电子束焊

电子束焊
电子束焊

电子束焊焊接方法基本概念

电子束焊是利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。

基本原理和分类

电子束焊接因具有不用焊条、不易氧化、工艺重复性好及热变形量小的优点而广泛应用于航空航天、原子能、国防及军工、汽车和电气电工仪表等众多行业。电子束焊接的基本原理是电子枪中的阴极由于直接或间接加热而发射电子,该电子在高压静电场的加速下再通过电磁场的聚焦就可以形成能量密度极高的电子束,用此电子束去轰击工件,巨大的动能转化为热能,使焊接处工件熔化,形成熔池,从而实现对工件的焊接。

电子束焊的分类方法很多。按被焊工件所

处的环境的真空度可分为三种:高真空电

子束焊,低真空电子束焊和非真空电子束

焊。

1.高真空电子束焊是在10-4~10-1Pa

的压强下进行的。良好的真空条件,可以

保证对熔池的“保护”防止金属元素的氧化

和烧损,适用于活性金属、难熔金属和质

量要求高的工件的焊接。

2.低真空电子束焊是在10-1~10Pa

的压强下进行的。压强为4Pa时束流密度

及其相应的功率密度的最大值与高真空的

最大值相差很小。因此,低真空电子束焊

也具有束流密度和功率密度高的特点。由

于只需抽到低真空,明显地缩短了抽真空

时间,提高了生产率,适用于批量大的零

件的焊接和在生产线上使用。

3.在非真空电子束焊机中,电子束仍

是在高真空条件下产生的,然后穿过一组光阑、气阻和若干级预真空小室,射到处于大气压力下的工件上。在压强增加到7~15Pa 时,由于散射,电子束功率密度明显下降。在大气压下,电子束散射更加强烈。即使将电子枪的工作距离限制在20~50mm,焊缝深宽比最大也只能达到5:1。目前,非真空电子束焊接能够达到的最大熔深为30mm。这种方法的优点是不需真空室,因而可以焊接尺寸大的

工件,生产率较高。

工艺特点和应用范围

1.工艺特点

①电子束穿透能力强(功率密度可达106W/cm2),焊缝深宽比大(可达50:1),易于实现厚度差极大的焊件之间的接。

②焊接速度特快(大于1m/min ),热影响区小,焊接变小。

③真空环境中焊接,有利于提高焊缝质耸。

④可达性好。在真空环境下,电子束可发射到较远位置,且束流直径远细于任何电极或焊枪。

⑤可控性好。通过控制电子束聚焦,可实现穿透数层非焊接件后再聚焦于焊接位置进行焊接;通过控制电子束偏移,可实现复杂接缝的自动焊接;还可通过电子束扫描熔池以消除焊接缺陷。

应用范围

1.航空航天工业:加工一些技术要求高并有特殊用途的部件,如直升飞机的零部件或卫星燃料箱。

2.能源和电子工业:大批量加工铜制品和其它一些接触材料的产品如断路器

3.铁路,造船和医药工业:安全可靠的连接,如德国高速火车的扣环和适用人体的植入物。

4.机器设备制造和食品工业:小批量和大批量加工不锈钢制品以及其它不同的钢的结合物的产品。可通过电子束焊接重达50吨的工件

影响焊接质量的工艺参数

影响电子束焊接质量的一些工艺因素,如焊缝结构设计、工装模具、焊接参数、电子束斑点位置、预热和退火、填充材料以及电子束跟踪焊接等。

1.焊缝结构及配合间隙

在焊接实践中,会碰到形形色色的工件,焊缝结构也各不相同,但总体上可分为:对焊缝、端焊缝、角焊缝(包括穿透焊缝),或区分为直线焊缝、环线焊缝、曲线焊缝、点焊缝,还

有等截面焊缝和变截面焊缝等。为了达到最佳焊接效果,焊缝结构和配合间隙的设计至关重要,既要考虑工件(部件)在整机中的作用,又必须满足被焊材料可焊性和具体焊接工艺的要求。

所以在实施焊接之前,应该与工程设计人员共同讨论焊接件的焊缝结构,或通过工艺试验确定合理的结构与间隙尺寸。

2.工装模具

为了将被焊接的工件置于焊机之中,工装模具(夹具)直接影响焊接的实施效果,从一定意义上讲,模具的正确设计是焊接工作成功的一半。

3.焊接参数

根据被焊工件的材料、尺寸及结构选取相应的工艺参数是焊接工作的主要内容。

1)焊接功率的影响。电子束的焊接功率指:

P=U·I

式中P—功率(w),U—电压(kV),I—束流(mA)它直接影响焊接的熔深,随着焊接功率的增大,焊接熔深呈线性增大。

从加速电压的高低区分,高压焊机(如150kV)的电子束穿透能力更强,与低中压焊机相比,同等功率时焊接熔深会大一些;但亦有一种观点认为焊接熔深取决于电子枪的性能。

2)焊接线能量的影响。焊接线能量指

E=P/S

式中E—线能量(J/mm),P—功率(w),S—焊速(mm/s)

焊接线能量的输入大小对焊缝的成型起很大作用,如可以获得焊缝的最佳深宽比。另外,快速焊接时工件变形较小;慢速焊接可防止高强钢等工件产生裂纹。

3)临界焊接参数的作用。我们在进行薄件和高精度工件的焊接工艺试验时,发现它的焊接参数非常严格,偏大或偏小均会导致失败,将此参数称之谓临界焊接参数。

电子束焊接主要焊接焊接参数有电子束电流(束流)、加速电压、焊接速度、聚焦电流、焦点工作距离等。

(1)对熔深的影响熔深与加速电压、束流成止比,与束斑直径(受聚焦电流影响)、焦点工作距离及焊接速度成反比。

(2)对焊缝横断面深宽比的影响在其他参数不变情况下,焊缝横断面深宽比与加速电压成正比。增加束流,熔深和熔宽也都会增加。增加焊接速度会使焊缝变窄,熔深减小。电子束聚焦状态对熔深及焊缝形状有很大影响。焦点(束斑)变小可使焊缝变窄,熔深增加。

必须指出,以上趋势只是一般规律。对不同设备,由于电子枪结构、加速电压和真空度的差异,其束流品质并不完全一致,因而在不同设备上焊接同一接头时,上述诸工艺参数也并不完全相同。

焊接方法(系统)设备与装置组成和性能指标

电子束焊焊接装置按加速电压高低分,可分为高压电子束焊(>120kV)中压电子

束(60-100 kV)和低压电子束焊(<40kV)三类;按焊件所处环境分可分为高真空电

子束焊( 10-4~10-1 Pa)、低真空电子束焊(10-1~10Pa)和非真空电子束焊三类。

其装置主要由电子枪、电源、工作室(真空室)、运动系统、真空系统及电气控制

系统等组成。

(1)电子枪电子枪为电子束焊焊接装置的关键部件。

(2)电源由高压电源、阴极加热电源和偏压电源组成,密封于以纯净变压器油

作为介质的油箱中。

(3)真空系统用于电子枪和工作室的抽真空,分别以机械泵、油扩散泵和

涡轮分子泵对应于抽低、中、高真空。

(4)工作室用以提供真空环境及使操作者与电子束隔离,以免受X射线幅射。

其尺寸及形状取决于焊机用途和焊件形状及尺寸,一般采用矩形或圆柱形,容

积由数升到数千立方米。

(5)运动系统由工作台、转台及夹具组成,目的是使电子束与焊件循焊接路线

实行相对(焊件不动,电子枪动,或反之)运动。

(6)电气控制系统目前已大都采用程控技术,焊接过程已可实现全自动化。

(7)辅助系统含电子束束斑品质测量和对焊缝的观察及跟踪两部分。前者直接影响焊接质量,故检测束流焦点位置和束斑品质极为重要;

后者有利于操作者对焊接过程的监控,可以工业电视、二次电子成像系统或直接设置观察窗日来实现。

连续真空

局部真空

典型零件的应用实例

电子束焊接技术在航天卫星领域有较广泛的使用,如有的星际飞行器,其推进器用的是电火箭,其发射体使水银或铯汽化并游离,其离子在加速极电势作用下,从其表面拉出并加速到一定速度,形成所需推力,发射体的表面积越大,其游离量越大,效率越高,多孔钨是最佳选择。多孔钨还需与支撑件钨块用电子束焊牢成一体,而该钨支撑件又必须与钽盒焊牢,但钽与钨直接熔焊,其合金变脆,而以钛为中间介质用电子束钎焊,而获得无裂纹焊接。

钛合金有高的强质比,是宇航用重要结构材料。用氩弧焊,延性差,很脆,而用电子束焊,共焊接质量好得多,用电子束焊这些钛合金焊缝强度能达到基材的等强度,其冲击强度甚至比基材还高。铍合金具有更高的强质比,阿波罗飞船门的框架构件就用铍合金,采用电子束焊接而成。图所示导弹壳体采用非真空电子束焊示意图:

而且在火箭,导弹,飞船,空间站,星球车,太阳能电站,造船业,发动机制造业,航空业等,大到航母,小到一个小零件都需要使用电子束焊接。

参考文献

【1】任家烈,吴爱萍.先进材料的连接[M].机械工业出版社,2000.

【2】森永卓一.铜及铜合金[M].国防工业出版社,1963.

【3】王之康,高永华等.真空电子束焊接设备及工艺[M].原子能出版社出版,1990.

【4】R.R.college. Electron beam welding[J]. Tooling & production, june 1974:66-67. 【5】[苏]B.B.巴申柯等.电子束焊接[M].国防工业出版社,1975.

【6】《特种焊接技术及应用》李亚江王娟等编著

【7】《焊接结构制造技术与装备》沈阳大学宗培言主编

【8】《电子束技术在工业领域的应用》宋宜梅李少林编著

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

电子束焊工艺

电子束焊工艺 一、电子束焊的特点电子束焊是利用会聚的高速电子流轰击工件接缝处所产生的热能,使金属熔合的一种焊接方法。电子轰击工件时,动能转变为热能。电子束作为焊接热源有两个明显的特点:(1)功率密度高电子束焊接时常用的加速电压范围为30~150kV,电子束电流20~1000mA,电子束焦点直径约为0.1~1mm,这样,电子束功率密度可达106W/cm2以上。(2)精确、快速的可控性作为物质基本粒子的电子具有极小的质量(9.1×10-31kg)和一定的负电荷(1.6×10-19C),电子的荷质比高达1.76×1011C/kg,通过电场、磁场对电子束可作快速而精确的控制。电子束的这一特点明显地优于激光束,后者只能用透境和反射镜控制,速度慢。基于电子束的上述特点和焊接时的真空条件,电子束焊接具有下列主要优缺点。 优点:1)电子束穿透能力强,焊缝深宽比大。目前,电子束焊缝的深宽比可达到60:1。焊接厚板时可以不开坡口实现单道焊,比电弧焊可以节省辅助材料和能源的消耗。2)焊接速度快,热影响区小,焊接变形小。对精加工的工件可用作最后连接工序,焊后工件仍保持足够高的精度。3)真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属的焊接。也常用电子束焊接真空密封元件,焊后元件内部保持在真空状态。4)电子束在真空中可以传到较远的位置上进行焊接,因而也可以焊接难以接近部位的接缝。5)通过控制电子束的偏移,可以实现复杂接缝的自动焊接。可以通过电

子束扫描熔池来消除缺陷,提高接头质量。缺点:1)设备比较复杂、费用比较昂贵。2)焊接前对接头加工、装配要求严格,以保证接头位置准确、间隙小而且均匀。3)真空电子束焊接时,被焊工件尺寸和形状常常受到工作室的限制。4)电子束易受杂散电磁场的干扰,影响焊接质量。5)电子束焊接时产生的X射线需要严加防护以保证操作人员的健康和安全。二、工作原理和分类(1)工作原理电子束是从电子枪中产生的。通常电子是以热发射或场致发射的方式从发射体(阴极)逸出。在25~300kV的加速电压的作用下,电子被加速到0.3~0.7倍的光速,具有一定的动能,经电子枪中静电透镜和电磁透镜的作用,电子会聚 成功率密度很高的电子束。 这种电子束撞击到工作表面,电子的动能就转变为热能,使金属迅速熔化和蒸发。在高压金属蒸气的作用下熔化的金属被排开,电子束就能继续撞击深处的固态金属,很快在被焊工件上“钻”出一个锁形小孔,小孔的周围被液态金属包围。随着电子束与工件的相对移动,液态金属沿小孔周围流向熔池后部,逐渐冷却、凝固形成了焊缝。电子束传送到焊接接头的热量和其熔化金属的效果与束流强度、加速电压、焊接速度、电子束斑点质量以及被焊材料的性能等因素有密切的关系。(2)分类电子束焊的分类方法很多。按被焊工件所处的环境的真空度可分为三种:高真空电子束焊,低真空电子束焊和非真空电子束焊。高真空电子束焊是在10-4~10-1Pa的压强下进行的。良好的真空条件,可以保证对熔池的“保护”防止金属元素

焊接技术发展趋势.doc

焊接技术发展趋势 2007-10-20 焊接技术的发展水平,是一个国家机械制造和科学技术发展水平的标志之一。目前焊接技术的发展趋势具有如下特点: ⑴随着新的焊接材料和结构的不断出现,需要开发新的焊接工艺方法。 ⑵改进常用的普通焊接工艺方法,提高焊接过程机械化、自动化水平,提高焊接质量和生产率。 ⑶采用电子计算机控制焊接过程,大力推广焊接机器人、焊接中心。 ⑷发展专用成套焊接设备。 下面介绍部分成熟的焊接新技术: 一、超声波焊接 【超声波焊接】是指利用超声波的高频振荡能对工件接头进行局部加热和表面清理,然后施加压力实现焊接的一种压焊方法。进行超声波焊接时,焊件表面无变形,表面不需严格清理,焊接质量高。超声波焊接适合于焊接厚度小于0.5mm 的工件。目前广泛应用于无线电、仪表、精密机械及航空工业等部门。 二、爆炸焊 【爆炸焊】是利用炸药爆炸产生的冲击力造成工件的迅速碰撞,实现连接工件的一种压焊方法。爆炸焊的质量较高、工艺操作简单,爆炸焊主要用GF 生产复合材料。美国“阿波罗”登月宇宙飞船的燃料箱用钛板制成,它与不锈钢管的联结采用了爆炸焊方法。 三、等离子弧焊 【等离子弧焊】是借助水冷喷嘴对电弧的拘束作用,获得较高能量密度的等离子弧进行焊接的方法。等离子弧能量易于控制,能量密度大,穿透能力强,焊接质量高,生产率高,焊缝深宽比大。但其焊炬结构复杂,对控制系统要求较高,等离子弧焊广泛用于航空航天等尖端技术所用的铜合金、钛合金、合金钢等金属的焊接。 四、扩散焊 【扩散焊】是指将工件在高温下加压,但不产生可见变形和相对移动的固态焊接方法。扩散焊的特点是焊接接头质量高,焊件变形小,它能焊接同种和异种金属材料,特别是不适于熔焊的材料,还可用于金属与非金属间的焊接,能用小件拼成力学性能均一和形状复杂的大件,以代替整体锻造和机械加工。 五、激光焊 【激光焊】是指以聚焦的激光束轰击焊件所产生的热量进行焊接的方法。其特点是:能量密度高,焊接速度快;焊缝可极为窄小,变形很小;灵活性较大,并可实现一般焊接方法难以接近的接头或无法安置的接焊点及远距离焊接,多用于仪器、微电子工业中超小型元件及空间技术中特种材料的焊接。此外,激光还可以 E 用来切割各种金属与非金属材料。 六、磁力脉冲焊 【磁力脉冲焊】是指依靠被焊工件之间脉冲磁场相互作用而产生冲击的结果来实现金属之间连接的焊接方法,其工作原理与爆炸焊相似,适合于焊接薄壁管材和异种金属。 七、电子束焊 【电子束焊】是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。其焊接特点是:能量利用率高,速度快,焊缝窄而深,焊接变形很小,焊缝金属纯净,焊接质量很高,但焊接设备复杂、造价高、使用与维护要求技术高。在原子能、航空航天等尖端技术部门应用日益广泛。

焊接工艺设计

焊接工艺设计级生产大作业 学院:材料科学与工程学院 专业班级:焊接1301班 小组成员:马永亮(130200814) 徐壮(130200812) 孙建(130200116) 何星池(130200112) 郝绪文(130200101) 汪颖(130200525) 马鸣檀(130200530) 经戌末(130200109) 陈诗函(130200802) 作业时间: 2016年11月01日

12mm板厚Q345真空电子束焊接工艺 一、发展背景 电子束的发现迄今已100多年的历史。电子束焊接技术起源于德国,1948年前西德物理学家K.H.Steigerwald首次提出电子束焊接的设想;1954年法国的J.A.Stohr博士成功焊接了核反应堆燃料包壳,标志着电子束焊接金属获得成功;1957年11月,在法国巴黎召开的国际原子能燃料元件技术大会上公布了该技术,电子束焊接被确认为一种新的焊接方法;1958年开始,美国、英国、日本及前苏联开始进行电子束焊接方面的研究,20世纪60年代后,我国开始从事电子束焊接研究。 电子束焊接(EBW)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法。它具有其它熔焊方法难以比拟的优势和特殊功能:其焊接能量密度极高,容易实现金属材料的深熔透焊接、焊缝窄、深宽比大、焊缝热影响区小、焊接残余变形小、焊接工艺参数容易精确控制、重复性和稳定性好等。 随着航空航天、微电子、核能、交通运输及国防工业的飞速发展,各种高强度、高硬度、高韧性的铝合金、镁合金、钛合金和耐高温合金等金属材料以及复合材料广泛应用,加之构件形状日趋复杂化,对焊接工艺、加工精度和表面完整性提出了更高的要求。传统的焊接工艺难以适应高技术制造领域的发展趋势,对这些材料采用包括电子束焊接在内的高能束焊接技术优势较大。 正是由于电子束焊接的上述优点,使该技术获得长足发展,已经成功地应用于各种工业领域,并广泛应用在各种材料上。厚大截面不锈钢的电子束焊接由于能够节约成本且满足质量要求而得到青睐。有许多文献已经证明电子束焊接在航空和医药钛合金上得到了成功应用。有色金属如铜、镍及其合金的电子束焊接以及运输工业中异种材料的电子束焊接正迅猛增长。 二、目的 为了巩固所学常用特种焊接方法与设备的知识,熟悉有关资料,掌握焊接参数的选择和焊接设备的使用与维护,安排了为期一周的课程设计。通过本次焊接工艺设计,锻炼学生们的分析问题的能力,提高焊接操作技能。

焊接技术发展趋势.doc

焊接技术发展趋势.doc

焊接技术发展趋势 2007-10-20 焊接技术的发展水平,是一个国家机械制造和科学技术发展水平的标志之一。目前焊接技术的发展趋势具有如下特点: ⑴随着新的焊接材料和结构的不断出现,需要开发新的焊接工艺方法。 ⑵改进常用的普通焊接工艺方法,提高焊接过程机械化、自动化水平,提高焊接质量和生产率。 ⑶采用电子计算机控制焊接过程,大力推广焊接机器人、焊接中心。 ⑷发展专用成套焊接设备。 下面介绍部分成熟的焊接新技术: 一、超声波焊接 【超声波焊接】是指利用超声波的高频振荡能对工件接头进行局部加热和表面清理,然后施加压力实现焊接的一种压焊方法。进行超声波焊接时,焊件表面无变形,表面不需严格清理,焊接质量高。超声波焊接适合于焊接厚度小于0.5mm 的工件。目前广泛应用于无线电、仪表、

精密机械及航空工业等部门。 二、爆炸焊 【爆炸焊】是利用炸药爆炸产生的冲击力造成工件的迅速碰撞,实现连接工件的一种压焊方法。爆炸焊的质量较高、工艺操作简单,爆炸焊主要用GF 生产复合材料。美国“阿波罗”登月宇宙飞船的燃料箱用钛板制成,它与不锈钢管的联结采用了爆炸焊方法。 三、等离子弧焊 【等离子弧焊】是借助水冷喷嘴对电弧的拘束作用,获得较高能量密度的等离子弧进行焊接的方法。等离子弧能量易于控制,能量密度大,穿透能力强,焊接质量高,生产率高,焊缝深宽比大。但其焊炬结构复杂,对控制系统要求较高,等离子弧焊广泛用于航空航天等尖端技术所用的铜合金、钛合金、合金钢等金属的焊接。 四、扩散焊 【扩散焊】是指将工件在高温下加压,但不产生可见变形和相对移动的固态焊接方法。扩散焊的特点是焊接接头质量高,焊件变形小,它能焊接同种和异种金属材料,特别是不适于熔焊的材料,还可用于金属与非金属间的焊接,能用

电子束焊

电子束焊焊接方法基本概念 电子束焊是利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。 基本原理和分类 电子束焊接因具有不用焊条、不易氧化、工艺重复性好及热变形量小的优点而广泛应用于航空航天、原子能、国防及军工、汽车和电气电工仪表等众多行业。电子束焊接的基本原理是电子枪中的阴极由于直接或间接加热而发射电子,该电子在高压静电场的加速下再通过电磁场的聚焦就可以形成能量密度极高的电子束,用此电子束去轰击工件,巨大的动能转化为热能,使焊接处工件熔化,形成熔池,从而实现对工件的焊接。 电子束焊的分类方法很多。按被焊工件所 处的环境的真空度可分为三种:高真空电 子束焊,低真空电子束焊和非真空电子束 焊。 1.高真空电子束焊是在10-4~10-1Pa 的压强下进行的。良好的真空条件,可以 保证对熔池的“保护”防止金属元素的氧化 和烧损,适用于活性金属、难熔金属和质 量要求高的工件的焊接。 2.低真空电子束焊是在10-1~10Pa 的压强下进行的。压强为4Pa时束流密度 及其相应的功率密度的最大值与高真空的 最大值相差很小。因此,低真空电子束焊 也具有束流密度和功率密度高的特点。由 于只需抽到低真空,明显地缩短了抽真空 时间,提高了生产率,适用于批量大的零 件的焊接和在生产线上使用。 3.在非真空电子束焊机中,电子束仍 是在高真空条件下产生的,然后穿过一组光阑、气阻和若干级预真空小室,射到处于大气压力下的工件上。在压强增加到7~15Pa 时,由于散射,电子束功率密度明显下降。在大气压下,电子束散射更加强烈。即使将电子枪的工作距离限制在20~50mm,焊缝深宽比最大也只能达到5:1。目前,非真空电子束焊接能够达到的最大熔深为30mm。这种方法的优点是不需真空室,因而可以焊接尺寸大的

电子束焊接机——详细资料

电子束焊接是一种利用电子束作为热源地焊接工艺.电子束发生器中地阴极加热到一定地温度时逸出电子,电子在高压电场中被加速,通过电磁透镜聚焦后,形成能量密集度极高地电子束,当电子束轰击焊接表面时,电子地动能大部分转变为热能,使焊接件地结合处地金属熔融,当焊件移动时,在焊件结合处形成一条连续地焊缝.对于真空电子束焊机,要焊接地工件置于真空室中,一般装夹在可直线移动或旋转地工作台上.焊接过程可通过观察系统观察. 电子束焊接技术因其高能量密度和优良地焊缝质量,率先在国内航空工业得到应用.先进发动机和飞机工业中已广泛应用了电子束焊接技术,取得了很大地经济效益和社会效益,该项技术从上世纪八十年代开始逐步在向民用工业转化.汽车工业、机械工业等已广泛应用该技术. 我国自行研制电子束焊机始于年代,至今已研制生产出不同类型和功能地电子束焊机上百台,并形成了一支研制生产地技术队伍,能为国内市场提供小功率地电子束焊机. 近年来,出现了关键部件(电子枪,高压电源等)引进、其它部件国内配套地引进方式,这种方式地优点是:设备既保持了较高地技术水平,又能大大降低成本,同时还能对用户提供较完善地售后服务.北京航空工艺研究所以此方式为某航空厂实施设备地总体设计和总成,实现了某重要构件地真空电子束焊接;桂林电器科学研究所也通过这种方式开发了()型双金属带材高压电子束连续自动焊接生产线,该机加速电压、束流~、电子束功率,带材运行速度~,从而使我国挤身于世界上能生产这种生产线地几个国家之一.北京中科电气高技术公司近期为上海通用汽车公司研制成功自动变速车液力扭变器涡轮组件电子束焊机,内可完成两条端面圆焊缝地焊接,并已投入商业化生产. 目前,以科学院电工所地系列为代表地汽车齿轮专用电子束焊机占据了国内汽车齿轮电子束焊接地主要市场份额;我国地中小功率电子束焊机已接近或赶上国外同类产品地先进水平,而价格仅为国外同类产品地左右,有明显地性能价格比优势. 在机理及工艺研究上,北京航空工艺研究所、北京航空航天大学、天津大学、上海交通大学、西北工业大学、中国科学电工所、桂林电器科学研究所、西安航空发动机公司、航天材料及工艺研究所、哈尔滨焊接研究所开展地工作涉及熔池小孔动力学、电子束钎焊、接头疲劳裂纹扩展行为、接头残余应力、填丝焊接、局部真空焊接时地焊缝轨迹示教等. 电子束焊接技术地优点是:焊缝质量好、穿透深度深;热源稳定性、易控制适用于大批量生产,可作为最后加工工序或仅留精加工余量.目前电子束焊接铝合金厚度可达,焊缝深宽可达比. 真空电子束焊接具有以下特点: )电子束能量密度高、一般可达,是普通电弧焊和氩弧焊地万倍.因此可实现焊缝深而窄地焊接,深宽比大于. )电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好.

电子束焊接技术在工业中的应用和发展

电子束焊接技术在工业中的应用和发展 摘要:本文介绍了电子束焊接及主要特点,总结了近年来电子束焊接在航空航天、电子与仪表、汽车等工业领域中应用现状,并对其发展作了展望。 关键词: 电子束焊接应用现状发展 电子束焊接(EBW)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法和现代焊接技术,自50年代首先应用于核工业,经过四十多年的发展,电子束焊接不仅在一些高新技术领域充分应用,而且已成为一般工业部门的一种重要加工手段。 一、电子束焊接的特征 由于高能量密度的电子束流集中作用的结果,使电子束焊接熔池“小孔”形成机理与其他熔化焊有所不同。电子束焊接过程是,高压加速装置形成的高功率电子束流,通过磁透镜会聚,得到很小的焦点(其功率密度可达104~109W/cm2),轰击置于真空或非真空的焊件时,电子的动能迅速转变为热能,熔化金属,实现金属焊接的目的。电子束焊接的特点可概括如下: (1)电子束斑点直径小,加热功率密度大,焊接速度快,热影响区小; (2)可获得深宽比大的焊缝,焊接厚件时可以不开坡口一次成形; (3)多数构件是在真空条件下焊接,焊缝纯洁度高; (4)规范参数易于调节,工艺适应性强; (5)适于焊接多种金属材料; (6)焊接热输入低,焊接热变形小。 但是电子束焊接方法也有一些不足,如: (1)电子束焊机结构复杂,控制设备精度高,所需费用高; (2)焊接前对接头加工、装配要求严格,以保证接头位置准确、间隙小而且均匀; (3)真空电子束焊接时,被焊工件尺寸和形状常常受到工作室的限制,每次装卸工件要求重新抽真空; (4)冷却过程中快速凝固,引起焊接缺陷,如气孔、焊接脆性等; (5)电子束易受杂散电磁场的干扰,影响焊接质量; (6)电子束焊接时产生的X射线需要严加防护,以保证操作人员的健康和安全。 二、电子束焊接的分类 1、根据焊件所处真空度的差异可分为: (1)高真空电子束焊接(真空度为10-4~10-1Pa):该方法电子散射小,作用在工件上的功率密度高,穿透深度大,焊缝深 宽比大,适宜于活性金属、难熔金属及质量要求高的工件焊接,应用最为广泛。

激光焊接技术应用及发展趋势

激光焊接技术应用及其发展趋势 摘要:本文论述了激光焊接工艺的特点、激光焊接在汽车工业、微电子工业、生物医学等领域的应用以及研究现状,激光焊接的智能化控制,论述激光焊接需进一步研究与探讨的问题。关键词:激光焊接;混合焊接;焊接装置;应用领域 引言 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的Y AG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 一、激光焊接的质量与特点 激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种: 1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。 这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。 1、激光焊接的焊缝形状 对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。图2显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形

电子束焊接与激光焊接的比较

电子束焊接与激光焊接的比较 一、前言 电子束技术起源于20世纪50年代,10年后激光器诞生,激光加工技术的研究与应用随即展开。电子束与激光加工的应用领域大体相同,这是因为他们同属于高能密度束流加工技术,其能量密度在同一段数量级,远高于其他热源。同时,他们与材料的作用原理也极其相近。 二、电子束与激光加工的原理 电子束加工(electron beam machining,EBM)是在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109W/cm2的极细束流,高速(光速的60%~70%)冲击到工件表面,并在极短的时间内,将电子的动能大部分转换为热能,形成“小孔”效应,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,达到焊接目的。激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达105~1011W/cm2,温度可达一万摄氏度,将材料在瞬间熔化和蒸发。 激光焊接分为热导焊和深熔焊,在深熔焊中,巨大的能量同样可以形成“小孔”效应,并随着工件的移动,“小孔”身后的材料迅速冷却凝固成为焊缝。 与传统焊接技术比较,激光焊接与电子束焊接都具有更多优异的特性。能量密度高(大于105W/cm2); 焊接速度高(一般可以达到5~10米/分钟); 热影响区窄(仅为焊缝宽度的10%~20%); 热流输入少、工件变形小; 易实现自动控制、可在线检测焊缝质量; 非接触加工、无后续加工。 三、电子束与激光焊的性能比较 至今,电子束焊经过不断发展已经成为一种成熟的加工技术,无论是汽车制造,还是航空航天,都起着举足轻重的作用。而40多年来,激光加工已从实验室走向了实用化阶段,并进入了原来由电子束加工的各个领域,大有取代电子束加工的势头。但实践证明,激光和电子束作为高能量密度热源,除了具有很多相同技术特点外,在技术和经济性能上,针对不同的应用场合,仍有各自不同的特点。 焊接工艺精度变形热影响焊缝质量深宽比使用条件 电子束焊精密小小好 20:1 需要真空 激光焊精密小很小好 10:1 可选保护气体 电子束焊接的优点是相当突出的: 电子束的能量转换效率非常高(80%~90%),可以研制出很高功率的大

激光焊接工艺参数

激光焊接原理与主要工艺参数 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1)激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光

电子束加工技术及其应用

广东白云学院 先进制造技术论文 题目:电子束加工技术及其应用 专业:机械设计制造及其自动化(数控方向) 班级: 07数控本科 姓名:林华英 学号: 0701012229

摘要 (1) 引言 (1) 一.电子束技术在国内外的发展现状 (1) 多轴控制的基本概念: (2) 二.多轴控制特点 (2) 1、 5轴控制加工中心的加工特点: (2) 2、 6轴控制加工中心的加工特点: (3) 3、 6轴控制特点如下: (3) 三.发展趋向。 (3) 1、用5轴控制加工的NURBS插补 (3) 2、利用二次曲面头立铣刀作5轴控制加工 (4) 四.结论 (4) 五.参考文献 (4)

摘要 电子束加工技术是近年发展起来的一种先进制造技术,其在材料表面改性、机械加工等方面的应用已受到广泛关注。主要介绍电子束在表面工程、打孔和焊接等方面的应用。 关键词:电子束;加工原理;工业应用 引言 近年来,许多国家对电子束加工原理及方法进行了大量的实验研究,并在工业上得到一定的实际应用,使得该技术得到了飞速发展。本文主要针对电子束加工技术的研究现状和应用进行理论分析和探讨。 发展、 一.电子束技术在国内外的发展现状 1948 年 ,德国物理学家Steigerwald K. H 发明了第一台电子束加工设备 (主要用于焊接) 。1949年 ,德国首次利用电子束在厚度为0. 5mm 的不锈钢板上加工出直径为<0. 2mm 的小孔。从而开辟了电子束在材料加工领域的新天地。1957年法国原子能委员会萨克莱核子研究中心研制成功世界上第一台用于生产的电子束焊接机,其优良的焊接质量引起人们广泛重视。 20世纪60年代初期,人们已经成功地将电子束打孔、铣切、焊接、镀膜和熔炼等工艺技术应用到各工业部门中,促进了尖端技术的发展。微电子学的发展对集成电路元件的集成度要求不断提高,因而对光刻工艺提出了更高的要求,扫描电子束曝光机研制成功,并在20世纪70年代进入市场 ,使得制造掩膜或器件所能达到的最小线宽已小于 0. 5 μm。 近年来,国外对电子束焊接及其他电子束加工技术的研究主要在于以下几个方面:1)完善超高能密度电热源装置;2)掌握电子束品质及与材料的交换行为特性,改进加工工艺技术;3)通过计算机CNC控制提高设备柔性以扩大应用领域。 我国自20世纪60年代初期开始研究电子束加工工艺,经过多年的实践,在该领域也取得了一定成果。大连理工大学三束材料改性国家重点实验室,采用电子束对材料表面进行照射,研究其对材料表面的改性。郝胜志等以纯铝材为基础研究材料,深入研究不同参数的脉冲电子束轰击处理对试样显微结构和力学性能的影响规律,进而获得强流脉冲电子束表面改性的一些微观物理机制,通过载能电子与固体表面的相互作用过程,建立较为合理的实际加工中的物理模型,利用二维模型数值计算方法模拟计算试样

国内外电子束焊接技术研究现状

国内外电子束焊接技术研究现状 摘要综述了电子束焊接技术的国内外研究发展动态。简述了电子束焊接基本原理及国内外研究者已取得的部分研究成果,并展望了异种材料电子束焊接技术的研究方向。 关键词电子束焊接 0引言 随着全球工业化步伐的加快及现代科学技术的突飞猛进,焊接这门古老而现代的技术也在不断地完善和发展,可以说焊接已在现代的生产生活中占有极为重要的地位。近代焊接技术,自1882 年出现碳弧焊开始,迄今已经历了100 多年的发展历程,为了适应工业发展及技术进步的需要,先后产生了埋弧焊、电阻焊、电渣焊及各种气体保护焊等一系列新的焊接方法。进入20 世纪60 年代后,随着焊接新能源的开发和焊接新工艺的研究,等离子弧切割与焊接、真空电子束焊接及激光焊接等高能束技术也陆续应用到各工业部门,使焊接技术达到了一个新的水平。特别是近年来,航空、航天、原子能等尖端工业的发展需求,不断提出了具有特殊性能材料的焊接问题,如高强钢、超高强钢、特种耐热耐腐蚀钢、高强不锈钢、特种合金及金属间化合物、复合材料、难熔金属及异种材料焊接问题。而电子束焊接技术以其与其它熔化焊相比独具的功率密度大、深宽比大、焊接区变形小、能耗低、易于控制实现自动化等优点,在航空、航天及原子能工业和其它军用、民用制造业中得到了高度重视及应用发展。为此,较系统、全面地了解当今电子束焊接技术的国内外的研究发展现状,以及电子束焊接技术及相关工艺应用的成果,对于电子束焊接技术领域研究发展方向的准确把握及其开展进一步研究工作有着极大的指导意义。 1 电子束焊接方法 电子束焊接( EBW) 是利用电子枪中阴极所产生的电子在阴阳极间的高压(25~300 kV) 加速电场作用下被拉出,并加速到很高的速度(0. 3~0. 7 倍光速) ,经一级或二级磁透镜聚焦后,形成密集的高速电子流,当其撞击在工件接缝处时,其动能转换为热能,使材料迅速熔化而达到焊接的目的,见图1 。

电子束焊接技术的发展和研究现状

电子束焊接技术的发展和研究现状 任新凯 研究生学院5班20090507 摘要:本文简要介绍了电子束焊接这种先进的连接技术,包括电子束焊接的概念、技术特点和分类等,概述了电子束焊接技术的发展历程。简要介绍了这种新技术的国内外发展现状、研究现状和应用情况,重点介绍了我国大飞机生产的可行性和研究现状,指出它在异种材料连接的优势和发展方向。 关键词:电子束焊接技术;研究发展现状;应用;大飞机;异种材料连接 一,前言 焊接是将同种或不同材质、通过加热或加压或同时加压又加热,达到原子间结合而形成永久连接的工艺。下面简单介绍几种重要的现代焊接方法。 1957年美国的盖奇发明等离子弧焊;40年代德国和法国发明的电子束焊,也在50年代得到实用和进一步发展;60年代又出现激光焊等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使许多难以用其他方法焊接的材料和结构得以焊接[1]。 在工业生产中得到实际应用的高能束焊接方法有等离子弧焊、电子束焊和激光束焊。这些焊接方法的共同特点是热源的能量密度高,可以一次行程穿透较厚的接头而无需预制坡口,简化了制造工艺,而且束流的中心温度相当高,足以熔化任何金属材料,因此具有较高的经济价值,工业应用的前景广阔[1]。下面仅对电子束焊做一下介绍。 二,电子束焊接技术简介 电子束焊接(EBW)是利用电子枪中阴极所产生的电子在阴阳极间的高压(25~300kV) 加速电场作用下被拉出,并加速到很高的速度(0.3~0.7倍光速),经一级或二级磁透镜聚焦后,形成密集的高速电子流,当其撞击在工件接缝处时,其动能转换为热能,使材料迅速熔化而达到焊接的目的[2]。 2.1 电子束焊接技术特点[2] 第一,电子束焊接能量密度很高,对于任何材料,包括高熔点钨、钼等材料,其焊缝都能快速熔化。一般靠零件自身材料熔接而成。 第二,电子束焊接在真空中进行,可防止材料氧化及其它有害气体侵入。

激光焊接工艺参数讲解

激光焊接原理与主要工艺参数 作者:opticsky 日期:2006-12-01 字体大小: 小中大 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,

电子束焊接发展现状

电子束焊接发展现状 姓名:马新蕊学号:516116002152 随着航空航天、核能、微电子等行业的快速发展,加强了对高韧性、高硬度的铝合金及其他耐高温金属材料和复合材料的需求,这对焊接工艺提出了更高的要求。电子束焊接技术是一种新型的焊接工艺,与传统的焊接技术相比,具有稳定性高、焊缝窄等特点,各国对电子束焊接技术的研究也取得了一定进展。 电子束焊接是指在焊接过程中,经过电子枪产生,在电子光学系统和高压加速共同融合后产生了功率密度较高的电子束,电子束撞击到工件面上后,就能将电子的部分动能转换为热能,促使金融的熔化。熔化后的金属在高压金属蒸汽的作用下被排开,电子束趁机继续撞击固态金属,并在被焊接的工件上钻出一个锁性小孔,液体金属包围小孔周围。然后,在工件和电子束的相对移动作用下,液体金属会沿着小孔周围向熔池后部流动,经过冷却和凝固后形成焊缝。 1948 年西德物理学家 K.H.Steigerwald 首次提出了电子束焊接的设想,这是电子束焊接的起源 [1]。随后法国 J.A.Stohr 博士于 1954 年成功的对核反应堆燃料包壳进行焊接,象征着电子束焊接金属的成功,三年后在法国巴黎召开的“国际原子能燃料元件技术大会” 上第一次公布了电子束焊接技术,标准者电子束焊接作为一种新型焊接技术的诞生。之后世界各国,如美国、前苏联、日本、英国等国都开始对电子束焊接技术进行研究,我国直至上世纪 60 年代,才开始着手研究电子束焊接技术。 国外乃至全球电子焊接技术较为发展的国家是德国、美国、日本等。在工业中应用较为广泛的电子束焊接设备功率要< 150kW,加速电压< 200kV,一次可焊接最大厚度的铝合金为 50mm,钢板为300mm。 目前,国外在电子束焊接设备的研发中具有代表性的国家有德国(PTR 精密技术有限公司)、法国(TECH-META 公司)以及乌克兰( 巴顿电焊研究所 )。其中乌克兰巴顿研究所生产的高压电子束焊机有着稳定的性能和成熟的技术,早在前苏联的航空宇航焊接试验中就得到了成功的实践。日本研发了一种功率在300KW,加速电压在 600kV等超高压电子束焊机,这中焊机能一次性焊接 200mm 厚度的不锈钢,深度比为 70:1。近年来,日、德等国研究了双枪和填丝电子焊机技术,法国成功研制出了三金属薄带材的电子束焊机。 我国最早开始研究电子束焊接技术的组织和单位是北京航空研究所、中科院沈阳金属研究所以及广西桂林电气科学研究所,目前已经研制出了近百台不同类型和功能的电子束焊机。我国成功研制的第一台电子束焊机是 GDH-15 型高压电子束焊机,主要用于航空动力机械制造,其功率为 15kW,加速电压为 150kV。我国第一台自主设计和制造的高压电子枪、大型真空室高压电子束焊机是北京航空工艺研究所于 1992 年研制的。近年来,我国有关电子束焊机研究的文献主要集中在焊接冶金及穿透机理、焊接技术的应用、优化焊接参数等,与国外发达国家相比还存在一定差距,需要继续探索和实践 随着科学技术的快速发展,电子束焊接技术也将呈现代化、科技化发展,其研究的主要方向体现在以下几点。首先,要开拓解决制约新材料和结构应用的有效途径。在研究和开发新材料的电子束焊接技术时,要从焊接科技和材料研制两方面入手。材料研制上,材料的性能与焊接性能往往是一对难以协调的矛盾,新

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理 焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。 1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和

相关文档
最新文档