大型机械结构件的多学科设计优化(MDO)研究

大型机械结构件的多学科设计优化(MDO)研究
大型机械结构件的多学科设计优化(MDO)研究

大型机械结构件的多学科设计优化(MDO)研究

作者:秦东晨, 王丽霞, 张珂

作者单位:秦东晨(郑州大学机械工程学院,河南郑州,450002), 王丽霞(中州大学工程系,河南郑州,450005), 张珂(郑州市市政工程管理处,河南郑州,450002)

刊名:

机床与液压

英文刊名:MACHINE TOOL & HYDRAULICS

年,卷(期):2004(4)

被引用次数:2次

参考文献(6条)

1.Maxwell C Scientific Papers 1952

2.Aryasomayajula S;Wang H;Grandhi R;Eastep F Multidisciplinary design of vehicle structures with improved roll maneuverability - transonic regime[外文期刊] 2001(4)

3.钟毅芳;陈柏鸿;肖人彬;刘继红复杂机械产品协同寻优相关技术的研究[期刊论文]-中国机械工程 2002(06)

4.Michell A G M The limits of economy of material in frame structures 1904(08)

5.秦东晨;叶元烈;陈丽华轻型货车EQ1060车身的结构优化设计研究 2000(01)

6.Gern F G;Naghshineh-Pour A H;Sulaeman E;Kapania R K,Haftka R T Structural wing sizing for multidisciplinary design optimization of a strut - braced Wing[外文期刊] 2001(1)

本文读者也读过(8条)

1.欧彦江.殷国富.周长春.刘丽.OU Yanjiang.YIN Guofu.ZHOU Changchun.LIU Li三级建模微型机电系统多学科优化设计法[期刊论文]-制造技术与机床2009(1)

2.秦东晨.王丽霞.张珂.薛东岭汽车车身的多学科优化设计(MDO)研究[期刊论文]-现代机械2004(5)

3.张弫.郑时镜.于本水运用MDO进行远程防空导弹总体方案研究[期刊论文]-系统工程与电子技术2002,24(1)

4.孔凡国.李钰.KONG Fan-guo.LI Yu多学科设计优化方法与传统设计优化方法的比较研究[期刊论文]-计算机工程与科学2008,30(7)

5.袁丽娜.YUAN Li-na多学科优化的质量波动数学模型研究及应用[期刊论文]-信息与电子工程2009,7(6)

6.王晓青.王小军.Wang Xiaoqing.Wang Xiaojun多学科优化技术及其算法[期刊论文]-导弹与航天运载技术2007(1)

7.陈琪锋.戴金海.李晓斌分布式协同进化MDO算法及其在导弹设计中应用[期刊论文]-航空学报2002,23(3)

8.胡凌云多学科设计优化技术在卫星总体设计中的应用[期刊论文]-中国制造业信息化2004,33(1)

引证文献(2条)

1.张氢.高倩.秦仙蓉.陈丹丹一种由整体到局部的机械结构分层优化模型[期刊论文]-机械科学与技术 2010(11)

2.王任全多学科目标兼容优化设计方法及其在MEMS中应用的研究[学位论文]硕士 2007

本文链接:https://www.360docs.net/doc/1410684594.html,/Periodical_jcyyy200404024.aspx

工程机械结构与使用复习资料全解

《工程机械结构与使用》复习资料 第一编第四章平地机 1. 试述工程机械平地机的组成及其作业工况。 答:平地机的主要由发动机、液力机械传动系统、行走驱动装置、前后机架、转向及制动系统,液压控制系统及电气系统、操作系统及工作装置等组成。 平地机的作业方式主要由以下四种: 1.铲刀刮土直移 使铲刀平置,切削刃垂直于行进方向,调整好铲土角,使用低档前移作业。 主要用于铺平物料。 2.铲刀侧移刮土 使铲刀保持一定的回转角,调整铲土角,改变铲刀引出量,即可实现铲刀机 外卸土或铲刀机内卸土,必要时可采取斜行作业,在切削和运土时,土沿铲刀斜向流动,铲刀刮土侧移时应选用作业当起步。 3.铲刀机外刮土 操纵铲刀摆动油缸偏摆牵引架,将铲刀倾斜伸出机外,然后回转铲刀,使铲刀上端朝前,平地机以一档前进刮土。用于修整路堑路基边坡或开挖边沟。 4.铲刀刀角铲土侧移 调整好铲刀回转角和铲土角,在垂直面内倾斜铲刀,使铲刀前置端下降切土,后置端抬升,土沿铲刀侧移卸土,用于开挖边沟。 2. 试述工程机械PY—180型平地机传动系的组成及前后桥的结构特点; 答:PY—180型平地机传动系由液力变矩器、定轴式动力换档变速箱、驱动桥及摆动式平衡传动箱等组成。 前桥为箱形铰接摆动式从动桥,前轮为转向从动轮。前轮除可以左右偏转满足转向要求外.还可以根据作业要求向左右两侧倾斜。驱动轮通过左右摆动式平衡箱与后桥铰接,可随地面起伏上下摆动,均衡驱动轮的载荷,提高平地机的附着性能。 自行式平地机——一种用于土石方施工中平整场地的通用型、精细作业的轮式铲土运输机械。 自行式平地机的主要工作装置为铲刀和松土耙。 3.标示出下图各部件的名称,平地机刮 土工作装置有哪能些基本动作?各用什 么方法实现? 答:平地机铲刀有升降、倾斜、侧移、 引出(或摆动)、俯仰(或铲土角调整)、 360°回转等运动。 …… 平地机按机架结构形式可分为:整 体式机架平地机、铰接机架平地机。 前机架为弓形梁架,牵引架前端支 承在摆动式箱形前桥上,后端与后机架 铰接。 平地机可以完成平地、切削、侧面移 土、路基成形、边坡修整等作业。 平地机液压系统采用多泵多回路液 压系统,包括工作装置液压系统、转向液压系统和制动液压系统。

机械优化设计大作业2011 - 副本

宁波工程学院机械工程学院 机械优化设计大作业 班级 姓名 学号 教师

机械优化设计大作业 1.题目 行星减速器结构优化设计 NGW型行星减速器应用非常广泛。 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高; (2)传动效率高,工作高; (3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 2.已知条件 传动比u=4.64,输入扭矩T=1175.4N.m,齿轮材料均选用38SiMnMo钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02 ?u。 .0 ≤ 弹性影响系数Z E=189.8MPa1/2;载荷系数k=1.05; 齿轮接触疲劳强度极限[σ]H=1250MPa; 齿轮弯曲疲劳强度极限[σ]F=1000MPa; =2.97;应力校正系数Y Sa=1.52; 齿轮的齿形系数Y Fa 小齿轮齿数z取值范围17--25;模数m取值范围2—6。 注: 优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T

3.数学模型的建立 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约 束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z 1ˉ ̄ 太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d 1--太阳轮1的分度圆直径,mm;d 2 --行星轮2的分度圆 直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函数 则为: F(x)=0.19635m2z 1 2b[4+(u-2)2c][1] 式中u--减速器传动比;c--行星轮个数 由已知条件c=3,u=4.64,因此目标函数可简化为: F(x)=4.891x 32x 1 2x 2

立体车库的内部机械结构的优化设计

目录 摘要........................................................................Abstract..................................................................... 第一章绪论.............................................................. 1.1 课题的来源及研究的目的和意义...................................... 1.2 机械式停车库.................................................... 1.3 机械优化设计相关知识.............................................. 1.3.1 优化设计概述.................................................. 1.3.2 约束优化方法................................................ 第二章立体车库总体结构的研究............................................. 2.1 机械立体车库的总体结构形式...................................... 2.2 立体车库的总体结构的选择与设计....................................... 2.3 立体车库的存取车方式的总体设计.................................... 2.4 立体车库主体建筑结构的总体设计................................. 第三章固定叉梳的优化设计................................................ 3.1 横移叉梳和固定叉梳结构形式的设计................................... 3.2 固定叉梳的优化设计................................................. 第四章立体车库钢结构骨架的优化设计.................................... 4.1 立体停车库钢结构骨架基本结构的设计................................... 4.2 立体停车库钢结构骨架的模型化..................................... 4.3 钢结构骨架的受力情况............................. 4.4 进行受力分析的基本假设................................... 4.5 钢结构骨架的受力分析............................................. 4.6 钢结构骨架的变形分析........................................... 4.7 结构优化设计模型的建立....................................... 4.8 优化结果及分析........................................................结论.................................................................... 致谢.................................................................... 参考文献(References)................................................

销轴设计

销轴设计 节点反力75x R kN =(拉力),65z R kN =(方向向下),采用39φ销轴,销轴材料为45#钢,抗拉强度为600MPa ,屈服强度为355MPa ,2400/b c f N mm =,2160/b v f N mm =, 2280/b f N mm =; ,销轴孔040d mm =,25t mm =,100a b mm ==,节点板采用Q345B 材质,2265/f N mm =2155/v f N mm = 销轴构造要求; 100 4 25b t =≤ 21622516661004883 eff eff b t mm b mm a b mm =+=?+=<=>= 连接耳板抗拉、抗剪强度计算 1. 耳板孔净截面处的抗拉强度 合力22(75)(65)99.25N kN =+= 0140min(216,)min(2162251666,10086.67)6633 d b t b t mm =+-=+=?+=-== 3 22199.251030.01/265/222566 N N mm f N mm tb σ?===<=?? 2. 耳板端部截面抗拉(劈开)强度 322 099.251027.01/265/2240225(100-)2(a-)33 N N mm f N mm d t σ?===<=??? 3. 耳板抗剪强度 ()()3 2222220099.2510==16.78/155/2225118.32 4040100118.32mm 2222v N N mm f N mm tZ d d Z a τ?=<=??????=+-=+-= ? ????? 4. 销轴承压强度 3 22c 99.251099.25/400/4025 b c N N mm f N mm dt σ?===<=? 5. 销轴抗剪强度

多学科设计优化简要介绍

多学科设计优化简要介绍 多学科设计优化 (Multidisciplinary Design Optimization,简称 MDO)是一种通过充分探索和利用工程系统中相互作用的协同机制来设计复杂系统和子系统的方法论。其主要思想是在复杂系统设计的整个过程中利用分布式计算机网络技术来集成各个学科 (子系统 )的知识,应用有效的设计优化策略,组织和管理设计过程。其目的是通过充分利用各个学科(子系统 )之间的相互作用所产生的协同效应,获得系统的整体最优解,通过实现并行设计,来缩短设计周期,从而使研制出的产品更具有竞争力。因此,MDO宗旨与现代制造技术中的并行工程思想不谋而合,它实际上是用优化原理为产品的全寿命周期设计提供一个理论基础和实施方法。 MDO研究内容包括三大方面:1,面向设计的各门学科分析方法和软件的集成;2,探索有效的 MDO算法,实现多学科 (子系统 )并行设计,获得系统整体最优解;3,MDO分布式计算机网络环境。 多学科设计优化问题 ,在数学形式上可简单地表达为: 寻找:x 最小化:f=f(x,y) 约束:hi(x,y)=0 (i=1 ,2 ,… ,m) gj(x,y)≤ 0 (j=1 ,2 ,… ,n) 其中:f 为目标函数;x为设计变量;y是状态变量;hi(x,y)是等式约束;gj(x,y)是不等式约束。状态变量 y,约束 hi 和 gj以及目标函数的计算涉及多门学科。对于非分层系统,状态变量 y,目标函数 f,约束hi 和 gj 的计算,需多次迭代才能完成;对于分层系统,可按一定的顺序进行计算。这一计算步骤称为系统分析。只有当一设计变量 x通过系统分 随着科学技术日新月异的发展,我们的武器装备,尤其是战斗机的水平日益提高,装备复杂程度已远超乎平常人的想象,装备设计不单要用到

机械结构优化设计作业

甘蔗收获机机械台架虚拟样机 结构优化设计 摘要:结构优化设计就是寻求满足约束条件下的最佳构建尺寸、结构形式以及材料配置方式。利用有限元方法对虚拟样机台架结构进行分析,并采用一阶方法对台架进行优化,预估出经验设计结构上的最危险点,并对结构进行改造和优化,可以保证结构综合应力在材料的许用应力范围内,对结构轻量化,合理分配材料,大大缩短研制周期,降低设计成本,为虚拟样机的创新设计可以提供一种新的设计及优化设计方法。 关键词:甘蔗收获机;优化设计;模态分析;一阶方法 引言:甘蔗作为重要经济作物在全世界范围内广泛种植,中国的种植面积在世界位居第三位,成为我国制糖,轻工,化工和能源的重要原料,对整个国民经济的发展都有重要的地位和作用。甘蔗收获包括切梢、切割、清理和装运等工序,为甘蔗生产过程中劳动强度最大,费工费时,成本最高的一个环节。在我国,甘蔗成产机械化程度低,随着人工收获成本的逐年增加,我国糖业面临着巨大的竞争压力,实现甘蔗收获机械化的要求愈加迫切。随着设计理论与设计理念的发展,对虚拟样机进行优化设计能改进凭经验设计出现的缺陷以及预估结构或机构的最危险点,从而对其进行改造和优化,对设计结果及时进行审查,并及时反馈给设计人员,实现了设计过程中的快速反馈,按照优化后的设计方案进行物理样机研制,可以避开预估的缺陷和危险点,从而使结构更趋于合理,降低了制造成本,大大缩短了设计和产品研制周期,还可以保证将错误消灭在萌芽状态。 虚拟样机技术[ 1]为这类创新产品的开发提供了强有力的手段。甘蔗收割机在工作过程中, 要经历扶蔗、砍蔗、输送、断尾以及剥叶等动作, 承受的都是动态载荷, 而结构的固有频率和振型是承受动态载荷结构设计中的重要参数, 因此本文采用通用有限元分析软件ANSYS对甘蔗收割机机架结构部件进行模态分析, 根据机架结构的低阶模态和振型, 确定对机架结构是进行动力刚度优化还是静力强度优化。 1.机架结构模型建立

销轴的设计与探讨

摘要
摘要
销轴是一类起连接作用的紧固件, 可构成静态固定连接也可与 连接件做相对运动,主要用于两零件的连接处,构成铰链连接。铰链 连接形式被广泛用于工程机械中,SRS 项目中所有动臂与动臂、动臂 与油缸之间的连接都是通过销轴的铰链连接来实现的。 由与 SRS 项目 是通过反求工程方法来设计的,本文主要结合现有的资料、车间师傅 的反馈以及本部门工程师的经验建议来对现车销轴结构进行合理性 验证, 同时还进行了表面参数和与轴套之间的配合公差的设计和销轴 的强度设计。对于存有疑问的地方,本文进行了相关的探讨并且给出 了相应的解决措施和建议。 关键字: 销轴 关键字 结构设计 性能参数设计 强度设计
I

目录
目录
摘要 .......................................................................................................... I 目录 .......................................................................................................... i 引言 ......................................................................................................... 1 第一章 项目总体介绍 ...................................................................... 3
1.1 SRS 公铁两用高空作业车的功能用途 ..................................... 3 1.2 SRS 公铁两用高空作业车的系统划分 ..................................... 5 第二章 销轴的结构设计 .................................................................... 7
2.1 高空作业部分销轴的分类 ....................................................... 7 2.2 销轴防转和轴向定位结构的设计 ........................................... 8 2.2.1 使用防转和轴向定位结构的原因..................................... 8 2.2.2 工程应用中常用的防转和轴向定位结构 ........................ 10 2.2.3 防转和轴向定位结构的确定 .......................................... 13 2.3 销轴端部倒角及密封形式的设计 ............................................ 14 2.3.1 销轴端部倒角的设计 ....................................................... 14 2.3.2 销轴密封形式的设计 ...................................................... 16 2.4 关于结构更改的几个探讨 ........................................................ 18 2.4.1 将板件与杆件的连接处改成阶梯轴结构的探讨 ........... 18 2.4.2 将过盈连接的销轴改成阶梯轴结构的探讨 ................... 20 第三章 材料的确定.......................................................................... 23
3.1 杆件材料的选择....................................................................... 23
i

北航飞行器多学科设计优化复习题

飞行器多学科设计优化复习题 1.优化设计问题的三要素是什么?给出一个优化设计问题的例子,分别说明三个要素的具体内容。 三要素分别是设计变量,约束条件和目标函数。 以结构优化设计为例,设计变量可能是蒙皮厚度,前后翼梁缘条厚度,前后翼梁腹板厚度等结构参数;约束条件是机翼强度要求、刚度要求等目标函数是最小化结构重量。 2.飞行器设计一般分哪几个阶段?飞行器多学科优化设计有什么意义? 飞行器设计分三个阶段:概念设计、初步设计、详细设计。 飞行器MDO的意义为: (1)MDO符合系统工程的思想。能有效提高飞行器的设计质量 (2)MDO为飞行器设计提供了一种并行设计模式。 (3)MDO的设计模式与飞行器设计组织体制一致,能够实现更高程度的自动化。 (4)MDO的模块化结构使飞行器设计过程具有很强的灵活性。 3.在飞行器设计过程中,多学科设计优化方法与传统设计方法之间有哪些相同和不同点。 传统的飞行器设计优化中,采取的是一种串行的设计模式,往往首先进行性能设计优化,然后进行结构、操纵和控制系统设计优化,最后进行工艺装备设计。在传统的方法中,各个学科任务成了实现系统设计的最基本单元,影响飞机性能的气动、推进、结构和控制等学科被人为地割裂开来,各学科之间相互耦合所产生的协同效应并未被充分考虑进去,这可能导致失去系统的整体最优解,串行的模式也使得设计时间周期和成本大大增加。 而多学科优化设计技术是一种并行设计模式,它以各子系统、学科的优化设计为基础,在飞行器各个阶段力求各学科的平衡,充分考虑哥们学科之间的相互影响和耦合作用,应用有效的设计/优化策略和分布式计算机网络系统,来组织和管理整个系统的设计过程,通过充分利用各个学科之间的相互作用所产生的协同效应,以获得系统的整体最优解。 相同点在于都有对于子学科的分解,但是MDO更注重子学科间的协同。 4.给出MDO的三种定义,根据你的理解,MDO该如何定义? Definition1:MDO是一种通过充分探索和利用系统中相互作用的协同机制来设计复杂系统和子系统的方法论。 Definition2:MDO是指在复杂工程系统的设计过程中,必须对学科(子系统)之间的相互作用进行分析,并且充分利用这些相互作用进行系统优化合成的方法。 Definition3:多学科设计优化就是进行复杂系统的设计过程中,结合系统的多学科本质,充分利用各种多学科设计与多学科分析工具,最终达到基于多学科优化的方法论。 My Definition:当设计中每个因素都影响另外的所有因素时,确定该改变哪个因素以及改变到什么程度的一种设计方法。 5.多学科设计优化中,什么是学科分析?什么是系统分析? 学科分析:也成为子系统分析或子空间分析,以某一学科设计变量,其他学科对该学科的耦合状态变量和系统的参数为输入,根据某一学科满足的物理规律确定其物理特性的过程 系统分析:对整个系统,给定一组设计变量X,通过求解系统的状态方程得到系统状态变量的过程。 6.什么是多学科设计优化的状态变量?学科状态变量和耦合状态变量之间有什么区别?

机器人习题答案

课程考试复习题及参考答案 一、名词解释题: 1. 自由度:指描述物体运动所需要的独立坐标数。 2. 机器人工作载荷:机器人在规定的性能范围内,机械接口处能承受的最大负载量(包括手部)。 3. 柔性手:可对不同外形物体实施抓取,并使物体表面受力比较均匀的机器人手部结构。 4. 制动器失效抱闸:指要放松制动器就必须接通电源,否则,各关节不能产生相对运动。 5. 机器人运动学:从几何学的观点来处理手指位置与关节变量的关系称为运动学。 6. 机器人动力学:机器人各关节变量对时间的一阶导数、二阶导数与各执行器驱动力或力矩之间的关系, 即机器人机械系统的运动方程。 7. 虚功原理:约束力不作功的力学系统实现平衡的必要且充分条件是对结构上允许的任意位移(虚位移) 施力所作功之和为零。 8. PWM 驱动:脉冲宽度调制(Pulse Width Modulation )驱动。 9. 电机无自转:控制电压降到零时,伺服电动机能立即自行停转。 10. 直流伺服电机的调节特性:是指转矩恒定时,电动机的转速随控制电压变化的关系。 11. 直流伺服电机的调速精度:指调速装置或系统的给定角速度与带额定负载时的实际角速度之差,与给 定转速之比。 12. PID 控制:指按照偏差的比例(P, proportional )、积分(I, integral )、微分(D, derivative )进 行控制。 13. 压电元件:指某种物质上施加压力就会产生电信号,即产生压电现象的元件。 14. 图像锐化:突出图像中的高频成分,使轮廓增强。 15. 隶属函数:表示论域U 中的元素u 属于模糊子集A 的程度,在[0, 1]闭区间内可连续取值。 16. BP 网络:BP (Back Propagation)神经网络是基于误差反向传播算法的人工神经网络。 17. 脱机编程:指用机器人程序语言预先进行程序设计,而不是用示教的方法编程。 18. AUV :Autonomous Underwater Vehicle 无缆自治水下机器人,或自动海底车。 二、简答题: 1.机器人学主要包含哪些研究内容? 答:机器人研究的基础内容有以下几方面:(1) 空间机构学;(2) 机器人运动学;(3) 机器人静力学;(4) 机器人动力学;(5) 机器人控制技术;(6) 机器人传感器;(7) 机器人语言。 2.机器人常用的机身和臂部的配置型式有哪些? 答:目前常用的有如下几种形式:(1) 横梁式。机身设计成横梁式,用于悬挂手臂部件,具有占地面积小,能有效地利用空间,直观等优点。(2) 立柱式。多采用回转型、俯仰型或屈伸型的运动型式,一般臂部都可在水平面内回转,具有占地面积小而工作范围大的特点。(3) 机座式。可以是独立的、自成系统的完整装置,可随意安放和搬动。也可以具有行走机构,如沿地面上的专用轨道移动,以扩大其活动范围。(4) 屈伸式。臂部由大小臂组成,大小臂间有相对运动,称为屈伸臂,可以实现平面运动,也可以作空间运动。 3.拉格朗日运动方程式的一般表示形式与各变量含义? 答:拉格朗日运动方程式一般表示为: d d L L τt q q ????- = ????? & 式中,q 是广义坐标;τ是广义力。L 是拉格朗日算子,表示为 L K P =- 这里, K 是动能;P 是位能。 4.机器人控制系统的基本单元有哪些? 答:构成机器人控制系统的基本要素包括: (1) 电动机,提供驱动机器人运动的驱动力。(2) 减速器,

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

机械结构设计课程教学大纲

《机械结构设计》课程教学大纲 执笔人:陈建毅编撰日期:2009年8月30日 一、课程概述 《机械结构设计》是工业设计专业的职业核心课程(属于B类),它包括理论力学、材料力学和机械设计基础三部分内容。计划时数为68学时,本课程4学分。 通过本课程的学习,使学生掌握工程力学和机械设计有关的基本概念、基本理论和基本方法。会对物体进行正确的受力分析,会分析计算一些简单力学问题。培养学生对工程设计中的强度、刚度和稳定性问题有明确的基本概念,必要的基础知识和比较熟练的计算能力、分析能力和初步的实验分析能力。使学生学会应用工程力学的基本理论和方法分析与解决机械工程中的一些简单实际问题。掌握一般机械中常用机构和通用零件的工作原理、性能特点,及其使用、维护的基础知识。掌握常用机构的基本理论和设计方法,常用零部件失效形式、设计准则和设计方法。在本课程的学习,注意培养学生正确的设计思想和严谨的工作作风。 教学对象:工业设计专业大二上学期的高职学生。 二、教学内容描述 教学内容分成两个模块:工程力学基础和机械设计基础。工程力学主要内容分为静力分析和强度分析;机械设计基础分为机械零件基础、常用机构、机械传动基础。 第一篇工程力学基础 第一章工程力学的基本概念 教学内容: 第一节工程力学与工业设计 第二节工程力学的研究对象与基本内容 第三节工程力学的基本概念 第四节静力学公理 第五节约束与约束反力 第六节分离体与受力图 教学要求:了解力与力系的基本概念,掌握静力学的基本公理和各种常见约束的性质,对简单的物体系统,能熟练地取分离体,画受力图。 第二章构件与产品的静力分析 教学内容: 第一节平面力系的简化与合成 第二节平面力系平衡问题的求解 第三节空间力系简介超静定的概念

机械结构优化设计

机械结构优化设计 ——周江琛 2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

多学科优化

摘要:工程系统近年来变得相当大和复杂。所要求的设计相当复杂并且仅仅考虑一个学科的话不容易满足设计要求。因此,需要考虑到不同学科的设计方法。多学科设计优化是考虑到多学科设计环境所形成的优化方法。MDO包含七中方法。他们是多学科可行方法MDF,单学科可行方法IDF,同时运行方法AAO,并行子空间优化方法CSSO,合作优化CO,错落综合系统合成方法BLISS,基于子空间的多学科优化MDOIS.通过几个数学例子,方法的性能可以得到评估和比较。用于比较所定义的具体要求和新的数学问题类型是根据要求所定义的。所有的方法被编码并且可以在数量和质量上比较方法的性能。 1.简介 目前,工程系统都是相当大而且复杂的。对于这类系统,设计要求是严苛的。因此,设计工程师正在寻求新的方法,其中之一是多学科设计优化(MDO;Balling 和Sobieszcznski-Sobieski在1996提出)。MDO是一种设计优化方法。一般来说,优化在实施时,仅仅只考虑到了一门学科。然而,用单一的学科去解决现代工程问题是相当困难的。因此,我们需要一种可以覆盖多学科的设计方法。 在Sobieszczanski-Sobieski于1998年提出并行子空间优化之后,其他的几种方法也被相继提出来。多学科设计优化方法分为单级方法和多级方法。单级方法一般有一个单一的优化程序并且直接使用非层次结构。以下这些方法就是属于单级方法,其中包括多学科可行法(MDF;Cramer等在1993年提出)、独立学科可行法(IDF;Cramer等在1993年提出;Lee在2004年提出)、All-at-once (AAO;Cramer等在1993年提出;Haftka在1985年提出)和基于独立子空间的多学科优化(MDOIS;Park在2007年提出;Park和Shin在2005年提出)。 在单级方法下,除了MDOIS以外,所有的学科都不能决定设计,并且分析只在学科之间进行。在MDOIS情况下,各个学科都决定了设计。另一方面,多级方法能够将非层次的机构关系转化为层次结构而且每个层次都有优化程序。这些多级方法包括并行子空间优化(CSSO,Park和Lee在2001年提出;Renaud 和Gabriele在1994年提出;Sobieszczanski-Sobieski在1982年提出;Tappeta 在1998年提出)、双极集成系统合成(BLISS;Sobieszczanski-Sobieski在1998

关节型机器人主连杆_手臂_参数的优化设计

收稿日期: 1995211213 第一作者 男 58岁 教授 100083 北京 1996年 8月第22卷第4期 北京航空航天大学学报Jou rnal of Beijing U n iversity of A eronau tics and A stronau tics A ugu st 1996V o l 122 N o 14关节型机器人主连杆(手臂)参数的优化设计 孙杏初 (北京航空航天大学机电工程系) 摘 要 提出一种适用于工程设计的关节型机器人的主连杆(手臂) 几何参数的确定方法,建立了工作空间正逆问题的数学模型,并用优化技术,求得最小包容工作空间的主连杆几何参数,方法简便实用. 关键词 工业机器人;机构学;机构综合;几何参数;连杆 分类号 T P 242.2 1 问题的提出 机器人本体设计中,很重要的问题之一是确定连杆机构的参数,包括杆臂的长度及其转角范围等.根据机器人的结构分析,为实现机器人手臂端部在空间任意位姿,需要机构具有6个自由度,一般机构设计成两个连杆系统:前3个自由度构成的连杆称“主连杆”系统,又称“手臂”;其尺寸较大,用来实现手臂末端的空间位置;后3个自由度的杆臂尺寸较小,用来实现手臂末端的姿态,称为“次连杆”系统,又称“手腕”.按国家标准[1]机器人的工作空间是由“主连杆”的几何参数决定的. 1)研究对象与问题 本文所研究的对象为图1所示的典型关节型机器人机构,其相应的几何参数定义如图所 图1 关节型机器人主连杆机构

图2 问题的简化处理示.图中l 1、l 2、l 3分别为立柱、大臂、小臂的长度;Η2m in ~ Η2m ax 、Η3m in ~Η3m ax 分别为大、小臂的转角范围;Ηi 定义逆时针 旋转为正;Η2以y 轴为基准零位;Η3以垂直大臂的轴线为基 准零位. 本文研究的问题是如何根据给定的工作空间要求,最 优地确定上述主连杆的几何参数. 2)处理问题的思路 设所要求的工作空间为任意立方体,其大小与相对位 置如图2所示的(阴影线部分).经分析,可知满足立方体 b ×w ×h 的问题可简化为在纵平面内(ox z )满足b 1×h 的问 题.因为满足b 1×h 之后,只需利用立柱绕z 轴回转某相应 Η1角度,即可实现要求的工作空间b ×w ×h .立柱回转的最 小角度Η1应满足 Η1≥2arctg [(w 2) r ](1)因此,此后只需研究在纵平面内如何满足b 1×h 的平面工作空间(图1中E 1F 1G 1H 1)的最优连杆参数的问题了 .2 工作空间正问题的几何分析 设给定l 1、l 2、l 3、Η2m in 、Η2m ax 、Η3m in 、Η3m ax ,确定工作空间, 即确定手臂端点P 的各特征点坐标,便可确定工作空间.根据图1所示的机构,手臂端点的坐标可表示为一般形式: x =l 2sin Η2+l 3co s (Η2+Η3)y =l 2co s Η2-l 3sin (Η2+Η3 )(2) 所构成的工作空间A B CD 是由四段圆弧所构成:以“O ” 点为圆心的A B 与CD 圆弧;“E ”点为圆心的A D 圆弧以及“F ”点为圆心的B C 圆弧.对应的特征点有:A 、B 、C 、D 、E 、F .其中A 点对应Η2=Η2m in ,Η3=Η3m in ,代入方程组(2),得A 点坐标为 x A =l 2sin Η2m in +l 3co s (Η2m in +Η3m in ) y A =l 2co s Η2m in -l 3sin (Η2m in +Η3m in ) 同理可得B 、C 、D 、E 、F 等点的坐标为: x B =l 2sin Η2m ax +l 3co s (Η2m ax +Η3m in ) y B =l 2co s Η2m ax -l 3sin (Η2m ax +Η3m in ) x C =l 2sin Η2m ax +l 3co s (Η2m ax +Η3m ax ) y C =l 2co s Η2m ax -l 3sin (Η2m ax +Η3m ax ) x D =l 2sin Η2m in +l 3co s (Η2m in +Η3m ax ) y D =l 2co s Η2m in - l 3sin (Η2m in +Η3m ax )x E =l 2sin Η2m in y E =l 2co s Η2m in x F =l 2sin Η2m ax y F =l 2co s Η2m ax 求出各特征点之后,很容易求出各段圆弧的半径值,如A B 圆弧的半径为 015北京航空航天大学学报第22卷

机械结构优化设计分析

机械结构优化设计分析 摘要:机械结构优化设计具有综合性和专业性的特点,在设计过程中涉及方面很多,对设计人员的综合素质很高。因此,本文就结合实际情况,如何做好机械结构优化设计展开论述。 关键词:机械结构;设计流程;优化设计 一、机械设计的流程 机械的设计是开发和研究重要组成部分。设计人员在设计过程中,要提高自身设计水平,加快技术创新,为社会发展设计出质量优良的生产和机械。第一,要确立良好的设计目标。机械设计与开发要满足实际需要,能够发挥其自身的功能。第二,要严格遵守设计标准和要求,对具体的内容进行提炼,从而有效的设计任务和目标。第三,在承接设计任务书以后,要坚持合适的原则,明确设计责任;还要组织设计方案,对设计方案进行讨论,重视设计样品机械的关键环节和重要步骤,从而形成最初的设计。第四,要组建优秀的项目团队,对方案进行深入讨论,不断优化设计方案,控制方案变更。第五,要组织专家对设计图纸进行严格的审核,保证设计质量,在图纸完成交付以后,要针对存在的问题做好记录,为以后设计提供借鉴和帮助。第六,在机械创建完成后,要做好机械的验收,设计师要对机械进行检查,保证在发现问题能够及时有效的解决,只有在质量验收合格后,才能进行最后的交付使用。第七,在进行机械安装过程中,设计人员要在安装现场进行全程的监督和控制,做好技术指导。第八,为了保证机电和安装质量,要进行生产鉴定和调试,根据机械使用的效果进行合理的评价和鉴定。在以上设计流程中,缺一不可,需要设计人员不断提高自身设计水平,采用先进的设计理念,保证设计质量。 二、机械设计过程中需要注意的问题 为了保证机械设计质量,设计人员要不断总结经验教训,根据实际情况,树立质量第一的理念,实现机械结构的优化设计。 (一)在机械制造阶段,设计水平直接影响到预期的效果,甚至导致机械不能正常投入使用。因此,在设计过程中,设计人员要与制造人员进行协调,多深入生产现场,认真听取制造工人和设计人员的意见、建议,不断优化机械结构,提高机械的精密度。

基手ANSYS的U型管换热器的结构优化设计

基手ANSYS的U型管换热器的结构优化设计 晨怡热管 (新疆大学化学化工学院,新疆鸟鲁木齐830008) 侯静张亚新韩维 涛 2010-3-4 1:28:12 摘要:介绍了基于ANSYS的蛄构优化设计的基本原理和方法,用ANSYS软件对u型管换热器的管板厚度进行了优化设计,得出了管板参数的最佳组合,为换热器的设计提供了理论依据。 关键词:ANSYSl优化设计;目标函数;管板 中圈分类号:TQ051.5文献标志码}A文章编号:1005—2895(2006)010026—04 0引言 结构优化是结构设计的一个重要方面。在结构优化中,有限元方法是重要方法之一。2O世纪6O年代以来,随着计算机技术的蓬勃发展,有限元方法迅速发展成为一种新的高效的数值计算方法,并很快广泛应用到弹塑性力学、断裂力学、流体力学、热传导等领域。ANSYS 系统是第一个通过ISO9001质量认证的大型工程分析类有限元软件,在机械、土木和航空航天等领域有着广泛和良好的应用基础[1]。 换热器管板是换热器中的重要部件。根据管板结构的特点,它直接影响着管箱的承压能力。它的变形情况及应力分析对整个管箱结构的应力分析起着决定性的作用。本文采用ANSYS有限元分析软件,建立换热器管板的有限元模型,加载求解,利用其优化功能模块进行优化处理,给出了管板参数的最优组合,为换热器的设计提供了有价值的理论依据。 1优化设计基本原理 优化问题的基本原理是通过优化模型的建立,运用各种优化方法,通过满足设计要求的条件下迭代计算,求得目标函数的极值,得到最优设计方案。在一个设计优化工作之前,用3种变量来阐明设计问题,优化问题的数学模型可表示为[2]。 2ANSYS优化设计概述 2.1优化变量 优化变量是优化设计过程中的基本变量,包括设计变量(DV)、状态变量(SV)和目标函数设计变量(DV)是优化设计中的自变量,通常包括几何尺寸(如截面面积、宽度、高度等)、材质、载荷位置、约束位置等。优化结果的取得就是通过改变设计变量的数值来实现的。每个设计变量都有上下限,它定义了设计变量的变化范围。 状态变量(SV)是指约束设计的数值,通常包括内力、弯矩、应力、位移等。它们一般

相关文档
最新文档