0.618法的matlab实现

0.618法的matlab实现
0.618法的matlab实现

实验报告

实验题目: 0.618法的MATLAB实现学生姓名:

学号:

实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点

二.实验目的及要求:

1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现.

2. 运用0.618法解单峰函数的极小点.

三.实验内容:

1. 0.618法方法原理:

定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤,

则对每一个] ,[)

2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x

f x f >, 则],[)1(b x x ∈; 如果)()()

2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似.

0.618 法计算试探点的公式:

).

(618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤:

①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是

).(618.0 ),(382.011111111a b a a b a -+=-+=μλ

令1=k .

②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④.

③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

④置k k a a =+1, k k b μ=+1, k k λμ=+1,)(382.01111++++-+=k k k k a b a λ, 计算函数值)(1+k f λ, 转步骤⑤.

⑤置1:+=k k , 返回步骤②.

四.实验流程图及其MATLAB 实现:

1. 流程图:

2. 代码及数值算例:

(1) 程序源代码:

function [x,k]=GSe(f,a,b,delta)

% 0.618法求解单峰函数极小点

f=inline(f);

N=10000;

for k=1:N

m=a+0.382*(b-a);

n=a+0.618*(b-a);

if f(m)>f(n)

a=m;

m=n;

else b=n;

n=m;

end

if abs(b-a)

x=0.5*(b+a);break ;

end

end

(2) 数值算例:

12def )(min 2--x x x f ,

初始区间]1,1[],[11-=b a , 精度16.0≤L .

(i) 键入命令:

>> [x,k]=GSe('2*x^2-x-1',-1,1,0.16)

(ii) 运行结果:

x =

0.2229

k =

6

五.总结:

0.618法(黄金分割法)适用于单峰函数, 故应先确定目标函数的单峰区间, 方可进行迭代计算. 但单峰区间不是很明显就能确定, 故可用进退法寻找并确定单峰区间.

六.参考文献:

陈宝林 编著《最优化 理论与算法》 清华大学出版社 2005年10月第2版

最优化实验报告(单纯形法的matlab程序,lingo程序)

实验一:线性规划单纯形算法 一、实验目的 通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。 二、实验用仪器设备、器材或软件环境 Windows Xp 操作系统 ,Matlab6.5,计算机 三、算法 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始 基本可行解。设初始基为B,然后执行如下步骤: (1).解B Bx b =,求得1 B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量 (2).计算单纯形乘子w , B wB C =,得到1 B w C B -=,对于非基变量,计算判别数 1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i R z c σ∈=-,R 为非基变量集合 若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k k By p =,得到 1 k k y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4). (4).确定下标r,使 { } :0 min ,0 t r rk tk tk b b tk y y t y y >=>且r B x 为离基变量。 k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。 对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。对于极大化问题,应令 min{}k k j j z c z c -=-

四、计算框图 是 否 是 否 开始 初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1 B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量) 令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解 解方程k k By p =,得到1k k y B p -=。 0?k y ≤ 不存在有限最优解 确定下标r ,是 { }:0 min ,0 t r rk tk tk b b tk y y t y y >=>且 k x 为进基变量,用 k p 替换r B p ,得到新的基矩阵B

有限差分法求解偏微分方程MATLAB教学教材

有限差分法求解偏微分方程M A T L A B

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 115104000545 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2 100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

jacobi G-S,超松弛迭代法MATLAB程序

function iteration A=[10,1,2,3,4; 1,9,-1,2,-3; 2,-1,7,3,-5; 3,2,3,12,-1; 4,-3,-5,-1,15]; b=[12,-27,14,-17,12]'; x0=[0,0,0,0,0]'; tol=1e-12; disp('jacobi迭代法的结果和次数如下:') [x,k]=Fjacobi(A,b,x0,tol) disp('G-S迭代法的结果和次数如下:':') [x,k]=Fgseid(A,b,x0,tol) disp('超松弛的结果和次数如下:':') [x,k]=Fsor(A,b,x0,1.2,tol) disp('共轭梯度法的结果和次数如下:':') [x,k]=Fcg(A,b,x0,tol) %jacobi迭代法 function [x,k]=Fjacobi(A,b,x0,tol) max=300; D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f; k=1; while norm(x-x0)>=tol x0=x; x=B*x0+f; k=k+1; if(k>=max) disp('μü′ú3?1y300′?£?·?3ì×é?é?ü2?ê?á2'); return; end end %G-S迭代法 function [x,k]=Fgseid(A,b,x0,tol) max=300; D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f; k=1; while norm(x-x0)>=tol x0=x; x=G*x0+f; k=k+1; if(k>=max) disp('μü′ú3?1y300′?£?·?3ì×é?é?ü2?ê?á2'); return; end

单纯形法matlab

数 学 软 件 与 实 验 数学与信息科学学院 信息与计算科学

单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c) B0=A(:,1:m); cb=c(:,1:m); xx=1:n; sgm=c-cb*B0^-1*A; h=-1; sta=ones(m,1); for i=m+1:n if sgm(i)>0 h=1; end end while h>0 [msg,mk]=max(sgm); for i=1:m sta(i)=b(i)/A(i,mk); end [mst,mr]=min(sta); zy=A(mr,mk); for i=1:m

if i==mr for j=1:n A(i,j)=A(i,j)/zy; end b(i)=b(i)/zy; end end for i=1:m if i~=mr for j=1:n A(i,j)=A(i,j)-A(i,mk)*A(mr,j); end b(i)=b(i)-A(i,mk)*b(mr); end end B1=A(:,1:m); cb(mr)=c(mk); xx(mr)=mk; sgm=c-cb*B1*A; for i=m+1:n if sgm(i)>0 h=1;

end end end fm=c*xx; 例题: 编写下列求解如下线性规划问题的单纯形法函数min f'x s.t ax<=b(其中b>=0) 函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解 fval为最优值 it为迭代次数 无最优解op=0 有最优解op=1 编写程序如下: function [x,fval,it,op]=singl(f,a,b) [m,n]=size(a); c=[a eye(m) b;f' zeros(1,m+1)]; fval=0; x=zeros(m+n,1); op=1; it=0; e=zeros(1,m); lie=find(f<0); l=length(lie); while(l>0) for j=1:l d=find(c(:,lie(j)));

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

matlab单纯形法

%求解标准型线性规划:max c*x;s.t. A*x=b;x>=0 %本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b %N是初始的基变量的下标 %输出变量sol是最优解 %输出变量val是最优值,kk是迭代次数 function [sol,val,kk]=ssimplex(A,N) [mA,nA]=size(A); kk=0; %迭代次数 flag=1; while flag kk=kk+1; if A(mA,:)<=0 %已找到最优解 flag=0; sol=zeros(1,nA-1);%给每个变量赋初值0 for i=1:mA-1 sol(N(i))=A(i,nA);%给基变量赋新值(替换0) end %给出最优解 val=-A(mA,nA); else for i=1:nA-1 if A(mA,i)>0&A(1:mA-1,i)<=0 %问题有无界解 disp('have infinite solution!'); flag=0; break; end end if flag %还不是最优表,进行转轴运算 temp=0; for i=1:nA-1 if A(mA,i)>temp temp=A(mA,i); inb=i; % 进基变量的下标 end end %选择最大检验数纵向对应的变量为进基变量 sita=zeros(1,mA-1); for i=1:mA-1 if A(i,inb)>0 sita(i)=A(i,nA)/A(i,inb); end end temp=inf; for i=1:mA-1 if sita(i)>0&sita(i)

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言 1.1问题背景 在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。诸如粒子扩散或神经细胞的动作电位。也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。热方程及其非线性的推广形式也被应用与影响分析。 在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。 科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。 解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。 1.2问题现状 近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。而且精度上更好。 目前,在欧美各国MATLAB的使用十分普及。在大学的数学、工程和科学系科,MATLAB

MATLAB样例之雅克比迭代法

要求: 下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的: 7*x1+x2+2*x3=10 x1+8*x2+2*x3=8 2*x1+2*x2+9*x3=6 雅克比迭代法的matlab代码:(老师写的) A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(any(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); while 1 x1=B*x0+f K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end 高斯-赛德尔迭代法matlab代码:(自己改的)

A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(all(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); x00=x0; while 1 x11=B*x0+f; x00(1,1)=x11(1,1); x12=B*x00+f; x00(2,1)=x12(2,1); x13=B*x00+f; x00(3,1)=x13(3,1); x1=x00 K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

单纯形法matlab程序

算法实现与分析 算法1.单纯形法 具体算例: 标准化后: 用单纯形法求解,程序如下: clear clc M=1000000; A=[3,2,-3,1,0;1,-2,1,0,1];%系数矩阵 C=[-3,1,2,M,M,0];%价值矩阵 B=[6;4]; Xt=[4 5]; for i=1:length(C)-1 D=0; for j=1:length(Xt) D=D+A(j,i)*C(Xt(j)); end xi(i)=C(i)-D; end s=[]; for i=1:length(xi) if xi(i)<0 s=[s,i]; end end f=length(s); h=1; while(f) for k=1:length(s) j=1; A x=[]; for i=1:length(Xt) if A(i,s(k))>0 x(j)=i;

j=j+1; end end x if(length(x)+1==1) break; end y=1 x for i=1:length(x) if B(x(i))/A(x(i),s(k))

单纯形法MATLAB程序

单纯形法(Matlab 程序) %%单纯形法( Matlab 程序) a=input('input the major matrix A '); b=input('input the matrix b '); n=input('input the judgement '); %%为计数器(确定循环次数) g=0; while g<40 %%确定非负 alength=max(size(n)); blength=max(size(b)); m=0; for i=1:alength if n(i)>=0 m=m+1; end end; if m==alength x=b; break end; %%找 K s=min(n); for i=1:alength if n(i)==s k=i; break end; end; %%a[i,k] 的非负性 m=0; for i=1:blength if a(i,k)<0 m=m+1; end; end; if m==blength

disp('x does not exit'); judge=1; break end; %%找 L 确定主元 cc=100000; for i=1:blength if a(i,k)>0 if (b(i)/a(i,k))< cc cc=b(i)/a(i,k); end end end; for i=1:blength if a(i,k)~=0 if (b(i)/a(i,k))==cc l=i; break end end end; %%计算 ,a 标准化 zu=a(l,k); aa=a; for i=1:l-1 for j=1:alength aa(i,j)=a(i,j)- a(l,j)*a(i,k)/a(l,k); end end; for i=l+1:blength for j=1:alength aa(i,j)=a(i,j)- a(l,j)*a(i,k)/a(l,k); end end; for j=1:alength aa(l,j)=a(l,j)/zu; end; %%b勺判别 bb=b; bb(l)=b(l)/zu; for i=1:l-1 bb(i)=b(i)- b(l)*a(i,k)/a(l,k); end; for i=l+1:blength bb(i)=b(i)- b(l)*a(i,k)/a(l,k); end; b=bb; %%确定判别数

一维导热方程 有限差分法 matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

有限差分法的Matlab程序(椭圆型方程)

有限差分法的Matlab程序(椭圆型方程) function FD_PDE(fun,gun,a,b,c,d) % 用有限差分法求解矩形域上的Poisson方程 tol=10^(-6); % 误差界 N=1000; % 最大迭代次数 n=20; % x轴方向的网格数 m=20; % y轴方向的网格数 h=(b-a)/n; % x轴方向的步长 l=(d-c)/m; % y轴方向的步长 for i=1:n-1 x(i)=a+i*h; end % 定义网格点坐标 for j=1:m-1 y(j)=c+j*l; end % 定义网格点坐标 u=zeros(n-1,m-1); %对u赋初值 % 下面定义几个参数 r=h^2/l^2; s=2*(1+r); k=1; % 应用Gauss-Seidel法求解差分方程 while k<=N % 对靠近上边界的网格点进行处理 % 对左上角的网格点进行处理 z=(-h^2*fun(x(1),y(m-1))+gun(a,y(m-1))+r*gun(x(1),d)+r*u(1,m-2)+u(2,m-1))/s; norm=abs(z-u(1,m-1)); u(1,m-1)=z; % 对靠近上边界的除第一点和最后点外网格点进行处理 for i=2:n-2 z=(-h^2*fun(x(i),y(m-1))+r*gun(x(i),d)+r*u(i,m-2)+u(i+1,m-1)+u(i-1,m-1))/s; if abs(u(i,m-1)-z)>norm; norm=abs(u(i,m-1)-z); end u(i,m-1)=z; end % 对右上角的网格点进行处理 z=(-h^2*fun(x(n-1),y(m-1))+gun(b,y(m-1))+r*gun(x(n-1),d)+r*u(n-1,m-2)+u(n-2,m-1))/s; if abs(u(n-1,m-1)-z)>norm norm=abs(u(n-1,m-1)-z); end u(n-1,m-1)=z; % 对不靠近上下边界的网格点进行处理 for j=m-2:-1:2 % 对靠近左边界的网格点进行处理

MATLAB实现迭代法最佳松弛因子的选取

迭代法最佳松弛因子的选取 一、问题提出: 针对矩阵430341014A ?? ??=-?? ??-?? ,b=[24;30;-24],用SOR 迭代求解。并选出最佳松弛 因子。理论分析 1.24ω==≈。做出()L ωρ关于ω函数 的图像。 二、理论基础 选取分裂矩阵M 为带参数的下三角矩阵)(1 wL D w M -=, 其中w>0为可选择的松弛因子. 于是,由 ?????+=+f Bx x x k k ) ()1()0() (初始向量 (k=0,1,…,)可构造一个迭代法,其迭代矩阵为A wL D w I L w 1)(---≡ =).)1(()(1wU D w wL D +--- 从而得到解Ax=b 的主次逐次超松弛迭代法. 解Ax=b 的SOR 方法为 ?????+=+f Bx x x k k ) ()1()0() (初始向量 (k=0,1,…,) (1) 其中 w L =).)1(()(1wU D w wL D +---(2) b wL D w f 1)(--= 下面给出解Ax=b 的SOR 迭代法的分量计算公式.记 ,),...,,...,() () () (1)(T k n k i k k x x x x = 由(1)式可得 ,))1(()()()1(wb x wU D w x wL D k k ++-==-+ ).()()()1()()1(k k k k k Dx Ux Lx b w Dx Dx -+++=++ (3) 由此,得到解Ax=b 的SOR 方法的计算公式

?????????==--+==∑∑-==++.),1,0;,...,2,1(/)(,),...,(11) (1)()1()0()0(1)0(为松弛因子 w k n i a x a x a b w x x x x x ii i j n i j k j ij k j ij i k i k i T n (4) 或 ?? ?? ? ??????==--=??+==∑∑-==++.,...),1,0;,...,2,1()/(,,),...,(.11)()1() () 1()0()0(1)0(为松弛因子w k n i a x a x a b w x x x x x x x i j n i j ii k j ij k j ij i i i k i k i T n (5) ※ 若要求选取出最佳松弛因子,则有两种方法: ⑴、 给出w 的最佳范围,当取不同的w 值时,会求出不同的谱半径R 的值, 然后判断出值最小的谱半径。那么这个最小的谱半径所对应的w ,即为所求最佳松弛因子。 ⑵、 给出w 的最佳范围,当取不同的w 值时,由(2)式进行迭代,看它们在 相同精度范围内的迭代次数,找出迭代次数最低的那一个,其所应用的w 即为最佳松弛因子。 三、实验内容: 从表格中可以看出,迭代次数随着松弛因子的增长而呈现先减后增的趋势,当谱半径最小时,其迭代次数最小。则表示出谱半径最小时,其松弛因子为最佳松弛因子。

实验二:MATLAB编程单纯形法求解

北京联合大学 实验报告 项目名称:运筹学专题实验报告 学院:自动化专业:物流工程 班级: 1201B 学号:2012100358081 姓名:管水城成绩: 2015 年 5 月 6 日

实验二:MATLAB 编程单纯形法求解 一、实验目的: (1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。 (2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006 三、算法步骤、计算框图、计算程序等 本实验主要编写如下线性规划问题的计算程序: ?? ?≥≥≤0 ,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题: ?? ?≥≥=0 ,0..min b x b Ax t s cx 1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下: 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。设初始基为B,然后执行如下步骤: (1).解B Bx b =,求得 1 B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量 (2).计算单纯形乘子w, B wB C =,得到1 B w C B -=,对于非基变量,计算判别 数1i i i B i i z c c B p c σ-=-=-,可直接计算 σ =1 B A c c B --令 max{}k i R σσ∈=,R 为非基变量集合 若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一 步 (3).解k k By p =,得到 1 k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使 { }:0 min ,0 t r rk tk tk b b tk y y t y y >=>且r B x 为离基变量, ,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1) ;

电磁场实验一_有限差分法的matlab实现

电磁场与电磁波实验报告 实验项目:_______有限差分法__ ____ 班级:_____ __12电子2 ____ __ 实验日期:__2014年12月23日 姓名:___ _ __陈奋裕 __ __ 学号:___ ___1215106003 _____ 组员姓名:___ _ __ __ __ 组员学号:___ ___ _____ 指导教师:_ ____张海 ______

一、实验目的及要求 1、学习有限差分法的原理与计算步骤; 2、学习用有限差分法解静电场中简单的二维静电场边值问题; 3、学习用Matlab 语言描述电磁场与电磁波中内容,用matlab 求解问题并用图形表示出了,学习matlab 语言在电磁波与电磁场中的编程思路。 二、实验内容 理论学习:学习静电场中边值问题的数值法中的优先差分法的求解知识; 实践学习:学习用matlab 语言编写有限差分法计算二维静电场边值问题; 三、实验仪器或软件 电脑(WIN7)、Matlab7.11 四、实验原理 基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 简单迭代法: 这一方法的求解过程是,先对场域内的节点赋予迭代初值(0),i j ?,这里上标(0)表示0次 (初始)近似值。然后按Laplace 方程 (k 1)(k)(k)(k)(k),1,,11,,11 []4 i j i j i j i j i j ?????+--++=+++(i,j=1,2,…) 进行反复迭代(k=0,1,2,…)。若当第N 次迭代以后,所有的内节点的相邻两次迭代值之间的最大误差不超过允许范围,即 (N)(N-1) ,,max|-|

单纯形法的matlab实现(20200814192014)

大连民族学院 数学实验报告 课程:____________________ 最优化方法______________________ 实验题目: ___________ 单纯形法的matlab实现 ___________________ 系别:______________________ 理学院________________________ 专业:__________________ 信息与计算科学____________________ 姓名:__________________________________________________ 班级:_____________________ 信息102班 ____________________ 指导教师:___________________ 葛仁东_______________________ 完成学期:2013 年__9 ___________ 月_2________ 日

实验目的: 实验方法和步骤(包括数值公式、算法步骤、程序) : 考察标准形式的线性规划问题: min f(x) C T x s.t Ax b, x 0 设x(k)F为一个基本可行解,单纯形方法首先检验它的最优性。如果它不是最优的,确定与该顶点相连的一条使目标函数下降的边;接下来确定沿这个边移

动多远可以到达另一个更优的相邻点,也就是得出一个新的基本可行解 算法步骤: 步骤1给定一个初始基本可行解,记迭代次数 k 1 ; 步骤2 :计算单纯形乘子y k B k T c B k)和简约价值系数向量C N k) c N k) N T y k ; 步骤3 :最优性检验,计算C?k) min{C (k)|j 2},如果C?k) 0,则x (k)为最优解, 停止迭代;否则有x p 0,选x p 为入基变量; 步骤4:确定出基变量,计算g k) B k 1a p ,如果对所有j B k ,有器)0,则问题 无有界的最优解,停止迭代;否则确定出基变量指标 步骤5:交换B k 的列a q 与N k 的列a p 得到新的基矩阵 盼和山+1,计算新的基本可 行解 x (k1),置k:k 1后转步骤 2; 在上述算法中,当存在不止一个简约价值系数 C j k) 0时,选取最负的?“的 指标为p ,并以X p 作为入基变量。 Matlab 计算程序: Function] x,f]=zuiyouhua(A,b,c) Size(A)=[m, n]; i=n+1: n+m; N=1: n; B=eye(m,m); xb=b '; xn=zeros(m,1); f1=0; w=zeros(1,m); z=-c; flag=1; while(1) [a,k]=max(z); If a<=0 flag=0; break else y=i nv(B)*A(:,k) b (k) B k }; min{ _(k )殆 0, j

matlab迭代法代码

matlab 迭代法代码 1、%用不动点迭代法求方程x-e A x+4=0的正根与负根,误差限是 10A-6% disp(' 不动点迭代法 '); n0=100; p0=-5; for i=1:n0 p=exp(p0)-4; if abs(p-p0)<=10(6) if p<0 disp('|p-p0|=') disp(abs(p-p0)) disp(' 不动点迭代法求得方程的负根为 :') disp(p); break; else disp(' 不动点迭代法无法求出方程的负根 .') end else p0=p; end end

if i==n0 disp(n0) disp(' 次不动点迭代后无法求出方程的负根') end p1=1.7; for i=1:n0 pp=exp(p1)-4; if abs(pp-p1)<=10(6) if pp>0 disp('|p-p1|=') disp(abs(pp-p1)) disp(' 用不动点迭代法求得方程的正根为 ') disp(pp); else disp(' 用不动点迭代法无法求出方程的正根 '); end break; else p1=pp; end end if i==n0

disp(n0) disp(' 次不动点迭代后无法求出方程的正根 ') end 2、%用牛顿法求方程x-e A x+4=0的正根与负根,误差限是disp(' 牛顿法') n0=80; p0=1; for i=1:n0 p=p0-(p0-exp(p0)+4)/(1-exp(p0)); if abs(p-p0)<=10(6) disp('|p-p0|=') disp(abs(p-p0)) disp(' 用牛顿法求得方程的正根为 ') disp(p); break; else p0=p; end end if i==n0 disp(n0) disp(' 次牛顿迭代后无法求出方程的解 p1=-3; for i=1:n0 p=p1-(p1-exp(p1)+4)/(1-exp(p1)); 10A-6 ') end

相关文档
最新文档