物理本质 质量守恒方程静力学方程总势能理想流体与实际流体的区别可压缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程平均流速动能校正因子 均匀分布均匀流段层流与湍流的本质区别边界层边界层分离现象因次 雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩擦系数完全湍流粗糙管 局部阻力当量长度、阻力系数毕托管驻点压强孔板流量计转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性) 重要公式:

)(0ρρ-=?Rg P 质量衡算: N-S 方程 流体输送机械 基本概念: 管路特性方程 输送机械的压头或扬程 离心泵主要构件 离心泵理论压头的影响因素 叶片后弯原因 t m q q out m in m d d ,,=-g u u ρμρ+?+-?=2 D D p t

气缚现象 离心泵特性曲线 离心泵工作点 离心泵的调节手段 汽蚀现象 汽蚀余量 离心泵的选型(类型、型号) 正位移特性 往复泵的调节手段 离心泵与往复泵的比较(流量、压头) 通风机的全压、动风压 真空泵的主要性能参数 重要公式: 泵的有效功率 泵效率 允许安装高度 风机全压换算 离心泵的串联 并联 第六章 基本概念: 搅拌目的 搅拌器按工作原理分类 混合效果 调匀度 分隔尺度 宏观混合 微观混合 搅拌器的两个功能 H L η ?=N N e = =N N e ηN gH Q ρ201,10,1001012f f g p p p p u h H H H z z g g g ν ρρ----=-= --=-?-∑∑允允2222 11 2122 T e u u H h p p ρρρ==-+ - 2 H 2A-2BQ =串串 2 Q H A-B 2?? = ? ?? 并并

化工原理知识点总结整理

一、流体力学及其输送 1、单元操作:物理化学变化得单个操作过程,如过滤、蒸馏、萃取。 2、四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3、牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。 4、两种流动形态:层流与湍流。流动形态得判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度就是最大流速得1/2。 5、连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。 6、流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同) 7、流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计得特点;结构简单,制造容易,安装方便,得到广泛得使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。转子流量计得特点——恒压差、变截面。 8、离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成得能量损失;水力效率ηH :考虑流动阻力所造成得能量损失;机械效率ηm :考虑轴承、密封填料与轮盘得摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵得型号(泵口直径与扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。9、 常温下水得密度1000kg/m3,标准状态下空气密度1、29 kg/m3 1atm =101325Pa=101、3kPa=0、1013MPa=10、33mH2O=760mmHg (1)被测流体得压力 > 大气压 表压 = 绝压-大气压 (2)被测流体得压力 < 大气压 真空度 = 大气压-绝压= -表压 10、 管路总阻力损失得计算 11、 离心泵得构件: 叶轮、泵壳(蜗壳形)与 轴封装置 离心泵得叶轮闭式效率最高,适用于输送洁净得液体。半闭式与开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内得液体没有吸入泵内。汽蚀现象:泵得安装位置太高,叶轮中各处压强高于被输送液体得饱与蒸汽压。原因(①安装高度太高②被输送流体得温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体12、 往复泵得流量调节 ? (1)正位移泵 流量只与泵得几何尺寸与转速有关,与管路特性无关,压头与流量无关,受管路得承压能力所限制,这种特 性称为正位移性,这种泵称为正位移泵。? 往复泵就是正位移泵之一。正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏。 ? (2)往复泵得流量调节 ? 第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵得流量就是不变得。 第二,改变曲柄转速与活塞行程。使用变速电机或变速装置改变曲柄转速,达到调节流量,使用蒸汽机则更为 方便。改变活塞行程则不方便。13、流体输送机械分类 14、离心泵特性曲线: 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑ ∑∑∑∑∑ζλλζλ

相关文档
最新文档