使用OpenGL编程实现Bresenham直线扫描转换算法

使用OpenGL编程实现Bresenham直线扫描转换算法
使用OpenGL编程实现Bresenham直线扫描转换算法

实验要求:

学习Visual C++ 6.0 集成编程环境的使用,OpenGL编程环境的设置,OpenGL语法及基本函数的使用等基础知识,并编程实现Bresenham直线扫描转换算法,得出相应的输出图形。

源程序:

#include

void k1() //0

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0,0.0,1.0);

glBegin(GL_POINTS);

GLint x1=0,y1=0,x2=400,y2=200;

GLint x=x1,y=y1;

GLint dx=x2-x1,dy=y2-y1,dT=2*(dy-dx),dS=2*dy;

GLint d=2*dy-dx;

glV ertex2i(x,y);

while(x

{

x++;

if(d<0)

d=d+dS;

else

{

y++;

d=d+dT;

}

glV ertex2i(x,y);

}

glEnd();

glFlush();

}

void k2() //k>1

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0,1.0,0.0);

glBegin(GL_POINTS);

GLint x1=0,y1=0,x2=200,y2=400;

GLint x=x1,y=y1;

GLint dx=x2-x1,dy=y2-y1,dT=2*(dx-dy),dS=2*dx;

GLint d=2*dx-dy;

glV ertex2i(x,y);

while(y

{

y++;

if(d<0)

d=d+dS;

else

{

x++;

d=d+dT;

}

glV ertex2i(x,y);

}

glEnd();

glFlush();

}

void k3() //-1

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0.0,0.0);

glBegin(GL_POINTS);

GLint x1=0,y1=400,x2=400,y2=200;

GLint x=x1,y=y1;

GLint dx=x2-x1,dy=y2-y1,dT=2*dy,dS=2*dy+2*dx;

GLint d=2*dy-dx;

glV ertex2i(x,y);

while(x

{

x++;

if(d<0)

{

y--;

d=d+dS;

}

else

d=d+dT;

glV ertex2i(x,y);

}

glEnd();

glFlush();

}

void k4() //k<-1

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0.0,1.0);

glBegin(GL_POINTS);

GLint x1=0,y1=400,x2=200,y2=0;

GLint x=x1,y=y1;

GLint dx=x2-x1,dy=y2-y1,dT=-2*dy-2*dx,dS=-2*dx;

GLint d=-dy-2*dx;

glV ertex2i(x,y);

while(y>y2)

{

y--;

if(d>0)

d=d+dS;

else

{

x++;

d=d+dT;

}

glV ertex2i(x,y);

}

glEnd();

glFlush();

}

void main(int argc,char ** argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(400,400);

glutInitWindowPosition(200,100);

glutCreateWindow("0

glClearColor(1.0,1.0,0.0,0.0);

gluOrtho2D(0.0,400.0,0.0,400.0);

glutDisplayFunc(k1);

glutCreateWindow("1

glClearColor(1.0,0.0,1.0,0.0);

gluOrtho2D(0.0,400.0,0.0,400.0);

glutDisplayFunc(k2);

glutCreateWindow("-1

glClearColor(0.0,1.0,1.0,0.0);

gluOrtho2D(0.0,400.0,0.0,400.0);

glutDisplayFunc(k3);

glutCreateWindow("K<-1(k=-2)");

glClearColor(0.0,1.0,0.0,0.0);

gluOrtho2D(0.0,400.0,0.0,400.0);

glutDisplayFunc(k4);

glutMainLoop();

}

《算法的程序实现》教案

第3课算法的程序实现 一、教学设计思想: 本节课是程序设计上机的第一节课,本节课的目的是让学生了解程序设计的上机规范,掌握顺序结构程序设计的基本步骤,因此,本节课采取先介绍程序设计软件界面,然后再选择用一道最简单的加法程序来让学生达到以上的目的,之所以选择这个加法程序,第一是程序简单,学生可以撇开复杂问题,直接了解顺序结构程序设计的过程和步骤,第二,可以用借这个例题来更直观地掌握val()函数的用法。 本节课设计讲解,演示,加上学生练习相结合的方式进行,以期让学生掌握顺序结构程序设计的基本方法。 二、教学目标: (一)知识与技能 (1)初步掌握程序的顺序结构,了解程序设计的基本思想和方法。 (2)学会使用输出语句、赋值语句、输入语句来实现顺序结构 (3)初步体验并掌握程序调试和运行的方法,初步掌握顺序结构程序的设计方法 (二)过程与方法 (1)通过比较、观察、实践、分析程序,了解用VB编写程序的要点。 (2)通过模仿,讨论等方式体验设计顺序结构程序的过程。 (三)情感与价值观 体验程序解决实际问题的思想方法,激发学生学习程序设计的求知欲,形成积极主动地学习和使用信息技术、参与信息活动的态度,培养学生的创新、探索精神、与人共事的合作意识和实事求是的科学态度。 三、教学重点: 能根据程序顺序结构的执行流程、编写程序解决简单的问题。 四、教学难点: 根据问题要求写出正确的程序。 五、学情分析:

学生对程序的认识和编程的知识相当少,在学习的过程中,要注重学生编程思想的培养。要通过简单的例子让学生模仿、体验,提高学生学习的兴趣,开始老师和学生一起探讨学习降低难度,先从模仿入手,后让学生尝试编写。对于基本的一些控件,赋值语句、基本输入输出语句让学生感受功能,通过今后的多次学生让学生掌握用法。 六、教学过程: 1.作业订正 1.请画流程图描述解决问题的算法: (1) 输入一个矩形的长和宽的值,求该矩形的面积(P.9 例1)。 (2) 如图所示:大圆半径为R1,小圆半径为R2。 请计算出阴影部分的面积S ,并输出。 2.请根据常量、变量和表达式的概念,写出下列流程图的输出结果: (1)12 (2)8 6 Input x Input y S=x*y Print S Input R1 Input R2 S=3.14*R1*R1-3.14*R2*R2 Print S

公历和农历转换算法详解

公历和农历转换算法详解 //C51写的公历转农历和星期 #define uchar unsigned char #define uint unsigned int #include /* 公历年对应的农历数据,每年三字节, 格式第一字节BIT7-4 位表示闰月月份,值为0 为无闰月,BIT3-0 对应农历第1-4 月的大小第二字节BIT7-0 对应农历第5-12 月大小,第三字节BIT7 表示农历第13 个月大小 月份对应的位为1 表示本农历月大(30 天),为0 表示小(29 天) 第三字节BIT6-5 表示春节的公历月份,BIT4-0 表示春节的公历日期 */ code uchar year_code[597] = { 0x04,0xAe,0x53, //1901 0 0x0A,0x57,0x48, //1902 3 0x55,0x26,0xBd, //1903 6 0x0d,0x26,0x50, //1904 9 0x0d,0x95,0x44, //1905 12 0x46,0xAA,0xB9, //1906 15 0x05,0x6A,0x4d, //1907 18 0x09,0xAd,0x42, //1908 21 0x24,0xAe,0xB6, //1909 0x04,0xAe,0x4A, //1910 0x6A,0x4d,0xBe, //1911 0x0A,0x4d,0x52, //1912 0x0d,0x25,0x46, //1913 0x5d,0x52,0xBA, //1914 0x0B,0x54,0x4e, //1915 0x0d,0x6A,0x43, //1916 0x29,0x6d,0x37, //1917 0x09,0x5B,0x4B, //1918 0x74,0x9B,0xC1, //1919 0x04,0x97,0x54, //1920 0x0A,0x4B,0x48, //1921 0x5B,0x25,0xBC, //1922 0x06,0xA5,0x50, //1923 0x06,0xd4,0x45, //1924 0x4A,0xdA,0xB8, //1925 0x02,0xB6,0x4d, //1926 0x09,0x57,0x42, //1927 0x24,0x97,0xB7, //1928

MHDD使用方法以及图文教程

MHDD使用方法以及图文教程(附带MHDD4.6光盘版和DOS版下载) MHDD软件简介 MHDD 是一款由俄罗斯人所开发的免费硬盘实体扫描维护程序,比起一般的硬盘表层扫描,MHDD 有相当令人激赏的扫描速度,让使用者不再需要花费数个小时来除错,只需几十分钟,一颗 80G 大小的硬盘就可以扫瞄完成,且 MHDD 还能够帮使用者修复坏轨,让使用者能够继续延续该硬盘的生命余光。此外, MHDD 还能够对硬盘进行低阶清除的动作,让想要卖掉硬盘的你不必担心硬盘中的数据被接手的买家回复盗用的困扰喔!官方所提供的 MHDD 可分为磁盘版与光盘版两种,如果使用者需要光盘版的话,要用刻录机烧录成光盘后使用。 简洁教程:(MHDD详细图文教程地址 https://www.360docs.net/doc/1414541018.html,/thread-1161-1-1.html) 1、进入MHDD后,按shift+F3扫描端口上的硬盘,制作的这个光盘版启动后自动扫描硬盘; 2、选择要检测硬盘的对应序号并回车; 3、按一下F4进入扫描设置,再按一下F4开始扫描。默认的只是扫描不修复. 4、扫描完毕之后,在/MHDD/LOG下有个MHDD.LOG,是扫描生成的日志文件。在光盘里,已经集成https://www.360docs.net/doc/1414541018.html,在/MHDD目录里面,可以输入EDIT打开文本编辑器,然后定位到/MHDD/LOG/MHDD.LOG,查看扫描结果,并采取下一步措施; 5、如果在按下F4没有反应的时候,可以从新光盘启动,运行一次/MHDD目录下的FBDISK,按ESC退出返回到DOS再输入MHDD,启动MHDD 4.6,这时候MHDD就能正常扫描了,这应该是软件的一个BUG; 6、在MHDD里输入man en all可以查看详细的帮助,输入help只是简短的帮助。《MHDD》工具使用详解与命令解释 1、MHDD是俄罗斯Maysoft公司出品的专业硬盘工具软件,具有很多其他硬盘工具软件所无法比拟的强大功能。 2、MHDD无论以CHS还是以LBA模式,都可以访问到128G的超大容量硬盘(可访问的扇区范围从512到137438953472),即使你用的是286电脑,无需BIOS支持,也无需任何中断支持; 3、MHDD最好在纯DOS环境下运行;中国硬盘基地网 https://www.360docs.net/doc/1414541018.html, 4、MHDD可以不依赖于主板BIOS直接访问IDE口,但要注意不要使用原装Intel品牌主板; 5、不要在要检测的硬盘中运行MHDD;中国硬盘基地网 https://www.360docs.net/doc/1414541018.html, 6、MDD在运行时需要记录数据,因此不能在被写保护了的存储设备中运行(比如写保护的软盘、光盘等); MHDD命令详解 EXIT(热键Alt+X):退出到DOS。 ID:硬盘检测,包括硬盘容量、磁头数、扇区数、SN序列号、Firmware固件版本号、LBA 数值、支持的DMA级别、是否支持HPA、是否支持AAM、SMART开关状态、安全模式级别及

折半查找算法及程序实现教案

折半查找算法及程序实现 一、教材分析 教学重点:以图示法方式,演示折半查找算法的基本思想。 教学难点:由折半查找算法的思想到程序代码编写的转换,尤其是其中关键性语句的编写是教学中的难点。 二、学情分析 学生应该已经掌握程序设计的基本思想,掌握赋值语句、选择语句、循环语句的基本用法和VB基本操作,这节课学生可能会遇到的最大问题是:如何归纳总结对分查找解决不同情况问题的一般规律,鉴于此,在教学中要积极引导学生采取分解动作、比较迁移等学习策略。 三、教学目标 知识与技能:理解对分查找的概念和特点,通过分步解析获取对分查找的解题结构,初步掌握对分查找算法的程序实现。 过程与方法:通过分析多种不同的可能情况,逐步归纳对分查找的基本思想和方法,确定解题步骤。 情感态度与价值观:通过实践体验科学解题的重要性,增强效率意识和全局观念,感受对分查找算法的魅力,养成始终坚持、不断积累才能获得成功的意志品质。 四、教学策略与手段 1、教学线索:游戏引领---提出对分查找原理--- 解析对分查找的算法特征---实践解决问题。 2、学习线索:分解问题---归纳问题---实践提升,在三个阶段的不断推进中明确对分查找算法,总结规律。 五、教学过程

1、新课导入 (1)热身:游戏(2分钟) 找同学上来找一本上千页电话册里面的一个名字。(课程导入我写的不是很详细,自己设计哦) (2)教师引导:所以我不希望只有他一个人体验这种方便,我们教室里还有一大帮人,其实这种什么不止用于查找电话铺,还可以运用到实际生活中,教室里有这么多人,坦白说,按学校的老方法一个人一个人的数,对所有老师来说都及其费力,那我们想想,是不是数数2368,这样好点对吗?。不要小看这种想法,他其实是非常棒的,他能把解决问题的时间缩短一半,因此我们提出了这种算法 2、新课: 首先我们一起来看一看折半查询算法中的“折半”的含义。 师:何为折半呢? 生:减半;打一半的折扣。 例如,我手里拿着一根绳子,现在我们来进行折半试验,首先拿住绳子的两个端点, 然后从中点的位置进行对折,这样绳子就缩短为原来长度一半,然后将一半的绳子继续执行与刚才相同的操作,使得绳子的长度逐渐的缩短,直到绳子长度短得不能再进行折半了。 师:那什么时候就不能再折半了呢? 生:即绳子的两个端点合二为一为止。 折半查找算法的思想与绳子折半的过程基本相同。下面我们先通过图示来看看折半查找算法究竟是什么? 教学步骤二:分解对分查找算法(5分钟)

案例2-直线中点Bresenham算法

课程实验报告

步骤 为了规范颜色的处事,定义了CRGB类,重载了“+”,“-”、“*”、“\”、“+=”、“-=”、“*=”、“/=”运算符。成员函数Normalize()将颜色分量red,green,blue规范到[0,1]闭区间内。 RGB.h #pragma once class CRGB { public: CRGB(); CRGB(double, double, double); ~CRGB(); friend CRGB operator + (const CRGB&, const CRGB&); friend CRGB operator - (const CRGB&, const CRGB&); friend CRGB operator * (const CRGB&, const CRGB&); friend CRGB operator * (const CRGB&, double); friend CRGB operator * (double, const CRGB&); friend CRGB operator / (const CRGB&, double); friend CRGB operator += (const CRGB&, const CRGB&); friend CRGB operator -= (const CRGB&, const CRGB&); friend CRGB operator *= (const CRGB&, const CRGB&); friend CRGB operator /= (const CRGB&, double); void Normalize(); public: double red; double green; double blue; }; RGB.cpp #include"stdafx.h" #include"RGB.h" CRGB::CRGB() { red = 1.0; green = 1.0; blue = 1.0;

算法到程序的转换

算法到程序的转换 用伪代码描述的算法是不能直接在机器上执行的,从算法的伪代码描述到算法的实现,所必须做的事情通常包括如下几个方面。 一常量、结构体、扩充数据类型的说明 比如# define TRUE 1 二添加库函数说明语句 比如# include 三局部变量的添加 比如int i,min; 四语句的转换 将类C中一些不符合C/C++语言的语法,如数据交换及一些为描述算法方便而扩充的其他语句转换成符合语法的语句。 比如a[j] a[j+1]; 转换为: x=a[j]; a[j]=a[j+1]; a[j+1]=x; 五辅助过程或者函数的添加 算法描述只涉及问题的求解部分,通常只对应一个或者多个函数或者过程,而不是完整的可运行的程序。所以除了上述4步之外还需要添加一些数据输入输出及调用函数等。 由此可见,算法描述和算法实现是有一定距离的,因为本课程的关注点主要在算法的描述上,而描述是看不到运行结果的,所以同学们容易感到迷茫。这个问题,我们可以通过验证性实践来强化认识。 下面是验证性实践的步骤: 1 预备知识的学习 验证性实验的目的是验证教材中的数据结构及其应用的算法,实验前有必要了解实验相关的背景,即相关知识点,明确本次实验的内容。 2 源程序阅读和分析 实验前,需要弄清楚下列问题。即: (1)程序结构和程序功能; (2)输入数据有什么?格式是什么? (3)输出是什么?输出数据的意义是什么? (4)设计验证实例为运行程序做准备。 3 调试和测试源程序 (1)编写源程序 (2)编译链接程序 (3)用设计好的实例验证程序 (4)对程序结果进行分析,通过分析运行结果和输入的合理性,理解算法思想与实现,判断算法逻辑上的正误。 4 补充和改进源程序 第一次实验的内容: 单链表验证程序结构。在主程序中实现菜单的选择,所选择的菜单项目包括: (1)创建链表; (2)在第i个位置插入元素;

使用OpenGL编程实现Bresenham直线扫描转换算法

实验要求: 学习Visual C++ 6.0 集成编程环境的使用,OpenGL编程环境的设置,OpenGL语法及基本函数的使用等基础知识,并编程实现Bresenham直线扫描转换算法,得出相应的输出图形。 源程序: #include void k1() //0

glFlush(); } void k2() //k>1 { glClear(GL_COLOR_BUFFER_BIT); glColor3f(0.0,1.0,0.0); glBegin(GL_POINTS); GLint x1=0,y1=0,x2=200,y2=400; GLint x=x1,y=y1; GLint dx=x2-x1,dy=y2-y1,dT=2*(dx-dy),dS=2*dx; GLint d=2*dx-dy; glV ertex2i(x,y); while(y

GHOST使用教程(图解

GHOST使用教程(图解)人人都可“拥有”4GHz的CPU **** 本内容跟帖回复才可浏览***** 河北的刘宗元朋友打电话告诉董师傅,他在查看朋友电脑的系统属性时,发现系统属性里显示这台电脑采用的是Intel的4GHz的P4 CPU(图1)。他很是好奇,要知道去年因4GHz P4 CPU难产,Intel的首席执行官贝瑞特曾当众下跪祈求原谅。 董师傅自然也不相信Intel真的出了4GHz的P4 CPU,不过对这个显示结果还是非常感兴趣,经过一番摸索,发现只要略施小计,我们每一个人都可以“拥有”4GHz的P4 CPU。你也想有这样一颗“心”?别着急,且听师傅慢慢道来。 都是sysdm.cpl文件“惹的祸” 知道了问题的关键,下面要做的就是修改信息了。 首先将C:WindowsSystem32文件夹下的sysdm.cpl文件复制一份出来,然后用资源编辑工具EXESCOPE打开复制出的sysdm.cpl文件,展开“资源→对话框→101”分支。在右侧一共有9个“Link Window”。除了第4、5个外,把另外七个的“可见”属性去掉(即去掉右侧“可见”前的钩),目的是在检测系统属性时只显示第4、5个的内容。 选中第4个“Link window”,在“标题”栏输入文字“Intel(R) Pentium4(R)处理器”;在第5个“Link window”的“标题”栏中输入“4 GHz,2048 MB 的内存”等信息(连内存信息也一并改了。数字可随意输入,但不可过长,否则显示效果较别扭);再将第4个“Link window”的“Y”坐标值改为“149”,将第5个的调整为“170”,以占据原来第1、2个“Link Window”的位置。 修改好后保存该文件,接下来只要用该文件替换原始文件即可。不过,在替换过程中,董师傅又遇到了一个新问题: 文件保护功能会“作祟” 董师傅使用的是Windows XP+SP2系统,要把修改后的sysdm.cpl文件复制到C:WindowsSystem32中替换原文件有些麻烦——SP2强大的文件保护功能会自动还原原始文件。 师傅我并不想禁用文件保护功能,所以借助文件替换工具Replacer解决了这个问题。 将下载回来的文件解压到任一文件夹,双击“replace.cmd”出现命令提示符窗口,将 C:WindowsSystem32sysdm.cpl文件拖到其中,回车;再将修改过的sysdm.cpl文件拖入其中并回车,输入“Y”后按回车,这样就能替换掉系统文件了(在弹出的Windows文件保护时请点“取消”)。 至此,董师傅所想要的4GHz的P4 CPU终于“出现”!心动了吧?那就赶快动手吧。 以上软件下面有得下载 资源编辑工具EXESCOPE 文件替换工具Replacer 一、什么是Ghost? Ghost(幽灵)软件是美国赛门铁克公司推出的一款出色的硬盘备份还原工具,可以实现FAT16、FAT32、NTFS、OS2等多种硬盘分区格式的分区及硬盘的备份还原。俗称克隆软件。 1、特点:既然称之为克隆软件,说明其Ghost的备份还原是以硬盘的扇区为单位进行的,也就是说可以将一个硬盘上的物理信息完整复制,而不仅仅是数据的简单复制;克隆人只能克隆躯体,但这个Ghost却能克隆系统中所有的东东,包

Bresenham算法

Course Page
Page 1 of 6
课程首页 > 第二章 二维图形的生成 > 2.1 直线的生成 > 2.1.2 生成直线的Bresenham算法
全部隐藏
2.1.2 生成直线的Bresenham算法
从上面介绍的DDA算法可以看到,由于在循环中涉及实型数据的加减运算,因此直线的生成速度较慢。 在生成直线的算法中,Bresenham算法是最有效的算法之一。Bresenham算法是一种基于误差判别式来生成直线的方法。 一、直线Bresenham算法描述: 它也是采用递推步进的办法,令每次最大变化方向的坐标步进一个象素,同时另一个方向的坐标依据误差判别式的符号来决定是否也要步进一 个象素。 我们首先讨论m=△ y/△x,当0≤m≤1且x1有两种Bresenham算法思想,它们各自从不同角度介绍了Bresenham算法思想,得出的误差判别式都是一样的。 二、直线Bresenham算法思想之一: 由于显示直线的象素点只能取整数值坐标,可以假设直线上第i个象素点坐标为(xi,yi),它是直线上点(xi,yi)的最佳近似,并且xi=xi(假设 m<1),如下图所示。那么,直线上下一个象素点的可能位置是(xi+1,yi)或(xi+1,yi+1)。
由图中可以知道,在x=xi+1处,直线上点的y值是y=m(xi+1)+b,该点离象素点(xi+1,yi)和象素点(xi+1,yi+1)的距离分别是d1和d2:
d1=y-yi=m(xi+1)+b-yi d2=(yi+1)-y=(yi+1)-m(xi+1)-b 这两个距离差是 d1-d2=2m(xi+1)-2yi+2b-1
(2-8) (2-9)
(2-10)
我们来分析公式(2-10): (1)当此值为正时,d1>d2,说明直线上理论点离(xi+1,yi+1)象素较近,下一个象素点应取(xi+1,yi+1)。 (2)当此值为负时,d1mhtml:file://C:\Documents and Settings\Administrator\桌面\Course Page.mht
2011-7-12

sniffer使用及图解教程

sniffer使用及图解 注:sniffer使用及图解sniffer pro 汉化注册版下载 黑白影院高清免费在线电影聚集网无聚集无生活,聚集网络经典资源下载 sniffer软件的安装还是比较简单的,我们只需要按照常规安装方法进行即可。需要说明的是: 在选择sniffer pro的安装目录时,默认是安装在c:\program files\nai\snifferNT目录中,我们可以通过旁边的Browse按钮修改路径,不过为了更好的使用还是建议各位用默认路径进行安装。 在注册用户时,随便输入注册信息即可,不过EMAIL一定要符合规范,需要带“@”。(如图1) 图1 点击放大 注册诸多数据后我们就来到设置网络连接状况了,一般对于企业用户只要不是通过“代理服务器”上网的都可以选择第一项——direct connection to the internet。(如图2) 图2 接下来才是真正的复制sniffer pro必需文件到本地硬盘,完成所有操作后出现setup complete提示,我们点finish按钮完成安装工作。 由于我们在使用sniffer pro时需要将网卡的监听模式切换为混杂,所以不重新启动计算机是无法实现切换功能的,因此在安装的最后,软件会提示重新启动计算机,我们按照提示操作即可。(如图3) 重新启动计算机后我们可以通过sniffer pro来监测网络中的数据包。我们通过“开始->所有程序->sniffer pro->sniffer”来启动该程序。 第一步:默认情况下sniffer pro会自动选择你的网卡进行监听,不过如果不能自动选择或者本地计算机有多个网卡的话,就需要我们手工指定网卡了。方法是通过软件的file菜单下的select settings来完成。 第二步:在settings窗口中我们选择准备监听的那块网卡,记得要把右下角的“LOG ON”前打上对勾才能生效,最后点“确定”按钮即可。(如图4) 图4 第三步:选择完毕后我们就进入了网卡监听模式,这种模式下将监视本机网卡流量和错误数据包的情况。首先我们能看到的是三个类似汽车仪表的图象,从左到右依次为“Utiliz ation%网络使用率”,“Packets/s 数据包传输率”,“Error/s错误数据情况”。其中红色区域是警戒区域,如果发现有指针到了红色区域我们就该引起一定的重视了,说明网络线路不好或者网络使用压力负荷太大。一般我们浏览网页的情况和我图11中显示的类似,使用率不高,传输情况也是9到30个数据包每秒,错误数基本没有。(如图5) 图5

计算机图形学显示变换算法具体程序实现

计算机图形学显示变换算法具体程序实现

数学与软件科学学院实验报告 学期:___2010 至_2011 第__一__ 学期 2010年12月21日课程名称:____计算机图形学 _____ 专业:__信息与计算科学_ 2007级_5_班实验编号: 07 实验项目_____显示变换__ 指导教师__庞朝阳_ 姓名:学号: 20070605 __ 实验成绩:_____ 实验目的: (1) 了解掌握显示变换的相关知识,知道什么是平行投影和透视投影; 实验内容: (1) 知道显示变换是什么; (2) 掌握平行投影变换; (3) 掌握透视投影变换; (4) 编写并执行简单的Prolog程序,并熟悉测试或调试的方法。 实验步骤: (1)显示变换 三维空间中的物体要在二维的屏幕显示出来,必须通过投影的方式把三维物体转换成二维的平面图形。投影的方式有平行投影,透视投影。 平行投影变换 (2)平行投影变换 平行投影可根据投影方向与投影面的夹角分为:正投影和斜投影。当投影方向与投影面垂直时,为正投影;否则为斜投影。 A.正投影 1.假设投影平面垂直于Z轴,且位于Z=Z0外,则在视坐标系中任意一点(X,Y,Z)的投影是过该点的投影线与投影平面的交点,如下图: Z 则空间点的坐标与投影坐标间关系为: x`=x , y`=y , z`=z

即 ` ` `1 x y z = 1000010000000001 Z . 1 x y z 2.若投影面与XY 平面重合,即Z0=0,则有: ```1 x y z = 1000010000000001 . 1 x y z 即平面投影的变换矩阵为: Mz (平)= 1000010000000001 同理可得: 在y0z 平面的投影变换矩阵为: Mx(平) = 0000010000000001 在x0z 平面的投影变换矩阵为: My(平) = 10000 00000100 000

(完整版)电脑简单使用说明书初学电脑实用教程

认知电脑 电脑的主要设备包括: 显示器 显示器开关,用来打开显示器,通常显示器打开状态下为开关指示灯(位于显示器开关旁边或显示器后方)亮着,显示器关闭状态开关指示灯则为熄灭。 电 脑 显示器 音箱 键盘 鼠标 主机 输出设备 输入设备 显示器开关

主机开关 主机重启开关 电脑主机如上图示主要有2个开关按钮,主机开关(通常为个头较大位于上方的开关按钮)用于作为电脑主机的开关,主机重启按钮(通常为个头较小位于较下方的开关按钮)用于作为电脑出现死机故障无法正常关机或重启的开关按钮,通常也叫短路开关。 键盘 键盘,电脑的重要输入设备之一,用于信息和操作录入的重要输入设备。

鼠标也作为电脑的重要输入设备,如上图所示,通常的鼠标主要有左键,滚动滑轮键, 右键这三个功能键组成。左右键的操作方式主要有:单击,双击,按住不放拖动鼠标等操作。 左键单击的作用:选中、连接、按钮的按入(像我们通常按电视遥控器按钮一样,打开了按钮显示的对应功能)。 左键双击的作用:打开windows 桌面的功能图标对应的功能。 注:通常2次敲击左键的间隔要尽可能小点,要快,否则电脑只认为你是做了2 次左键单击事件(只是对图标进行了2次选中操作),而不认为你是做1次左键双击事件,就不能达到你想要的打开这个功能的操作。如果出现上述的点击不够快的情况,只需重复回一次正确的双击操作就可以打开对应你所点击的图标功能。 右键单击的作用:打开你所点击的地方的高级菜单(高级功能菜单中有对你所点击的地方的大部分功能操作选项,通常有打开、改名即重命名、复制、删除、属性设置等功能)。右键单击弹出高级菜单后,将光标移进高级功能菜单里面,可以看见光标所在的菜单选项背景色改变为蓝色,这时你只要左键单击一下就可以进入这项功能。 注:如果失误右键点击弹出了高级菜单,只需将光标移到空白的地方(没文字,没图标,没按钮的地方)左键单击一次就可以退出并关闭高级菜单。 右键双击的作用:通常不使用右键双击,所以在不做详细介绍。 滚动滑轮的作用:通常文档或网页显示器不能一屏显示完,所以通常有部分在下方,这时我们想看下面的内容,就要将下面的内容拖上来看,这时就要使用滚动滑轮了。 滚轮向下滑动:页面向上拖动可以看到下面的内容。 滚轮向上滑动:页面向下拖动可以看到上面的内容。 左键 右键 滚动滑轮

NFA转化为DFA的转换算法及实现

编译原理课程实践报告设计名称:NFA转化为DFA的转换算法及实现 二级学院:数学与计算机科学学院 专业:计算机科学与技术 班级:计科本091班 姓名: 学号: 指导老师: 日期: 2012年6月28日

摘要 有穷自动机分为确定的有穷自动机(DFA)和不确定的有穷自动机(NFA)两类。两者各有特点、作用于不同的地方,因此需要进行转化。NFA转化为DFA的理论在词法构造乃至整个编译器构造过程中起着至关重要的作用,同时它们被广泛应用于计算机科学的各个领域,它们与计算机其它学科之间也有着很密切的关系。 本文主要介绍基于编译器构造技术中的由NFA转化为DFA的算法设计和实现技术:主要包括NFA转化为与其等价的DFA所使用的子集构造算法以及把DFA化简的算法,实现词法分析,最后使用Visual C++语言加以实现。 NFA转化为与其等价的DFA需分两步进行:1、构造NFA的状态的子集的算法; 2、计算ε-closure。完成这些子模块的设计后,再通过某一中间模块的总控程序对其调用,最后再由主程序总调用,也就实现了NFA转化为其等价的DFA,接下来就是以分割法的思想为指导实现DFA的化简,最后并以实例加以说明。 关键词:有穷自动机;NFA ;DFA;转化;化简

目录 1 前言 (3) 1.1选题的依据和必要性 (3) 1.2课题意义 (3) 2 NFA转化为DFA的算法及实现 (4) 2.1基本定义 (4) 2.1.2 DFA的概念 (5) 2.1.3 NFA与DFA的矩阵表示 (5) 2.1.4 NFA向DFA的转换的思路 (6) 3 DFA的化简 (7) 3.1化简的理论基础 (7) 3.2化简的基本思想 (7) 3.3化简的代码实现 (8) 4 程序设计 (14) 4.1程序分析 (14) 4.1.1 流程图 (14) 4.1.2 子集构造法 (16) 4.2具体的转换过程 (18) 1 前言 1.1 选题的依据和必要性 由于很多计算机系统都配有多个高级语言的编译程序,对有些高级语言甚至配置了几个不同性质的编译程序。从功能上看,一个编译程序就是一个语言翻译程序。语言翻译程序把源语言书写的程序翻译成目标语言的等价程序。经过编译程序的设计可以大大提高学生的编程能力。 编译程序的工作过程通常是词法分析、语法分析、语义分析、代码生成、代码优化[1]。由于现在有很多词法分析程序工具都是基于有穷自动机的,而词法分析又是语法分析的基础[2],所以我们有必要进行有穷自动机的确定化和最小化。 1.2 课题意义 编译程序的这些过程的执行先后构成了编译程序的逻辑结构[3]。有穷自动机(也称有限自动机)作为一种识别装置,它能准确地识别正规集,即识别正规文

直线中点Bresenham算法

实验一基本图形生成算法 实验目的: 掌握中点Bresenham绘制直线的原理 设计中点Bresenham算法 编程实现中点Bresenham算法 实验描述: 使用中点Bresenham算法绘制斜率为0≤k≤1的直线。 算法设计: 直线中点Bresenham算法 1. 输入直线的起点坐标P0(x0,y0)和终点坐标P1(x1,y1)。 2. 定义直线当前点坐标x,y、定义中点偏差判别式d、定义直线斜率k、定义像素点颜色 rgb。 3. x=x0,y=y0,计算d=0.5-k,k=(y1-y0)/(x1-x0),rgb=RGB(0,0,255)。 4. 绘制点(x,y),判断d的符号。若d<0,则(x,y)更新为(x+1,y+1),d 更新为 d+1-k;否则(x,y)更新为(x+1,y),d更新为d-k。 5. 如果当前点x 小于x1,重复步骤4,否则结束。 源程序: 1)// TestView.h #include "InputDlg.h"//对话框头文件 #define ROUND(a) int(a+0.5) class CTestView : public CView { ….. } 2)//TestView.cpp void CTestView::OnMENUMbline()//菜单函数 { InputDlg dlg; if(dlg.DoModal()==IDOK) { AfxGetMainWnd()->SetWindowText(":直线中点Bresenham算法"); RedrawWindow(); Mbline(dlg.m_x0, dlg.m_y0, dlg.m_x1, dlg.m_y1); } } void CTestView::Mbline(double x0, double y0,double x1,double y1) //直线中点Bresenham函数 { CClientDC dc(this); COLORREF rgb=RGB(255,0,0); //定义直线颜色为红色 double x,y,d,k; x=x0;y=y0;k=(y1-y0)/(x1-x0);d=0.5-k;

直线和圆弧的生成算法

第3章直线和圆弧的生成算法 3.1直线图形的生成算法 数学上的直线是没有宽度、由无数个点构成的集合,显然,光栅显示器只能近地似显示直线。当我们对直线进行光栅化时,需要在显示器有限个像素中,确定最佳逼近该直线的一组像素,并且按扫描线顺序,对这些像素进行写 操作,这个过程称为用显示器绘制直线或直线的扫描转换。 由于在一个图形中,可能包含成千上万条直线,所以要求绘制算法应尽可能地快。本节我们介绍一个像素宽直线绘制的三个常用算法:数值微分法 (DDA、中点画线法和Bresenham算法。 3.1.1逐点比较法 3.1.2数值微分(DDA)法 设过端点P o(x o , y°)、R(X1 , y1)的直线段为L( P0 , R),则直线段L的斜率为—沁生要在显示器显示厶必须确定最佳逼近Z的掃素集合。我们从 L的起点P0的横坐标X o向L的终点R的横坐标X1步进,取步长=1(个像素),用L 的直线方程y=kx+b计算相应的y坐标,并取像素点(x,round( y))作为当前点的坐标。因为: y i+1 = kX i+1+b = k1X i +b+k x = y i+k x 所以,当x =1; y i+1 = y i+k。也就是说,当x每递增1,y递增k(即直线斜率)。根据这个原理,我们可以写出DDA( Digital Differential Analyzer) 画线算法程序。

DDA画线算法程序: void DDALi ne(int xO,i nt yO,i nt x1,i nt y1,i nt color) { int x ; float dx, dy, y, k ; dx = x1-x0 ;dy=y1-y0 ; k=dy/dx, ;y=yO; for (x=xO ;x< x1 ;x++) { drawpixel (x, i nt(y+0.5), color); y=y+k; } } 注意:我们这里用整型变量color表示像素的颜色和灰度。 举例:用DDA方法扫描转换连接两点P0( 0,0 )和P1( 5,2 )的直线段 图3.1.1直线段的扫描转换 注意:上述分析的算法仅适用于|k| <1的情形。在这种情况下,x每 增加1,y最多增加1。当|k| 1时,必须把x, y地位互换,y每增加1, x相应增加1/k。在这个算法中,y与k必须用浮点数表示,而且每一步都要对y 进行四舍五入后取整,这使得它不利于硬件实现。

GHOST使用教程(图解)

GHOST使用教程(图解) 收集者:小路发布于:https://www.360docs.net/doc/1414541018.html, 发布时间:2007- 5-6 12:50:48 发布人:小路 减小字体增大字体 一、什么是Ghost? Ghost(幽灵)软件是美国赛门铁克公司推出的一款出色的硬盘备份还原工具,可以实现FAT16、FAT32、NTFS、O S2等多种硬盘分区格式的分区及硬盘的备份还原。俗称克隆软件。 1、特点:既然称之为克隆软件,说明其Ghost的备份还原是以硬盘的扇区为单位进行的,也就是说可以将一个硬盘上的物理信息完整复制,而不仅仅是数据的简单复制;克隆人只能克隆躯体,但这个Ghost却能克隆系统中所有的东东,包括声音动画图像,连磁盘碎片都可以帮你复制,比克隆人还厉害哟:)。Ghost支持将分区或硬盘直接备份到一个扩展名为.gho的文件里(赛门铁克把这种文件称为镜像文件),也支持直接备份到另一个分区或硬盘里。 2、运行ghost:至今为止,ghost只支持Dos的运行环境,这不能说不是一种遗憾:(。我们通常把ghost文件复制到启动软盘(U盘)里,也可将其刻录进启动光盘,用启动盘进入Dos环境后,在提示符下输入ghost,回车即可

运行ghost,首先出现的是关于界面,如图 按任意键进入ghost操作界面,出现ghost菜单,主菜单共有4项,从下至上分别为Quit(退出)、Options(选项)、Peer to Peer(点对对,主要用于网络中)、Loca l(本地)。一般情况下我们只用到Local菜单项,其下有三个子项:Disk(硬盘备份与还原)、Partition(磁盘分区备份与还原)、Check(硬盘检测),前两项功能是我们用得最多的,下面的操作讲解就是围绕这两项展开的。 3、由于Ghost在备份还原是按扇区来进行复制,所以在操作时一定要小心,不要把目标盘(分区)弄错了,要不

图像处理和图像文件格式转换

实验二图像处理和图像文件格式转换图形图像作为一种视觉媒体,很久以前就已成为人类信息传输、思想表达的重要方式之一。计算机图形技术实际上是绘画技术与计算机技术相结合而形成的。在计算机出现以前,图像处理主要是依靠光学、照相、像片处理和视频信号处理等模拟的处理。随着多媒体计算机的产生与发展,数字图像代替了传统的模拟图像技术,形成了独立的“数字图像处理技术”。多媒体技术借助数字图像处理技术得到迅猛发展,同时又为数字图像处理技术的应用开拓了更为广阔的前景。 图像又有静态和动态之分,在此我们主要介绍静态图像处理。用于静态图像处理的软件有很多,常见的有Photoshop、PhotoStyler、PCPaintBrush、Corel Draw等等。其中Photoshop 以其直观的界面,全面的功能成为最流行的图像处理软件,是我们学习的首选软件。这里将以Photoshop5.5为例介绍Photoshop的使用。 Photoshop5.5的工作环境是: Windows95、Windos98或Windows NT PC486机型以上 16M以上内存 256色以上显示模式 扫描仪等 2.1实验目的和要求 1) 学会用选择工具等选取工具选取图像区域 2)了解蒙版、通道的功能及用法 3)学会运用图层选项制作立体效果 4)掌握制作艺术字的途径和方法 5)学会用滤镜制作特殊效果 6)了解如何存储图像并将其压缩为所需格式。 2.2预备知识 1.Photoshop5.5的窗口组成

图2.1 Photoshop5.5的窗口 Photoshop5.5的窗口由标题栏、菜单栏、工具箱、工作窗口、控制面板、状态栏等六部分组成,如图2.1所示。 工具箱中存放着各种编辑工具,使用方便。控制面板的主要作用是辅助工具栏,更改工具的设置。一些对图层、通道、历史纪录的操作也要在此完成。在菜单栏里的窗口选项中可以设置此栏中各项的显示与否,也可用鼠标拖动控制面板中的选项,按自己的习惯组合控制面板。状态栏则是用来显示当前图像的有关状态及一些简要说明和提示。 2.工具箱的使用 Photoshop的基本工具存放在工具箱中,一般置于Photoshop界面的左侧。当工具的图标右下角有一个小三角时,表示此工具图标中还隐藏了其他工具。用鼠标点中此图标不放,便可以打开隐藏的工具栏。点中隐藏的工具后,所选工具便会代替原先工具出现在工具栏里。当把鼠标停在某个工具上时,Photoshop会提示此工具的名称及快捷键。而在选定工具后可在右边的控制面板中的选项栏里修改工具的参数及设置(若屏幕上没有选项栏执行菜单【Window】\【Show Options】命令即可)。 工具的使用方法很灵活。这里先简单介绍几种重要工具的基本用法。 1)【选框】工具 【选框】工具是重要的选图工具,单击【选框】工具不放,会弹出如图所示的隐藏工具面板。选择工具共有上图所示五种工具,分别是【Rectangular Marquee Tool(M)】(矩形选框)工具,【Elliptical Marquee Tool(M)】(椭圆选框)工具,【Single Row Marquee Tool(M)】(单行选框)工具,【Single Column Marquee Tool(M)】(单列选框)工具,【Crop Tool(C)】(裁切)工具。【选框】工具用于在被编辑图像中选取一个工作区域。其中【Rectangular Marquee Tool(M)】(矩形选框)工具是用于选取一个任意矩形区域,【Elliptical Marquee Tool(M)】(椭圆选框)工具用于选取一个任意圆形或椭圆形区域,【Single Row Marquee Tool(M)】(单行选框)工具是用于选取图像中任一横行象素,【Single Column Marquee Tool(M)】(单列选框)工具用于选取图像中任一竖行象素,【Crop

bresenham画线算法详解

给定两个点起点P1(x1, y1), P2(x2, y2),如何画它们直连的直线呢,即是如何得到上图所示的蓝色的点。假设直线的斜率00,直线在第一象限,Bresenham算法的过程如下: 1.画起点(x1, y1). 2.准备画下一个点,X坐标加1,判断如果达到终点,则完成。否则找下一个点,由图可知要画的点要么为当前点的右邻接点,要么是当前点的右上邻接点。 2.1.如果线段ax+by+c=0与x=x1+1的交点y坐标大于(y+*y+1))/2则选右上那个点 2.2.否则选右下那个点。 3.画点 4.跳回第2步 5.结束 具体的算法如下,原理就是比较目标直线与x+1直线交点的纵坐标,哪个离交点近就去哪个void Bresenhamline(int x0, int y0, int x1, int y1, int color) { int x, y, dx, dy; float k, e; dx = x1 - x0; dy = y1 - y0; k = dy / dx; e = -0.5; x = x0; y = y0; for (x= x0;x < x1; x++) { drawpixel(x, y, color);//这个是画点子函数

e = e + k; if (e > 0) { y++; e = e - 1; } } } 上述Bresenham算法在计算直线斜率与误差项时用到小数与除法。可以改用整数以避免除法。等式两边同时乘以2*dx,得到2*e*dx = 2*e*dx + 2dy, 2*e*dx = 2*e*dx - 2*dx.由于算法中只用到误差项的符号,因此可作如下替换:2*e*dx.改进的Bresenham画线算法程序:将e统一乘以2*dx即变成了整数的Bresenhan算法了,^_^ void InterBresenhamline (int x0, int y0, int x1, int y1, int color) { int dx = x1 - x0; int dy = y1 - y0; int dx2 = dx << 1;//乘2 int dy2 = dy<< 1;//乘2 int e = -dx; int x = x0; int y = y0; for (x = x0; x < x1; x++) { drawpixel (x, y, color); e=e + dy2; if (e > 0) { y++; e = e - dx2; } } }

相关文档
最新文档