2018届北师大版 变化率与导数 单元测试

2018届北师大版   变化率与导数  单元测试
2018届北师大版   变化率与导数  单元测试

题组层级快练(十五)

1.y =ln(-x)的导函数为( ) A .y ′=-1

x

B .y ′=1

x

C .y ′=ln(x)

D .y ′=-ln(-x)

答案 B

2.(2017·广东五校协作体联考)曲线y =x +1

x -1

在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12

答案 D 解析 y ′=

(x +1)′(x -1)-(x +1)(x -1)′(x -1)2

=-2

(x -1)2

,故曲线在(3,2)处的切线的斜率k =y ′|x =3=-

2(3-1)

2=-1

2,故选D. 3.曲线f(x)=2e x sinx 在点(0,f(0))处的切线方程为( ) A .y =0 B .y =2x C .y =x D .y =-2x

答案 B

解析 ∵f(x)=2e x sinx ,∴f(0)=0,f ′(x)=2e x (sinx +cosx),∴f ′(0)=2,∴所求切线方程为y =2x.

4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3

2t 2+2t ,那么速度为零的

时刻是( ) A .0秒 B .1秒末

C .2秒末

D .1秒末和2秒末

答案 D

解析 ∵s =13t 3-3

2t 2+2t ,∴v =s ′(t)=t 2-3t +2.

令v =0,得t 2-3t +2=0,t 1=1或t 2=2.

5.设正弦函数y =sinx 在x =0和x =π

2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系

为( ) A .k 1>k 2 B .k 1

D .不确定

答案 A

解析 ∵y =sinx ,∴y ′=(sinx)′=cosx.k 1=cos0=1,k 2=cos π

2

=0,∴k 1>k 2.

6.(2017·湖南雅礼中学月考)曲线y =a x 在x =0处的切线方程是xln2+y -1=0,则a =( ) A.12 B .2 C .ln2 D .ln 12

答案 A

解析 由题知,y ′=a x lna ,y ′|x =0=lna ,又切点为(0,1),故切线方程为xlna -y +1=0,

∴a =1

2

,故选A.

7.若函数f(x)=x 2+bx +c 的图像的顶点在第四象限,则函数f ′(x)的图像是( )

答案 A

解析 由题意知???-b

2

>0,4c -b 2

4<0,

即?????b <0,

b 2

>4c.

又f ′(x)=2x +b ,∴f ′(x)的图像为A.

8.f(x)与g(x)是定义在R 上的两个可导函数,若f(x),g(x)满足f ′(x)=g ′(x),则f(x)与g(x)满足( ) A .f(x)=g(x)

B .f(x)=g(x)=0

C .f(x)-g(x)为常数函数

D .f(x)+g(x)为常数函数

答案 C

9.设a ∈R ,函数f(x)=e x +a·e -x

的导函数是f ′(x),且f ′(x)是奇函数,则a 的值为( )

A .1

B .-12

C.12 D .-1

答案 A

解析 因为f ′(x)=e x -ae -

x ,由奇函数的性质可得f ′(0)=1-a =0,解得a =1.故选A.

10.(2017·《高考调研》原创题)设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f ′(2 017)=( ) A .1

B .2

C.12 017

D.2 0182 017

答案 D

解析 令e x =t ,则x =lnt ,所以f(t)=lnt +t ,故f(x)=lnx +x. 求导得f ′(x)=1x +1,故f ′(2 017)=12 017+1=2 018

2 017

.故选D.

11.若P 为曲线y =lnx 上一动点,Q 为直线y =x +1上一动点,则|PQ|min =( ) A .0 B.22 C. 2 D .2

答案 C

解析 如图所示,直线l 与y =lnx 相切且与y =x +1平行时,切点P 到直线y =x +1的距离|PQ|即为所求最小值.(lnx)′=1x ,令1

x =1,得

x =1.故P(1,0).故|PQ|min =

2

2

= 2.故选C. 12.y =x·tanx 的导数为y ′=________. 答案 tanx +

x

cos 2x

解析 y ′=(x·tanx)′=x ′tanx +x(tanx)′=tanx +x·(sinx

cosx )′=tanx +x·cos 2x +sin 2x cos 2x =tanx

+x

cos 2x

. 13.已知y =13x 3-x -

1+1,则其导函数的值域为________.

答案 [2,+∞)

14.已知函数f(x)=x(x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. 答案 -120

解析 f ′(x)=(x -1)(x -2)(x -3)(x -4)(x -5)+x[(x -1)(x -2)(x -3)(x -4)(x -5)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.

15.已知函数f(x)=f ′(π4)cosx +sinx ,所以f(π

4)的值为________.

答案 1

解析 因为f ′(x)=-f ′(π4)sinx +cosx ,所以f ′(π4)=-f ′(π4)sin π4+cos π

4,所以

f ′(π4)=2-1.故f(π4)=f ′(π4)cos π4+sin π

4

=1.

16.(1)(2015·广东,文)若曲线y =ax 2-lnx 在点(1,a)处的切线平行于x 轴,则a =________.

(word完整版)高二数学导数单元测试题(有答案)

高二数学导数单元测试题(有答案) (一).选择题 (1)曲线32 31y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (2) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (3) 函数13)(2 3 +-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (4) 函数,93)(2 3 -++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83 -=的图象上,其切线的倾斜角小于 4 π 的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3 ()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3 ()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x = +在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 (二).填空题 (1).垂直于直线2x+6y +1=0且与曲线y = x 3 +3x -5相切的直线方程是 。 (2).设 f ( x ) = x 3 - 2 1x 2 -2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 . (3).函数y = f ( x ) = x 3+ax 2+bx +a 2 ,在x = 1时,有极值10,则a = ,b = 。 (4).已知函数32 ()45f x x bx ax =+++在3 ,12x x ==-处有极值,那么a = ;b = (5).已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 (6).已知函数32 ()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值

六年级北师大版比和比例奥数题

【本讲教育信息】 一. 教学内容: 比和比例(二) (一)典型例题: 例1. 六年级一班小图书箱里共有文艺书和科技书91本,文艺书本数的25%与科技书本 数的 2 5 正好相等,两种书各有多少本? 分析与解:根据第二个已知条件可得: 文艺书本数?= 25%科技书本数? 2 5 再利用比例的基本性质把上式转化为: 文艺书本数:科技书本数== 2 5 25%85 :: 利用按比例分配的方法分别求出每种书各有多少本。8513 += 91 8 13 56 ?=(本) 91 5 13 35 ?=(本) 答:文艺书有56本,科技书有35本。 例2. 甲、乙两个建筑队原有水泥重量的比是4:3,当甲队给乙队54吨水泥后,甲、乙两队水泥的重量比变为3:4,原来甲队有水泥多少吨? 分析与解:解答此题的关键是要抓住甲、乙两队水泥的总数没有变,原来甲队占两队水 泥总量的4 7 ,甲队少了54吨后,甲队占两队水泥总量的 3 7 。 “1” 4 7 3 7 54吨 ?吨 通过上图可知:总吨数的 4 7 3 7 - ? ? ? ? ?是54吨,可以求出两队水泥的总吨数,要求甲队原 有水泥吨数,就是求总吨数的4 7 是多少? 437 +=

544737541 7 378÷-?? ? ??= ÷=(吨) 37847 216?=(吨) 答:甲队原有水泥216吨。 例3. 如下图,甲、乙二人绕一个长方形操场跑步。该操场长160米,宽120米,甲从A ,乙从B 相向而跑,结果第一次在E 处相遇,E 处距A 处60米,相遇后,甲、乙二人继续跑。 问:甲、乙二人能否在E 处再次相遇?若相遇,这是甲、乙的第几次相遇? D C A E B 分析与解:由图知,B E =100 米,这说明乙的速度比甲快,甲乙速度之比是3:5,假设能够再次在E 处相遇,则此时,甲、乙又跑了整数圈,由于时间相同,路程与速度成正比,所以甲、乙所跑路程(圈数)与速度成正比,即:甲、乙所跑圈数为3:5,只需甲跑3圈,乙跑5圈,二人恰好在E 处再次相遇。 因为甲、乙相遇一次,就相当于合起来共跑了一圈,所以甲、乙共跑了() 358+=圈,所以从E 处出发后,甲、乙两人共相遇了8次,这说明最后在E 点相遇是甲、乙的第九次 相遇(包括第一次在E 点相遇) 例4. 把在比例尺为1:250的平面图上,面积是64平方厘米的正方形移到比例尺为多少的平面图上,它的面积将是100平方厘米? 分析与解:864 10100 2 2 == 即第一幅图的正方形边长为8厘米,第二幅图的正方形边长为10厘米,通过比例尺和图上距离可以求出实际距离。 81250 2000÷ =(厘米) 知道正方形实际的边长2000厘米和图上的边长10厘米,可以求出第二幅图的比例尺。 1020001200::= 答:移到比例尺是1:200的平面图上,正方形的面积将是100平方厘米。 例5. 甲、乙两辆汽车分别从A 、B 两地同时相向而行,速度比是7:11。相遇后两车继续行驶,分别到达B 、A 两地后立即返回,当第二次相遇时,甲车距B 地80千米,A 、B 两地相距多少千米? 分析与解:时间一定,速度和所行路程成正比例。

(完整word版)导数单元测试(含答案)

导数单元测试 【检测试题】 一、选择题 1. 设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4.三次函数x ax y +=3 在()+∞∞-∈,x 内是增函数,则 ( ) A . 0>a B .0

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

六年级数学下册 比和比例教案 北师大版

六年级数学下册比和比例教案北师大版 1、通过复习使同学们进一步理解比和比例的意义与基本性质,能够正确、迅速地求出比值和化简比。 2、进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。教学过程: 一、回顾与交流。 1、比和比例的意义与性质。 引导提问: (1) 什么叫做比?举例说明。各部分名称是什么? (2) 什么叫做比的基本性质?举例说明。 (3) 什么叫做比例?举例说明。各部分名称是什么? (4) 什么叫做比例的基本性质?举例说明。 2、比和分数、除法的关系? (1) 比和分数有什么关系? (2)

比和除法有什么关系? (3) 出示表格。根据学生回答,适时填空。 3、比、比例的基本性质的用处。 (1) 比的基本性质的用处? ① 化简比。 0、12:2 ② 化简比与求比值有什么不同之处? (2)比例的基本性质有什么用处? 过程要求: ① 学生独立练习,教师巡视。 ② 请一位学生上台板演,并说明根据、师生共同评价。 4、比例尺 (1) 什么叫做比例尺? 板书:图上距离=比例尺 实际距离 (2)说出下面各比例尺的具体意义。 ① 比例尺1: ② 比例尺20:1 ③ 比例尺03060km

(3) 求比例尺。 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图纸的比例尺是多少? (4) 求实际距离。 在比例尺是的地图上,量得A地到B地的距离是5厘米。求AB两地的实际距离。 二、巩固练习。 1、求图上距离。 甲乙两地相距200千米,在比例尺是的地图上,甲乙两地用多少厘米表示? 2、完成课本练习七第 1、2题。 三、总结。这节课你有什么收获?还有什么疑问?

2019届北师大版高三文科数学一轮复习:变化率与导数(附答案)

2019届北师大版高三文科数学一轮复习:变化率与导数 (附答案) [考试时间:90分钟 试卷总分:120分] 第Ⅰ卷 (选择题) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列求导运算正确的是( ) A.????x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2 C .(5x )′=5x log 5e D .(x 2cos x )′=2x sin x 2.设函数y =-3x +2在区间[-4,-2]上的平均变化率为a ,在区间[2,4]上的平均变化率为b ,则下列结论中正确的是( ) A .a >b B .a <b C .a =b D .不确定 3.运动物体的位移s =3t 2-2t +1,则此物体在t =10时的瞬时速度为( ) A .281 B .58 C .85 D .10 4.若曲线f (x )=x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 5.曲线f (x )=x +1 3x 3在点????1,43处的切线和坐标轴围成的三角形的面积为( ) A .3 B .2 C.1 3 D.19 6.曲线f (x )=2x 3-3x 在点P 处的切线斜率为3,则P 点坐标为( ) A .(1,-1) B .(-1,-5) C .(-1,1) D .(1,-1)或(-1,1) 7.已知f (x )=x 2+2xf ′(1),则f ′(0)=( ) A .-2 B .2

(完整版)导数单元测试(含答案)

导数单元测试 【检测试题】 一、选择题 1. 设函数()y f x =可导,则0(1)(1)lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1'(1)3 f D .以上都不对 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4.三次函数x ax y +=3 在()+∞∞-∈,x 内是增函数,则 ( ) A . 0>a B .0

2018届北师大版 变化率与导数 单元测试

题组层级快练(十五) 1.y =ln(-x)的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=ln(x) D .y ′=-ln(-x) 答案 B 2.(2017·广东五校协作体联考)曲线y =x +1 x -1 在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′= (x +1)′(x -1)-(x +1)(x -1)′(x -1)2 =-2 (x -1)2 ,故曲线在(3,2)处的切线的斜率k =y ′|x =3=- 2(3-1) 2=-1 2,故选D. 3.曲线f(x)=2e x sinx 在点(0,f(0))处的切线方程为( ) A .y =0 B .y =2x C .y =x D .y =-2x 答案 B 解析 ∵f(x)=2e x sinx ,∴f(0)=0,f ′(x)=2e x (sinx +cosx),∴f ′(0)=2,∴所求切线方程为y =2x. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3 2t 2+2t ,那么速度为零的 时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s =13t 3-3 2t 2+2t ,∴v =s ′(t)=t 2-3t +2. 令v =0,得t 2-3t +2=0,t 1=1或t 2=2. 5.设正弦函数y =sinx 在x =0和x =π 2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系 为( ) A .k 1>k 2 B .k 1

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

北师大版六年级下册比和比例复习

比和比例章节复习 知识点一:比例的意义和基本性质: 1.表示两个比相等的式子叫做比例. 2.组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。 只要两个比的比值相等,就能组成比例。 1.( )叫做比例。 2.( )这叫做比例的基本性质。 3.( )叫做解比例。 4.两个比的( )相等,这两个比就相等。 知识点二:正反比例的比较和应用 正比例:两种相关联的量,一种量变化,另一种量也随着变化,且这两种量中相对应的两个数的比值(或商)一定,这两种量就叫做成正比例的量,它们的关系就叫正比例关系。正比例关系用字母表示为: x y = k (一定)。 反比例:两种相关联的量,一种量变化,另一种量也随着变化,且这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫反比例关系。反比例关系用字母表示为:x ×y = k (一定)。 正比例的图像是直线,反比例的图像是曲线。 例题讲解: 一、判断下列量是否是正反比例关系 1.如果工作时间一定,那么工作总量与工作效率成( )比例关系。 2.如果工作总量一定,那么工作时间与工作效率成( )比例关系。 3.汽车的耗油量一定,油箱中汽油的数量与行驶的路程成( )比例关系。 4.出售小麦的单价一定,出售小麦总量与总钱数成( )比例关系。 5.体操比赛的总人数一定,每排人数与排数成( )比例关系。 例2、实际应用

1、一根电线,长70米,重15.4千克,现有这种电线940米,重多少千克? 2、100千克小麦可磨出面粉85千克,照这样计算,6吨小麦可以磨出面粉多少千克? 3、同学们做操,每行站15人,正好站12行。如果每行站9人,可以站多少行? 4、给一间房子铺地,如果用边长6分米的方砖,需要80块。如果改用边长8分米的方砖,需要多少块? 知识点三、比例尺 图上距离与实际距离的比,叫这幅图的比例尺。 实际距离 图上距离 比例尺 1. 数字比例尺 如:1:3000 000 图上1厘米表示实际3000 000厘米。注意统一单位。 2. 线段比例尺 3. 比例尺的应用 比例尺的关系式: 图上距离 : 实际距离 = 比例尺 变形:图上距离 = 实际距离 × 比例尺 实际距离 = 图上距离 ÷ 比例尺 特别地:单位要统一 注意:比、比例、比例尺、百分数的后面不能带单位。 比例尺应用。 1、( )和( )的比叫做比例尺。 2、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离( )千米。也就是图上距离是实际距离的( ),实际距离是图上距离的( )倍。 3、实际距离是图上距离的50000倍,这幅设计图的比例尺是( )。 4.求比例尺。 1、在一幅地图上量得北京到武汉的距离是8厘米,而北京到武汉的实际距离是1152千米,求这幅地图的比例尺。 2、有一种精密仪器,其零件的长度是5毫米,画在图纸上的长度是8厘米,求这张图纸的比例尺。

北师大版数学高二- 选修2试题 2.1 变化的快慢与变化率

【成才之路】 高中数学 2.1 变化的快慢与变化率基础巩固 北师大 版选修2-2 一、选择题 1.函数y =f (x )的自变量x 由x 0改变到x 0+Δx 时,函数值的改变量Δy 等于( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·Δx D .f (x 0+Δx )-f (x 0) [答案] D [解析] 写出自变量x 0和x 0+Δx 对应的函数值f (x 0)和f (x 0+Δx ),两式相减,就得到了函数值的改变量. 2.若函数f (x )=2x 2 -1的图像上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于 ( ) A .4 B .4x C .4+2Δx D .4+2(Δx )2 [答案] C [解析] Δy =f (1+Δx )-f (1)=2(1+Δx )2 -1-2+1=4Δx +2Δx 2 ,∴Δy Δx =4+2Δx . 3.质点运动规律s =t 2 +3,则在时间(3,3+Δt )中,相应的平均速度为( ) A .6+Δt B .6+Δt +9 Δt C .3+Δt D .9+Δt [答案] A [解析] ∵Δs =(3+Δt )2 +3-32 =6Δt +Δt 2 ∴ Δs Δt =6+Δt . 二、填空题 4.若物体运动方程为s (t )=-2t 2 +t ,则其初速度为____. [答案] 1 [解析] 物体的初速度即t =0时的瞬时速度,Δs Δt = [-20+Δt 2 +0+Δt ]-0 Δt =-2Δ+1,当Δt 趋于0时,Δs Δt 趋于1,即初速度为1.

5.已知成本c 与产量q 的函数关系式为c =4q 2 +q -6,则当产量q =10时的边际成本,(注:边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变化量)为________. [答案] 81 [解析] Δc =[4(10+Δq )2 +(10+Δq )-6]=(4×102 +10-6)=4(Δq )2 +81Δq , ∴Δc Δq =4Δq 2 +81Δq Δq =4Δq +81. 当Δq 趋于0时,Δc Δq 趋于81, 即当产量q =10时,边际成本为81. 三、解答题 6.已知质点M 按规律s =3t 2 +2做直线运动(位移单位:cm ,时间单位:s). (1)当t =2,Δt =0.01时,求Δs Δt ; (2)求质点M 在t =2时的瞬时速度. [解析] Δs Δt =s t +Δt -s t Δt =3 t +Δt 2 +2-3t 2 +2 Δt =6t +3Δt . (1)当t =2,Δt =0.01时, Δs Δt =6×2+3×0.01=12.03cm/s. (2)当Δt 趋于0时,6t +3Δt 趋于6t , ∴质点M 在t =2时的瞬时速度为12cm/s. [点评] 本题重点是求质点M 的瞬时速度,瞬时速度是根据一段时间内物体的平均速度的趋近值来定义的,因此只要知道了物体的运动方程,代入公式就可以求出瞬时速度. 一、选择题 1.一质点的运动方程为s =2t 2 ,则此质点在时间[1,1+Δt ]内的平均速率为( ) A .4+Δt B .2+(Δt )2 C .4Δt +1 D .4+2Δt [答案] D [解析] Δs Δt = 21+Δt 2 -2 Δt =4+2Δt . 2.函数y =f (x )=x 2 在区间[x 0,x 0+Δx ]上的平均变化率为k 1,在区间[x 0-Δx ,x 0]

北师大版选修第三章《变化率与导数》word教案

§3.1 变化率与导数(1) 学习目标 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景; 2.会求函数在某一点附近的平均变化率; 3.会利用导数的定义求函数在某点处的导数。 学习过程 一、新课导学 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水 在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t (单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 新知:平均变化率:_______________=_______ 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?, 即 x ?= 或者2x = ,x ?就表示从1x 到2x 的变化量或增量,相应地, 函数的变化量或增量记为y ?,即y ?= ;如果它们的比值y x ??,则上式就表示为 ,此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量与 的增量的比值. ※ 典型例题 例1已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,1.1]; (2)[1,2] 变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??=

小结 1.函数()f x 的平均变化率是 2.求函数()f x 的平均变化率的步骤: (1)求函数值的增量 (2)计算平均变化率 ※ 学习探究二 问题3:计算运动员在49 650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗? ⑵你认为用平均速度描述运动员的运动状态有什么问题吗? 新知: 1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 2.导数的概念 从函数y=f(x)在x=x0处的瞬时变化率是: 0000()()lim lim x x f x x f x y x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000()() ()lim x f x x f x f x x ?→+?-'=? 说明: 00000 1. ()2. ()3. ()4. f x x x f x x f x ''?'与的值有关.不同的 ,其导数值一般也不相同. 与的具体取值无关。 可以不存在。 瞬时变化率与导数是的两个名称. 同一概念※ 典型例题 例2 位移s (t ) (单位:m)与时间t(单位:s)的关系为:s (t )=3t+1,求t=2时的瞬时速度v. 练习 f(x)=3x+5,求)2('f 例3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.

(完整版)导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

高中数学 第2章 变化率与导数 3 计算导数课后演练提升 北师大版选修2-2

2016-2017学年高中数学 第2章 变化率与导数 3 计算导数课后演 练提升 北师大版选修2-2 一、选择题 1.下列结论正确的是( ) A .若y =1x ,则y ′=1 x 2 B .若y =x ,则y ′=1 2x C .若y =cos x ,则y ′=sin x D .若y =ln x ,则y ′=1 x 解析: ? ????1x ′=-1x 2,(x )′=12x ,(cos x )′=-sin x ,(ln x )′=1x . 答案: D 2.已知f (x )=x a ,若f ′(-1)=-4,则a 的值是( ) A .-4 B .4 C .±4 D .不确定 解析: f ′(x )=a ·x a -1 ,f ′(-1)=a ·(-1) a -1 =-4, ∴a =4. 答案: B 3.已知直线y =kx 是曲线y =ln x 的切线,则k 的值等于( ) A .e B .-e C.1 e D .-1e 解析: y ′=(ln x )′=1x ,设切点为(x 0,y 0),则切线方程为y -y 0=1 x 0 (x -x 0),即y =1 x 0 x +ln x 0-1,由ln x 0-1=0得x 0=e. 又∵k =1x 0,∴k =1 e . 答案: C 4.已知直线ax -by +2=0与曲线y =x 3 在点P (1,1)处的切线互相垂直,则a b 的值为( ) A.2 3 B.13 C .-23 D .-13 解析: 曲线y =x 3 在点P (1,1)处的切线斜率k =y ′|x =1=3x 2 |x =1=3,直线ax -by

(word完整版)数学北师大版高中选修2-2北师大版高中数学选修2-2第二章《变化率与导数》教案

北师大版高中数学选修2-2第二章《变化率与导数》全部教案 §1变化的快慢与变化率 第一课时变化的快慢与变化率——平均变化率 一、教学目标:1、理解函数平均变化率的概念; 2、会求给定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢。 二、教学重点:从变化率的角度重新认识平均速度的概念,知道函数平均变化率就是函数在某区间上变化的快慢的数量描述。 教学难点:对平均速度的数学意义的认识 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 第二类问题是求曲线的切线的问题。 第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是

相关文档
最新文档