4、基于FPGA的步进电机细分驱动控制设计

4、基于FPGA的步进电机细分驱动控制设计
4、基于FPGA的步进电机细分驱动控制设计

南京工程学院

自动化学院

大作业(论文)

题目:基于FPGA的步进电机细分驱动

控制设计

专业:测控技术与仪器

班级:学号:

学生姓名:

任课教师:郭婧

成绩:

基于FPGA的步进电机细分驱动控制设计

一、基本要求:

在理解步进电机的工作原理以及细分原理的基础上,利用FPGA实现四相步进电机的8细分驱动控制。

二、评分标准:

1、设计方案介绍(共15分)

要求:详细叙述利用FPGA实现对四相步进电机进行8细分控制的设计方案。

评分标准:

13-15分:方案叙述详细,正确;

10-12分:方案叙述较详细,基本正确;

9分以下:酌情给分

0分:抄袭别人

2、VHDL设计部分(60分)

要求:给出详细的VHDL设计过程,提供详细的程序代码,如果设计中用到LPM模块,则给出生成LPM模块的每一步操作流程的截图,并加以文字描述。

评分标准:

54-60分:代码详细,截图完整,书写规范,

48-53分:代码较详细,截图较完整,书写较规范;

47以下:酌情给分

0分:抄袭别人

3、模拟调试部分(20分)

要求:给出详细的仿真过程,对软件编译、仿真分析、仿真波形进行截图。并给出8细分情况下的仿真测试结果,给出详细的实验结果分析。

评分标准:

18-20分:调试过程详细,正确,截图完整;

15-17分:调试过程较详细,基本正确,有截图;

14分以下:酌情给分

0分:抄袭别人

4、提高部分(5分)

要求:利用FPGA实验箱上的步进电机,实现细分控制。

评分标准:根据完成的程度给分。

0分:抄袭别人

参考:实验十八 FPGA步进电机细分驱动控制设计

示例程序和实验指导课件位置:\EDA_BOOK3_FOR_C35\chpt3\EXP18_MOTO\工程:step_a

一、实验目的

学习用FPGA实现步进电机的驱动和细分控制。

二、实验设备

PC机一台

GW48-PK4试验系统一台

连接线若干

三、实验内容

1、建立工程。完成以图18-1为原理图的工程设计,并保存工程名为step_a。

2、编译仿真。对以上工程进行编译,成功后进行方针测试。

3、引脚锁定。引脚锁定参考图18-2.

图18-1 步进电机PWM细分控制控制电路图

图18-2 引脚锁定图

4、下载测试

参考\EDA_BOOK3_FOR_C35\Chpt3\ALl.PPT\实验17.PPT

选择模式5,短路冒接clock0.根据第一章注释分别“38“和”42“或”“7”连接(见GW48主

系统标注)相接。CLK0接clock0,选择4Hz;CLK5接clock5,选择32768Hz;S接AA18(键7),控制步进电机细分旋转(1/8细分,2.25度/步),或不细分旋转(18度/步);U_D 接L19(键8),控制旋转方向。

5、用嵌入式逻辑分析仪观察细分控制/普通控制方式驱动信号的实时波形(图18-3、18-4)。

图18-3嵌入式逻辑分析仪测试波形:4相步进电机普通工作方式驱动波形

图18-4嵌入式逻辑分析仪测试波形:4相步进电机细分驱动工作方式驱动波形

五、实验报告

根据以上的实验内容写出实验报告,包括程序设计、软件编译、仿真分析、硬件测试和详细实验过程;给出程序分析报告、仿真波形图及其分析报告。

步进电机驱动器的主要细分作用

步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。 通过细分步进电机驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。 步进电机驱动器细分的主要作用是提高步进电机的精确率。 国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,这两者之间的本质是不同的: 一、 “平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。 二、 步电机系统解决方案

电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不 但不会引起电机力矩的下降,相反,力矩会有所增加。 驱动器细分后的主要优点为:完全消除了电机的低频振荡。低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果您的步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。提高了电机的输出转矩。尤其是对三相反应式电机,其力矩比不细分时提高约30-40% 。提高了电机的分辨率。由于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率‘是不言而喻的。 很多用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000个脉冲/转的时候,步进电机驱动器接受好几个脉冲,步进电机才走一步,这样并不能提高步进电机的精度。 步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是 减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术 步电机系统解决方案

4、基于FPGA的步进电机细分驱动控制设计

南京工程学院 自动化学院 大作业(论文) 题目:基于FPGA的步进电机细分驱动 控制设计 专业:测控技术与仪器 班级:学号: 学生姓名: 任课教师:郭婧 成绩:

基于FPGA的步进电机细分驱动控制设计 一、基本要求: 在理解步进电机的工作原理以及细分原理的基础上,利用FPGA实现四相步进电机的8细分驱动控制。 二、评分标准: 1、设计方案介绍(共15分) 要求:详细叙述利用FPGA实现对四相步进电机进行8细分控制的设计方案。 评分标准: 13-15分:方案叙述详细,正确; 10-12分:方案叙述较详细,基本正确; 9分以下:酌情给分 0分:抄袭别人 2、VHDL设计部分(60分) 要求:给出详细的VHDL设计过程,提供详细的程序代码,如果设计中用到LPM模块,则给出生成LPM模块的每一步操作流程的截图,并加以文字描述。 评分标准: 54-60分:代码详细,截图完整,书写规范, 48-53分:代码较详细,截图较完整,书写较规范; 47以下:酌情给分 0分:抄袭别人 3、模拟调试部分(20分) 要求:给出详细的仿真过程,对软件编译、仿真分析、仿真波形进行截图。并给出8细分情况下的仿真测试结果,给出详细的实验结果分析。 评分标准: 18-20分:调试过程详细,正确,截图完整; 15-17分:调试过程较详细,基本正确,有截图; 14分以下:酌情给分 0分:抄袭别人

4、提高部分(5分) 要求:利用FPGA实验箱上的步进电机,实现细分控制。 评分标准:根据完成的程度给分。 0分:抄袭别人

参考:实验十八 FPGA步进电机细分驱动控制设计 示例程序和实验指导课件位置:\EDA_BOOK3_FOR_C35\chpt3\EXP18_MOTO\工程:step_a 一、实验目的 学习用FPGA实现步进电机的驱动和细分控制。 二、实验设备 PC机一台 GW48-PK4试验系统一台 连接线若干 三、实验内容 1、建立工程。完成以图18-1为原理图的工程设计,并保存工程名为step_a。 2、编译仿真。对以上工程进行编译,成功后进行方针测试。 3、引脚锁定。引脚锁定参考图18-2. 图18-1 步进电机PWM细分控制控制电路图 图18-2 引脚锁定图 4、下载测试 参考\EDA_BOOK3_FOR_C35\Chpt3\ALl.PPT\实验17.PPT 选择模式5,短路冒接clock0.根据第一章注释分别“38“和”42“或”“7”连接(见GW48主

单片机基于80C51单片机的步进电机控制系统

中国地质大学长城学院 本科课程设计题目:基于80C51单片机的步进电机控制系统 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师 职称讲师 2014 年6 月11 日

摘要 本文研究基于51系列单片机的步进电机控制系统设计,该系统包括以下几个部分:数据采集、数据处理、终端接收,该系统以汇编语言为单片机的驱动程序语言,单片机控制步进电机,主要任务是把二进制数变成脉冲序列,按相序输入脉冲以实现电机转动方向控制,利用单片机实现对步进电机的远距离实时监控,从而达到高效、节能的控制步进电机工作的目的,该系统具有成本低、控制方便的特点。使用单片机驱动四相步进电机,控制步进电机以四相八拍的方式运行,来实现步进电机正向/反向旋转,P1.0~P1.3分别控制步进电机;P1.5~P1.7分别控制步进电机的停止、正转、反转。 关键词:51单片机;步进电机;数据采集;汇编语言;

目录 摘要 0 1 设计目的 (1) 2设计内容与要求 (1) 3 总体设计方案 (1) 3.1整体方案 (1) 3.2具体方案实现 (1) 4系统硬件设计 (2) 4.1复位电路 (2) 4.2晶振电路 (2) 4.3按键电路 (3) 4.4指示灯电路 (3) 4.5驱动电路 (4) 4.6步进电机 (4) 5程序软件设计 (5) 5.1程序流程图 (5) 5.2源程序 (6) 6系统调试与仿真 (7) 7总结 (8)

1设计目的 1.掌握单片机控制步进电机的硬件接口电路。 2.掌握步进电机驱动程序的设计和调试方法。 3.熟悉步进电动机的工作特性。 2设计内容与要求 1.查阅资料,了解步进电机的工作原理。 2.通过单片机给定参数控制电机转动。 3.通过按钮控制正转、反转和停止。 3总体设计方案 3.1整体方案 本系统主要是由AT89C51,步进电机控制器ULN2004,步进电机,通过单片机编程,实现步进电机控制的脉冲分配,使电机实现正转,反转以及停止等功能 3.2具体实现方案 根据系统要求画出单片机控制步进电机的控制框图,见下图。系统包括单片机、按键、驱动电路和步进电机。 键盘80c51单片机 步进电机 驱动电路

本教程介绍步进电机驱动和细分的工作原理

本教程介绍步进电机驱动和细分的工作原理,以及stm32103为主控芯片制作的一套自平衡的两轮车系统,附带原理图pcb图和源代码,有兴趣的同学一起来吧.本系统还有一些小问题,不当之处希望得到大家的指正. 一.混合式步进电机的结构和驱动原理 电机原理这部分不想讲的太复杂了,拆开一台电机看看就明白了。 电机的转子是一个永磁体,它的上面有若干个磁极SN组成,这些磁极固定的摆放成一定角度。电机的定子是几个串联的线圈构成的磁体。出线一般是四条线标记为A+,A-,B+,B-。A相与B相是不通的,用万用表很容易区分出来,至于各相的+-出线实际是不用考虑的,任意一相正负对调电机将反转。另外一种出线是六条线的只是在A相和B相的中间点做两条引出线别的没什么差别,六出线的电机通过中间出线到A+或A-的电流来模拟正向或负向的电流,可以在没有负相电流控制的电路中实现电机驱动,从而简化驱动电路,但是这种做法任意时刻只有半相有电流,对电机的力矩是有损失的。步进电机的转动也是电磁极与永磁极作用力的结果,只不过电磁极的极性是由驱动电路控制实现的。 我们做这样的一个实验就可以让步进电机转动起来。1找一节电池正负随意接入到A相两端;然后断开;(记为A正向)2再将电池接入到B相两端; 然后断开;(记为B正向)3电池正负对调再次接入A相; 然后断开;(记为A负向)4保持正负对调接入B相;然后断开;(记为B负向)…如此循环你会看到步进电机在缓慢转动。注意电机的相电阻是很小的接

通时近乎短路。我们将相电流的方向记录下来应该为:A+B+A-B-A+…, 如果我们更换接线顺序使得相电流顺序为A+B-A-B+A+…这时我们会看 到电机向反方向运动。这里每切换一次相电流电机都会转动一个很小的角度,这个角度就是电机的步距角。步距角是步进电机的一个固有参数,一般两相电机步距角为1.8度即切换200次可以让电机转动一圈。这里我们比较正反转的电流顺序可以看出A+和A-;B+和B-的交换后的顺序 和正反顺序是一致的,也就是前面所说的”任意一相正负对调电机将反转”。以上为四排工作方式,为了使相电流更加平滑另外可以使用八排的工作方式即: A+;A+B+;B+;B+A-;A-;A-B-;B-;B-A+;从前往后循环正转,从后往前循环反转。 为了用单片机实现相电流的正负流向控制必须要有一个H桥的驱动电路,这种带H桥的驱动模块还是很多的,比较便宜的是晶体管H桥比如L298N,晶体管开关速度比较慢,无法驱动电机高速运动。有些模块将细分控制电路也包含在内,我们也不用这种,因为我们的细分由软件控制。实际应用中使用ST的mos管两桥驱动芯片L6205一片即可驱 动一台步进电机。有了H桥通过PWM就可以控制相电流大小,改变输入极IN1、IN2的状态(参看手册第8页)可以控制相电流的方向。 二.细分的原理和输出控制 从这里开始重点了,别的地方看不到哦。 一个理想的步进电机电流曲线应该是相位相差90度的正弦曲线如

步进电机驱动方式(细分)概述

步进电机驱动方式(细分)概述 众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述。 如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。 既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。 有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。 整步驱动 对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。

下图是整步驱动方式中,电机定子的电流次序示意图: 由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下: BB’→A’A→B’B→A A’→B B’ 下图是这种驱动方式的电流矢量分割图: 可见,整步驱动方式的电流矢量把一个圆平均分割成四份。 下图是整步驱动方式的A、B相的电流I vs T图: 可以看出,整步驱动描出的正弦波是粗糙的。使用这种方式驱动步进电机,低速时电机会抖动,噪声会比较大。但是,这种驱动方式无论在硬件或软件上都是相对简单,从而驱

步进电机细分驱动电路设计

前言 随着社会的进步和人民生活水平的不断提高及全球经济一体化势不可挡的浪潮,我国微特电机工业在最近10年得到了快速的发展。快速发展的显着标志是使用领域不断拓宽,用量大增,特别是在日用消费市场和工业自动化装置及系统的表现最为明显。与此同时,随着电力电子技术、微电子技术和计算机技术、新材料以及控制理论和电机本体技术的不断发展进步,用户对电机控制的速度、精度和实时性提出了更高的要求,因此作为微特电机重要分枝的控制电机也得到了空前的发展。步进电动机又称为脉冲电动机,是数字控制系统中的一种执行组件。其功用是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电动机就转动一个角度或前进一步。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。步进电机被广泛应用于数字控制各个领域:机器人方面,机器人的的关节驱动及行进的精确控制,需要步进电机;数控机床方面,如数控电火花切割机床要求刀具精确走步,减小加工件表面的粗糙度的同时提高效率,需要步进电机;办公自动化方面,如电脑磁盘驱动器中的磁盘进行读盘操作的精确位置控制,需要步进电机,在打印机、传真机中也需要步进电机对设备进行位置控制。步进电动机是经济型数控系统经常采用的电机驱动系统。这类电机驱动系统的特点是控制简单,适合计算机系统控制要求。步进电动机的细分驱动系统较以往的电机系统,消除了低频震荡问题,控制分辨率更高,使其应用领域更加广泛。

步进电机细分控制(英文)

1/17 AN1495 APPLICATION NOTE 1INTRODUCTION Microstepping a stepper motor may be used to achieve one or both of two objectives; 1) increase the position resolution or 2) achieve smoother operation of the motor. In either case the basic the-ory of operation is the same. The simplified model of a stepper motor is a permanent magnet rotor and two coils on the stator separated by 90 degrees, as shown in Figure 1. In classical full step operation an equal current is delivered to each of the coils and the rotor will align itself with the resulting magnetic vector along one of the 45 degree axis. To step the motor, the current in one of the two coils is reversed and the rotor will rotate 90 degrees. The complete full step sequence is shown in figure 2. Half step drive,where the current in the coil is turned off for one step period before being turned on in the opposite direction, has been used to double the step resolution of a motor. In either full and half step drive,the motor can be positioned only at one of the 4 (8 for half step) defined positions.[4][5] Therefore,the number of steps per electrical revolution and the number of poles on the motor determine the resolution of the motor. Typical motors are designed for 1.8 degree steps (200 steps per revolution)or 7.5 degree steps (48 steps per revolution). The resolution may be doubled to 0.9 or 3.75 degrees by driving the motor in half step. Further increasing the resolution requires positioning the rotor at positions between the full step and half step positions. Figure 1. Model of stepper motor MICROSTEPPING STEPPER MOTOR DRIVE USING PEAK DETECTING CURRENT CONTROL Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo sys-tems. However their resolution, when driven in the conventional full or half step modes of operation, is limited by the configuration of the motor. Many designers today are seeking alternatives to increase the resolution of the stepper motor drives. This application note will discuss implementation of microstepping drives using peak detecting current control where the sense resistor is connected between the bottom of the bridge and ground. Examples show the implementation of microstepping drives with several currently available chips and chip sets. REV . 2AN1495/0604

步进电机细分驱动方式的研究

步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。 1 细分驱动原理 步进电机控制中已蕴含了细分的机理。如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。显然,IAB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb 变为0.5θb,从而也就实现了2步细分。由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。 在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。但4步细分与2步细分是不同的,由于I1、I2、I33个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。细分程度越高,阶梯波越复杂。 在三相步进电机整步工作时,实现2步细分合成磁势转动过程为 IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转

步进电机驱动控制系统设计(有程序)

目录 一前言 (1) 二总体方案设计 (1) 1工作原理 (1) 2方案选择 (1) 2.1时钟脉冲 (1) 2.2脉冲分配器 (1) 2.3驱动器 (1) 3 总的框架 (2) 三单元模块设计 (2) 1单片机模块 (2) 1.1复位控制 (3) 1.2单片机频率 (3) 2接口 (3) 3驱动器ULN2003 (4) 4按键模块 (5) 5步进电机 (5) 5.1工作原理 (5) 5.2 28BYJ48型四相八拍 (7) 四整机调试与技术指标测量 (8) 五设计总结 (8) 参考文献 (9) 附录1电路原理图 (10) 附录2 源程序 (11)

一、前言 步进电动机是一种将电脉冲信号转换成机械位移的机电执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 二、总体方案设计 1、工作原理 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2、方案选择 (1)时钟脉冲 通常有两种方法实现: 方案一直接有硬件组成如:多谐振荡器 LC 等。 方案二用软件的方式形成优点便于随时更改,调整。 为了方便我们选用软件方式有单片机实现。 (2)脉冲分配器 方案一硬件环形分配器:由计数器等数字电路组成的。有较好的响应速度,且具有直观、维护方便等优点。 方案二软件环分:由计算机接口电路和相应的软件组成的。受到微型计算机运算速度的限制,有时难以满足高速实时控制的要求。由软件完成脉冲分配工作,不仅使线路简化,成本下降,而且可根据应用系统的需要,灵活地改变步进电机的控制方案。 考虑到硬件设备的有限和对步进电机的控制我们选择软件环分可以有单片机实现。 (3)驱动器 方案一使用功率场效应管的单电压功放电路。

步进电机驱动器及细分控制原理

步进电机驱动器及细分控制原理 步进电机驱动器原理: 步进电机必须有驱动器和控制器才能正常工作。驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。 以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AA BB A A B B ,其四个状态周而复始 进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为 AA B B A A BB ,电机就逆时针转动。 随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。 步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。 细分控制原理: 在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

定子 A 转子 S N B B B S N A A (a)(b) A S N B B N S B S N A (c)(d) 图3.2步进电机细分原理 图 仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。 若通电方向顺序按AA AA BB BB BB AA AA AA BB BB BB AA,8个状态周而 复 始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与图2.1相比,它的步距角小了一半。 驱动器一般都具有细分功能,常见的细分倍数有:1/2,1/4,1/8,1/16,1/32,1/64;或:1/5,1/10,1/20。 细分后步进电机步距角按下列方法计算:步距角=电机固有步距角/细分数 例如:一台1.8°电机设定为4细分,其步距角为 1.8°/4=0.45°。当细分 等级大于1/4后,电机的定位精度并不能提高,只是电机转动更平稳。

步进电机工作原理、驱动控制系统与选型

步进电机工作原理、驱动控制系统与选型 一、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A 相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,

电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力 F与(dФ/dθ)成正比 其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 (二)感应子式步进电机

基于FPGA的步进电机的PWM控制__细分驱动的实现

姓名___ _ _ _ 学号201016050136 院系电气信息工程学院 专业电子信息工程 班级___信息10-1______ __

目录 目录 (2) 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 一、引言 (4) 二、步进电机细分驱动的基本原理 (4) 三、Quartus II概述 (5) 四、课题设计 (5) (一)总体设计 (5) (二)细分电流的实现 (6) (三)细分驱动性能的改善 (6) (四)程序设计 (6) 六、仿真与测试结果分析 (10) 七、结论 (12) 参考文献 (12) 注释 (13) 附录 (14) 心得体会 (20)

摘要 在对步进电机细分驱动原理进行分析研究的基础上,提出一种基于FPGA 控制的步进电机细分驱动器。利用FPGA中的嵌入式EAB构成LPM-ROM,存放步进电机各相细分电流所需的PWM控制波形数据表,并通过FPGA设计的数字比较器,同时产生多路PWM电流波形,实现对步进电机转角进行均匀细分控制。实验证明,所研制的步进电机驱动器不仅体积小,简化了系统的设计,减少了延迟,改善了低频特性,有良好的适应性和自保护能力,提高了驱动器的稳定性和可靠性。 关键词 步进电机;细分驱动;脉宽调制;FPGA Abstract In this paper, a divided driving circuit for stepping motor controlled by FPGA is put forward, based on the analysis of the principle of stepping motor divided driving. Using embedded EAB in FPGA to compose LPM-ROM, store PWM control wave form data which stepping motor each phase subdivided driving current is needed.The magnitude comparator designed with FPGA generates several PWM current waveform synchronously, to realize the step angles even division control for three–phase stepping motor.Experimments have proved that the developed subdivision driver is not only smaller,sampler in system, can shorten the delay time,improve the stability in low frequency ,but has good self-adaptation and self-protection ability,and its stability and relibility are higher. Keywords stepping motor; divided driving;PWM; FPGA

步进电机细分控制原理

步进电机细分原理(雕刻机) 2010-03-1213:05:51|分类:学生作品|标签:|举报|字号大中小订阅 雕刻机的X、Y、Z轴分别采用步进电机驱动, 在网上购买等了四天终于到了,57两相步进电机,1.5A,24V。 结构尺寸如下图

这里说说步进电机的细分原理: 细分的基本概念:步进电机通过细分驱动器的驱动,其步距角变小。如驱动器工作在10细分状态时,其步距角只为“固定步距角”的十分之一,也就是:当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动1.8;而用细分驱动器工作在10细分状态时,电机只转动0.18度。细分功能完全是由驱动器靠精度控制电机的相电流所产生的,于电机无关。 为两相步进电机的工作原理示意图,它有2个绕组A和B。当一个绕组通电后,其定子磁极产生磁场,将转子吸合到此磁极处。 若绕组在控制脉冲的作用下,通电方向顺序按照: 这四个状态周而复始进行变化,电机可顺时针转动;控制脉冲每作用一次,通电方向就变化一次,使电机转动一步,即90度。4个脉冲,电机转动一圈。

细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。当A、B相绕组同时通电时,转子将停在A、B 相磁极中间,如图1(b),(d)所示。若通电方向顺序按照: 这8个状态周而复始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与通电顺序(1)相比,它的步距角小了一半。 为了保证电机输出的力矩均匀,A、B相线圈电流的大小也要调整,使A、B相产生的合力在每个位置相同。图2所示为电机四细分时,A、B相线圈电流的比例。 A、B相线圈电流大小与转角关系如图3所示。 图24细分时电机A、B线圈电流在不同角度的分配比例 从图3中可以看出,步进电机的相电流是按正弦函数(如虚线所示)分布的;细分数越大,相电流越接近正弦曲线。 2.步进电机细分与电机运动平稳性的关系 被测步进电机步距角为1.8度,即无细分时每转200步。试验时,将步进电机转速都设为2r/s;电机2细分时,电机每转400步,每步周期为1.25ms;电机8细分时,电机每转1600步,每步周期为0.3125ms;电机64细分时,电机每转12800步,每步周期为0.0391ms。 步进电机2细分时,电流波形台阶均匀,且电流脉动值很大,其最大值是最大电流的70.7%;步进电机8细分时,电流波形台阶明显,但电流脉动值较小,其最大值是最大电流的19.5%;步进电机64细分时,电流波形较平滑,电流波形已很难分辨分别出台阶的个数,最大电流脉动值仅为最大电流的2.45%。 由电磁感应定理知,步进电机输出力矩和电机线圈的电流成正比,及: T=KT×i 式中KT为电机力矩常数,它与电机结构、材料、线圈长度等因素有关。 由此公式就很容易理解:步进电机细分数越高,电机运转越平稳;步进电机细分数越小,电机运转时振动越大。因为细分数高时,电流曲线光滑,所以电机输出力矩也就波动小连续、电机运行就平稳;电机细分数小,电机电流脉动就大,其输出力矩脉动就大,因而造成电机较大的振动,该振动并产生噪音乃至其它部件的谐振噪音。 3.结论 步进电机细分驱动电路不但可以提高工作平台的运动平稳性,而且可以有效

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

步进电机闭环细分驱动控制系统设计_宋鸿飞

步进电机闭环细分驱动控制系统设计 摘要:介绍了螺纹非接触光电测试系统中步进电机闭环细分控制系统的设计,并结合系统要求对抗干扰性和稳定性进行深入研究。文中对步进电机的特性与系统的性能相互关系进行了论述,在此基础上提出了可行的系统设计方案,给出了基于TA8435专用芯片的细分驱动设计电路,对系统抗干扰性和稳定性设计提出了具体解决办法,硬件设计中采用了传感器反馈的全伺服控制方法,软件上采用升频离散化处理,很好的解决了步进电机在高速启停过程中的堵转和丢步现象,提高了系统的稳定性和精度。 关键词:闭环控制;细分驱动;升频离散化 中图分类号:TP216文献标识码:A文章编号:1672-9870(2008)02-00093-03 收稿日期:200716 基金项目:国家863计划资助项目 作者简介:宋鸿飞(1980

角,并依靠电磁力锁定转轴在一定的位置上。因此在定位精度不高的场合下,一般的步进系统都采用开环控制。但由于步进电机固有的低频共振,高频扭矩小引起的失步和机械结构等因素的影响,都会造成实际位移值偏离指令设定值。因此在高定位精度的场合下,没有闭环反馈就无法知道电机是否丢步或过步,系统无法对其进行有效校正和补偿,导致不能准确定位。在步进系统中引入检测环节并对其进行闭环控制,可从根本上解决步进系统的定位精度问题,将使其性能大大提高。步进电机的闭环控制可采用各种不同的方法,其中包括步校验、无传感器反电动势检测和有传感器反馈的全伺服控制。 1系统构成 本电机系统设计应用精密在螺纹非接触光电测试系统中,两相步进电机通过精密滚珠螺杆把电机的轴角运动转化成直线位移运动,带动负载平台及上边安装的测试系统在螺管内部进行直线运动,实现对螺纹的实时检测。由于螺纹检测属于精密检测,对精密位移台的定位精度、速度范围和速度稳定性提出了很高的要求,因此步进电机采用开环控制方式是达不到系统的指标要求的,针对系统的要求步进电机要采用闭环细分控制方式。 电机控制系统设计采用有传感器反馈的全伺服控制方法。其系统组成包括四部分:(1)使用89S52单片机实现电机控制器设计;(2)电机细分驱动器采用东芝公司生产的TA8435电机驱动专业芯片实现电机细分驱动器的设计;(3)位置反馈传感器采用分辨率 1 图1步进电机闭环细分控制系统功能图 Fig.1Diagram for close-loop subdivision control system func- tion of stepper motor 2细分驱动器设计 结合螺纹检测系统对位移平台定位精度和速度范围的要求,步进电机步距角不能满足使用条件,在设计中采用细分驱动的方法,细分驱动电路是通过对步进电机的励磁绕组中电流的控制,来调整步进惦记步距角的大小,把原来的一个整步步距角细分成若干步来完成,从而实现步进电机的高精度定位,提高了步进电机的分辨率。实现细分驱动的方法有很多种,设计中使用了东芝公司生产的单片正弦细分二相步进电机驱动专用芯片TA8435,芯片采用的是脉宽调制式斩波驱动,该芯片有电路连接简单,工作稳定,特点如下: (1)工作电压范围宽(10 、B+、B 图2细分驱动电路原理图 Fig.2Circuit schematic diagram of subdivision driving 在系统中使用的位移平台螺杆导程L为4mm (即电机轴转动一周负载平台的直线位移量),细分数为为0.9° ,分数为 而转台的移动速度和脉冲频率、细分选择、电机本身的固有频率有关。在设计中由89S52的内部 定时器

MSP430单片机对步进电机的驱动控制设计

MSP430单片机对步进电机的驱动控制设计 单片机实现的步进电机控制系统具有成本低、使用灵活的特点,广泛应用于数控机床、机器人,定量进给、工业自动控制以及各种可控的有定位要求的机械工具等应用领域。步进电机是数字控制电机,将脉冲信号转换成角位移,电机的转速、停止的位置取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,非超载状态下,根据上述线性关系,再加上步进电机只有周期性误差而无累积误差,因此步进电机适用于单片机控制。步进电机通过输入脉冲信号进行控制,即电机的总转动角度由输入脉冲总数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路是根据单片机产生的控制信号进行工作。因此,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。 1 系统设计原理 步进电机控制系统主要由单片机、键盘LED、驱动/放大和PC上位机等4个模块组成,其中PC机模块是软件控制部分,该控制系统可实现的功能:1)通过键盘启动/暂停步进电机、设置步进电机的转速和改变步进电机的转向;2)通过LED管显示步进的转速和转向等工作状态;3)实现三相或四相步进电机的控制:4)通过PC上位机实现对步进电机的控制(启停、转速和转向等)。为保护单片机控制系统硬件电路,在单片机和步进电机之间增加过流保护电路。图l为步进电机控制系统框图。 2 系统硬件电路设计 2.1 单片机模块 单片机模块主要由MSP430FG4618单片机及外围滤波、电源管理和晶振等电路组成。MSP430FG4618单片机内部的8 KB RAM和116 KB Flash满足控制系统的存储要求,P1和P2端口在步进电机工作过程中根据按键状态判断是否跳入中断服务程序来改变步进电机的工作状态,USART模块实现单片机和PC上位机之间的通信,实现PC机对步进电机控制。电源管理电路提供稳定的3.3 V和5 V电压,分别给单片机、晶振电路和驱动和功率放大电路供电。32 kHz晶振给单片机、键盘/显示接口器件8279和脉冲分配器

相关文档
最新文档