基于8051单片机的波形发生器设计

基于8051单片机的波形发生器设计
基于8051单片机的波形发生器设计

基于8051单片机的波形发生器设计

摘要:波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。本系统是基于A T89C51单片机的数字式低频信号发生器,采用AT89C51单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(LM324)、按键和8位数码管等。通过按键控制可产生方波、三角波、正弦波等,同时用数码管显示其对应的频率。介绍DAC 0832数模转换器的结构原理和使用方法,A T89C51的基础理论,以及与设计电路有关的各种芯片。文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路原理和软件编程原理,其设计简单、性能优好,可用于多种需要低频信号的场所,具有一定的实用性。

关键词:AT89C51,DAC0832,LM324

一引言

波形发生器也称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件设计而成,且波形种类有限,多为锯齿波,正弦波,方波,三角波等波形,而且这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源,而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大。大电阻,大电容在制作上有困难,参数的精度也难以保证。体积大,漏电,损耗显著更是致命的弱点。

二功能分析和方案论证与比较

依据不同的设计要求选取不同的设计方案,波形发生器的具体指标要求也有所不同。通常,波形发生器需要实现的波形有正弦波、方波、三角波和锯齿波,有些场合可能还需要任意波形的产生。各种波形指标有:波形的频率、幅度要求,频率稳定度,准确度等。对于不同波形,具体的指标要求也会有所差异,例如,占空比是脉冲波形特有的指标。波形发生器的设计方案多种多样,大致可以分为三大类:纯硬件设计法、纯软件设计法和软硬件结合设计法。

1 方案一

在波形发生器设计纯硬件法的早期,波形发生器的设计主要是采用运算放大器加分立元件来实现。实现的波形比较单一,主要为正弦波、方波和三角波。工作原理相对简单:首先是产生正弦波,然后通过波形变换(正弦波通过比较器产生方波,方波经过积分器变为三角波)实现方波和三角波。在各种波形后加上一级放大电路,可以使输出波形的幅度达到要求,通过开关电路实现不同输出波形的切换,改变电路的具体参数可以实现频率、幅度和占空比的改变。通过对电路结构的优化及所用元器件的严格选取可以提高电路的频率稳定性和准确度。纯硬件法中,正弦波的设计是基础,实现方法也比较多,电路形式一般有LC、RC和石英晶体振荡器三类。LC振荡器适宜于产生几兆赫兹至几百兆赫兹的高频信号;石英晶体振荡器能产生几千赫兹至几百兆赫兹的高频信号且稳定度高;对于频率低于几兆赫兹,特别是在几百赫兹时,常采用RC振荡电路。RC振荡电路又分为文氏桥振荡电路、双T网络式和移相式振荡电路等类型。其中,以文氏桥振荡电路最为常用。目前,实现波形发生器最简单的方法是采用单片集成的函数信号发生器。它是将产生各种波形的功能电路集成到一个集成电路芯片里,外加少量的电阻、电容元件来实现。采用这种方法的突出优势是电路简单,实现方便,精度高,性能优越;缺

点是功能较全的集成芯片价格较贵。实际中应用较多的单片函数信号发生器有MAX038(最高频率可达40)和ICL8038(最高频率为KHz

MHz

300)。

2 方案二

波形发生器的设计还可以采用纯软件的方法来实现,它以计算机为基础,软件为核心,没有传统仪器那样具体的物理结构,通过软件设计实现和改变仪器的功能。例如用图形化编程工具LabVIEW来实现任意波形发生器的功能,在LabVIEW软件的前面板通过拖放控件,设计仪器的功能面板(如波形显示窗口,波形选择按键,波形存储回放等工作界面),在软件的后面板直接拖放相应的波形函数并进行参数设置或直接调用编程函数来设计任意波形以实现波形产生功能;完成的软件打包后,可脱离编程环境独立运行,实现任意波形发生器的功能。采用纯软件的虚拟仪器设计思路可以使设计简单、高效,仅改变软件程序就可以轻松实现波形功能的改变或升级。从长远角度来看,纯软件法成本较低,但其缺点是波形的响应速度和精度低于硬件法。

3 方案三

软硬件结合的波形发生器设计方法同时兼具软硬件设计的优势,既具有纯硬件设计的快速、高性能,同时又具有软件控制的灵活性、智能性。如以单片机和单片集成函数发生器为核心(如图1)。同时带有以键盘控制、数码管显示等电路,设计出智能型函数波形发生器,采用软硬件结合的方法可以实现功能较全、性能更优的波形发生器,同时还可以扩展波形发生器的功能,比如通过软件编程控制实现波形的存储、运算、打印等功能,采用USB接口设计,使波形发生器具有远程通信功能等。目前,实验、科研和工业生产中使用的信号源大多采用此方法来实现。

图1 软硬件结合的波形发生器

纯硬件设计法功能较单一,波形改变困难、控制的灵活性不够,不具备智能性,其中由运算放大器加分立元件组成的波形发生器,除在学生实验训练中使用外,基本不被采用。纯软件设计法实现简单,程序改变及功能升级灵活,但实现的波形精度及响应速度不如硬件法高。纯软件法主要适用于对波形精度、响应速度要求不是很高的场合。相比之下,软硬件结合的方法可以设计出性能更优、功能扩展灵活、控制智能化的新一代波形发生器,可以满足教学、科研、工业生产等各方面对波形发生器性能有较高要求的应用场合。综合以上几种设计方案,本设计采用方案三软硬件设计法。其方案能够产生很好的波形,也易实现。

三硬件原理

波形的产生是通过AT89C51单片机执行某一波形发生程序,向D/A转换器的输入端按一定的规律

传送数据,从而在D/A转换电路的输出端得到相应的电压波形。

AT89C51单片机的最小系统有三种连接方式。一种是两级缓冲器型,即输入数据经过两级缓冲器后,送入D/A转换电路。第二种是单级缓冲器型,即输入数据经输入寄存器直接送入DAC寄存器中,然后再送入D/A转换电路。第三种是两个缓冲器直通,输入数据直接送入D/A转换电路进行转换。本电路仿真的总图如下:

图2 系统电路

1 MCS-51单片机的内部结构

典型的MCS-51单片机芯片集成了以下几个基本组成部分。

一个8位的CPU。

256单元内数据存储器(RAM)。

B

128或B

8片内程序存储器(ROM或EPROM)。

KB

4或KB

4个8位并行I/O接口P0~P3。

两个定时/计数器。

5个中断源的中断管理控制系统。

一个全双工串行I/O口UART(通用异步接收、发送器)。

一个片内振荡器和时钟产生电路。

图3 单片机引脚

2 CPU 结构

CPU 是单片机的核心部件,它由运算器和控制器等部件组成。

运算器以完成二进制的算术/逻辑运算部件ALU 为核心,它可以对半字节,单字节等数据进行操作。例如,能完成加、减、乘、除、加1、减1、BCD 码十进制调整、比较等算术运算,完成与、或、异或、求反、循环等操作,操作结果的状态信息送至状态寄存器。

运算器还包含有一个布尔处理器,用以处理位操作。它以进位标志位C 为累加器,可执行置位、复位、取反、位判断转移,可在进位标志位与其他的位之间进行位数据传送等操作,还可以完成进位标志位与其他的位之间进行逻辑与、逻辑或操作。

PC 是一个16位的计数器,用于存放一条要执行的指令地址,寻址范围为KB 64~0,PC 有自动加1功能,即完成了一条指令的执行后,其内容自动加1。

指令寄存器(IR ,Instruction Register )。存放当前从主存储器读出的正在执行的一条指令。当执行一条指令时,先把它从内存取到数据寄存器(DR ,Data Register )中,然后再传送至IR 。指令划分为操作码和地址码字段,由二进制数字组成。为了执行任何给定的指令,必须对操作码进行测试,以便识别所要求的操作。指令译码器就是做这项工作的。指令寄存器中操作码字段的输出就是指令译码器的输入。操作码一经译码后,即可向操作控制器发出具体操作的特定信号。

3 存储器和特殊功能寄存器

存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。

特殊功能寄存器(SFR)的地址范围为80H~FFH。在MCS-51中,除程序计数器PC和四个工作寄存器外,其余21个特殊功能寄存器都在这SFR块中。其中有5个是双字节寄存器,它们共占用了26个字节。特殊功能寄存器反映了8051的状态,实际上是8051的状态字及控制字寄存器。这些特殊功能寄存器大体上分为两类,一类和芯片的引脚有关,另一类作片内功能的控制用。与芯片引脚有关的特殊功能寄存器是P0~P3,它们实际上是4个八位锁存器(每个I/O口一个),每个锁存器附加有相应的输出驱动器和输入缓冲器就构成了一个并行口。

4 P0~P3口结构

P0口功能:P0口具有两种功能:第一,P0口可以作为通用I/O接口使用,P0.7~P0.0用于传送CPU 的输入/输出数据,输出数据时可以锁存,不需要外接专用锁存器,输入数据可以进行缓冲。第二,P0.7~P0.0在CPU访问片外存储器时用于传送片外存储器的低8位地址,然后传送CPU对片外存储器的读写。

P1口功能:P1口的功能和P0口的第一功能相同,仅用于传递输入/输出数据。

P2口功能:P2口的第一功能和上述两组引脚的第一功能相同,即它可以作为通用I/O使用。它的第二功能和P0口引脚的第二功能相配合,作为地址总线用于输出片外存储器的高8位地址。

P3口功能:P3口有两个功能:第一功能与其余三个端口的第一功能相同;第二功能作控制用。P3.0—RXD串行数据接收口。

P3.1—TXD串行数据发送口。

P3.2—INT0外中断0输入。

P3.3—INT1外中断1输入。

P3.4—T0计数器0计数输入。

P3.5—T1计数器1计数输入。

P3.6—WR外部RAM写选通信号。

P3.7—RD外部RAM读选通信号。

5 时钟电路和复位电路

单片机的时钟信号用来提供单片机内各种微操作的时间基准;复位操作则使单片机的片内电路初始化,使单片机从一种确定的状态开始运行。

6 时钟电路

单片机的时钟信号通常用两种电路形式得到:内部振荡和外部振荡方式。

图4 时钟部分电路

在引脚XTAL1和XTAL2外接晶体振荡器或陶瓷谐振荡器,构成了内部振荡方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡,并产生振荡时钟脉冲。

振荡周期:晶振的振荡周期,又称时钟周期,为最小的时序单位。

状态周期:振荡频率经单片机内的二分频器分频后提供给片内CPU 的时钟周期。因此一个状态周期包含2个振荡周期。

机器周期:1个机器周期由6个状态周期12个振荡周期组成,是计算机执行一种基本操作的时间单位。

指令周期:执行一条指令所需的时间。一个指令周期由1-4个机器周期组成,依据指令不同而不同。 7 单片机的复位状态

当MCS-5l 系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。上电复位要求接通电源后,自动实现复位操作。上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。上电后,由于电容C1的充电和反相门的作用,使RST 持续一段时间的高电平。当单片机已在运行当中时,按下复位键SJ1后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。

图5 复位电路

单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC =0000H 。单片机冷启动后,片内RAM 为随机值,运行中的复位操作不改变片内RAM 区中的内容。51单片机的复位是由RESET 引脚来控制的,此引脚与高电平相接超过24个振荡周期后,51单片机进入芯片内部复位状态,而且一直在此状态下等待,直到RESET 引脚转为低电平后,才检查EA 引脚是高电平或低电平,若为高电平则执行芯片内部的程序代码,若为低电平便会执行外部程序。51单片机在系统复位时,将其内部的一些重要寄存器设置为特定的值,至于内部RAM 的数据则不变。 8 DAC0832的引脚及功能

DAC0832是分辨率为8位的D/A 转换集成芯片,与微处理器完全兼容。这个DA 芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。D/A 转换器由8位输入锁存器、8位DAC 寄存器、8位D/A 转换电路及转换控制电路构成。

DAC0832的主要特性参数如下: 分辨率为8位。 电流稳定时间s 1μ。

可单缓冲、双缓冲或直接数字输入。 单一电源供电(V V 15~5++)。 低功耗,mW 200。

DAC0832结构:

D0~D7:8位数据输入线,TTL 电平,有效时间应大于ns 900(否则锁存器的数据会出错)。 ILE :数据锁存允许控制信号输入线,高电平有效。 CS :片选信号输入线(选通数据锁存器),低电平有效。

WR1:数据锁存器写选通输入线,负脉冲(脉宽应大于ns 500)有效。由ILE 、CS 、WR1的逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变换,LE1的负跳变时将输入数据锁存。

XFER :数据传输控制信号输入线,低电平有效,负脉冲(脉宽应大于ns 500)有效。

WR2:DAC 寄存器选通输入线,负脉冲(脉宽应大于ns 500)有效。由WR1、XFER 的逻辑组合产生LE2,当LE2为高电平时,DAC 寄存器的输出随寄存器的输入而变化,LE2负跳变时将数据锁存器的内容打入DAC 寄存器并开始D/A 转换。

1out I :电流输出端1,其值随DAC 寄存器的内容线性变化。 2out I :电流输出端2,其值与1out I 值之和为一常数。

Rfb :反馈信号输入线,改变Rfb 端外接电阻值可调整转换满量程精度。 Vcc :电源输入端,cc V 的范围为V V 15~5++。

ref V :基准电压输入线,ref V 的范围为V V 10~10+-。

AGND :模拟信号地。 DGND :数字信号地。 四 软件原理

系统软件由主程序和产生波形的子程序组成,软件设计主要是产生各种波形的子程序的编程,通过编程可得到各种波形。周期的改变可采用插入延时子程序的方法来实现。主程序和几种常用波形子程序的流程图如图所示。

1 主流程图

图6 主程序流程

信号的产生:利用8位D/A 转换器DAC0832,可以将8位数字量转换成模拟量输出。数字量输入的

范围为0~255,对应的模拟量输出的范围在-ref V 到+ref V 之间。根据这一特性,可以利用单片机的并行口输出的数字量,产生常用的波形。例如,要产生幅度为V 5~0的锯齿波,只要将DAC0832的ref V 接V 5+,单片机的并行口首先输出00H ,再输出01H 、02H ,直到输出FFH ,再输出00H ,依此循环,这样在图7所示的out V 端就可以看到在0到V 5之间变化的锯齿波。

2 锯齿波仿真图

图7锯齿波的仿真

锯齿波产生是通过P0口将00H 送入寄存器A 中,DAC0832输出A 中的内容,读取P0口的状态,然后取反,再进行延时,当A 中的内容不为FFH 时,A 中的内容加1,当A 中的内容等于FFH 返回开始,从而输出波形。

锯齿波程序 void juchi() { uint i; i=0; while(1) { P0=i; delay(t); i=i+1; P0=i; delay(t); xianshiqi(t);

if(i==256) { i=0;

}

if(s5==0) { t=t+1; }

if(s6==0)

{

t=t-1;

}

}

}

3 三角波仿真图

图8 三角波的仿真

三角波产生是通过P0口将00H送入寄存器A中,DAC0832输出A中的内容,通过A中数值的加1递升,同时延时,当A中的内容为FFH时,则A中的内容减1递减,从而循环产生三角波。

三角波程序如下:

void sanjiaobo()

{

uint j=0;

while(1)

{

P0=j;

delay(t);

j=j+1;

P0=j;

delay(t);

xianshiqi(t);

if(j==256)

{

if(j!=0)

{

j=j-1;

P0=j;

delay(t);

xianshiqi(t);

if(s5==0)

{

t=t+1;

}

if(s6==0)

{

t=t-1;

}

}

}

if(s5==0)

{

t=t+1;

}

if(s6==0)

{

t=t-1;

}

}

}

4 方波仿真图

图9 方波的仿真

方波产生是通过P0口将00H输出给DAC0832,输出对应模拟量,然后读取P0口的状态,进行取反,延时一定的时间,再将FFH输出,同样输出对应模拟量,再延时,从而得到方波。

方波程序如下:

void fangbo()

{

while(1)

P0=256;

delay(t);

P0=0;

delay(t);

xianshiqi(t);

if(s5==0)

{

t=t+1;

}

if(s6==0)

{

t=t-1;

}

}

}

5 正弦波仿真图

图10 正弦波的仿真

正弦波波形设计通过查表指令得出。

正弦程序如下:

void zhengxianbo()

{

uint k=0;

while(1)

{

P0=table[k++];

delay(t);

xianshiqi(t);

if(k==182)

k=0;

}

if(s5==0)

{

t=t+1;

}

if(s6==0)

{

t=t-1;

}

}

}

五总结

通过本次论文设计,我不仅发现设计的波形发生器有所欠缺,同时也感到了自身的不足。本次设计的程序实现较为简单,没有涉及到中断、串行口和定时/计数等功能,仅仅只是编写了几段基本波形发生代码,在主程序里调用,通过不同的键是否按下来选择波形。但为了延时准确可以启动定时器。由于真正意义上的程序设计还不多,因此还不是很得心应手,所以在设计中遇到一些问题和一些难点。比如:在程序设计中如何实现程序结构的最优化,以达到较高的质量。这是以后设计中要注意的问题。最重要的是本程序在设计中出现了因为代码太长,当程序执行到正弦波时无法返回,经过自己查阅资料,知道了当遇到这种一次跳不回的情况可以通过多跳一次而跳回。在本次设计的过程中,我还学会了高效率的查阅资料、运用工具书、利用网络查找资料。我发现,在我们所使用的书籍上有一些知识在实际应用中其实并不是十分理想,各种参数都需要自己去调整,偶而还会遇到错误的资料现象,这就要求我们应更加注重实践环节。同时在制作word文档时,体会到了自己对word的运用还不太熟练,比如使用公式编辑器等。目前单片机在工业检测领域中得到了广泛的应用,在我们平常的生活中也是随处可见,包括我们日常生活中随处可见的交通灯、闹钟等都含有单片机作为一个主要的部件,懂得并熟悉掌握单片机的运用技术是非常有用的。

参考文献

[1]胡学武,用AT89C51实现超低频任意函数发生器.[J],现代电子技术,2005(17)。

[2]王琼,单片机原理及应用,合肥工业大学出版社,2008。

[3]相迎军等,基于AT89C4051单片机的专用信号发生器设计与应用.[J],微计算机信息,2004。

[4]朱蓉等,基于MCS-51单片机定时精确控制的研究.[J],现代电子技术,2005。

[5]张倩等,MCS51系列单片机的三种并行通信方法.[J],新乡教育学院学报,2004(03) 。

[6]李朝青,单片机原理及接口技术[M].第三版,北京航空航天大学出版社,2005。

The Design of Waveform Generator Based on 8051

Zha Bing

(School of Physics and Electrical Engineering of Anqing Normal College, Anqing 246011)

Abstract:Waveform generator is able to generate a lot of standard signal and user defined signals, and ensure the high precision, high stability, repeatability and simplicity of electronic instruments. This system is based on AT89C51 single chip microcomputer digital low frequency signal generator, AT89C51 single chip microcomputer as control core and periphery (DAC0832) using digital/analog conversion circuit, operational amplifier circuit (LM324), buttons and 8 digital tube, etc. Through the button control can produce square wave, triangle wave, sine wave, etc., using digital tube indicate its corresponding frequency at the same time. Introduced DAC0832 digital to analog converter structure principle and use method, the basic theory of AT89C51, related to the design of circuit and the various chips. This paper emphatically introduces how to utilize the single-chip microcomputer control D/A converter to produce the signal of the hardware circuit and software programming, its design is simple and good performance advantages, can be used for A variety of needs low frequency signal, has A certain practicality.

Keywords:AT89C51, DA0832, LM324

利用Labview实现任意波形发生器的设计

沈阳理工大学课程设计专用纸No I

1 引言 波形发生器是一种常用的信号源,广泛应用于通信、雷达、测控、电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备。随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。可见,为适应现代电子技术的不断发展和市场需求,研究制作高性能的任意波形发生器十分有必要,而且意义重大。 波形发生器的核心技术是频率合成技术,主要方法有:直接模拟频率合成、锁相环频率合成(PLL),直接数字合成技术(DDS)。 传统的波形发生器一般基于模拟技术。它首先生成一定频率的正弦信号,然后再对这个正弦信号进行处理,从而输出其他波形信号。早期的信号发生器大都采用谐振法,后来出现采用锁相环等频率合成技术的波形发生器。但基于模拟技术的传统波形发生器能生成的信号类型比较有限,一般只能生成正弦波、方波、三角波等少数的规则波形信号。随着待测设备的种类越来越丰富,测试用的激励信号也越来越复杂,传统波形发生器已经不能满足这些测试需要,任意波形发生器(AWG)就是在这种情况下,为满足众多领域对于复杂的、可由用户自定义波形的测试信号的日益增长的需要而诞生的。随着微处理器性能的提高,出现了由微处理器、D/A以及相关硬件、软件构成的波形发生器。它扩展了波形发生器的功能,产生的波形也比以往复杂。实质上它采用了软件控制,利用微处理器控制D/A,就可以得到各种简单波形。但由于微处理器的速度限制,这种方式的波形发生器输出频率较低。目前的任意波形发生器普遍采用DDS(直接数字频率合成)技术。基于DDS技术的任意波形发生器(AWG)利用高速存储器作为查找表,通过高速D/A转换器对存储器的波形进行合成。它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机编辑,产生真正意义上的任意波形。

(完整word版)基于单片机的信号发生器开题报告

内蒙古工业大学本科生毕业设计(论文)开题报告

注:表格根据所填内容可进行调整,可多页。 一、设计总体方案 利用AT89S52 单片机采用程序设计方法产生锯齿波,正弦波,矩形波,方波四种波形,再通过D/A 转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控四种波形的类型,频率变化,最终输出显示其各自的类型及数值

图4.1 硬件原理框图 二.硬件各单元电路方案设计与选择 1、单片机的选择 方案一:AT89S52芯片中只有一路模拟输出或几路模拟信号非同步输出,这种情况下CPU对DAC0832 执行一次写操作,则把一个数据直接写入DAC寄存器,DAC0832的输出模拟信号随之对应变化。输出波形稳定,精度高,滤波好,抗干扰效果好,连接简单,性价比高。 方案二:C8051F005单片机是完全集成的混合信号系统级芯片,具有与8051兼容的微控制器内核,与MCS-51指令集完全兼容。除了具有标准8052的数字外设部件,片内还集成了数据采集和控制系统中常用的模拟部件和其他数字外设及功能部件,而且执行速度快。但其价格较贵 方案三:采用单片机编程的方法来实现。该方法可以通过编程的方法来控制信号波形的频率和幅度,而且在硬件电路不变的情况下,通过改变程序来实现频率的变换。此外,由于通过编程方法产生的是数字信号,所以信号的精度可以做的很高。 以上两种方案综合考虑,选择方案一 2.键盘设计方案比较 方案一:矩阵式键盘。矩阵式键盘的按键触点接于由行、列母线构成的矩阵电路的交叉处。当键盘上没有键闭合时,所有的行和列线都断开,行线都呈高电平。当某一个键闭合时,该键所对应的行线和列线被短路。 方案二:独立式键盘。独立式键盘具有硬件与软件相对简单的特点,其缺点是按键数量较多时,要占用大量口线。 以上两种方案综合考虑,选择方案二。 3、D/A转换部分

简易波形发生器设计报告

电子信息工程学院 硬件课程设计实验室课程设计报告题目:波形发生器设计 年级:13级 专业:电子信息工程学院学号:201321111126 学生姓名:覃凤素 指导教师:罗伟华 2015年11月1日

波形发生器设计 波形发生器亦称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。 波形发生器一般是指能自动产生方波、三角波、正弦波等电压波形的电路。产生方波、三角波、正弦波的方案有多种,如先产生正弦波,再通过运算电路将正弦波转化为方波,经过积分电路将其转化为三角波,或者是先产生方波-三角波,再将三角波变为正弦波。本课程所设计电路采用第二种方法,利用集成运放构成的比较器和电容的充放电,实现集成运放的周期性翻转,从而在输出端产生一个方波。再经过积分电路产生三角波,最后通过正弦波转换电路形成正弦波。 一、设计要求: (1) 设计一套函数信号发生器,能自动产生方波、三角波、正弦波等电压波形; (2) 输出信号的频率要求可调; (3) 根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (4) 在面包板上搭出电路,最后在电路板上焊出来; (5) 测出静态工作点并记录; (6) 给出分析过程、电路图和记录的波形。 扩展部分: (1)产生一组锯齿波,频率范围为10Hz~100Hz , V V 8p -p =; (2)将方波—三角波发生器电路改成矩形波—锯齿波发生器,给出设计电路,并记录波形。 二、技术指标 (1) 频率范围:100Hz~1kHz,1kHz~10kHz ; (2) 输出电压:方波V V 24p -p ≤,三角波V V 6p -p =,正弦波V V 1p -p ≥; (3) 波形特性:方波s t μ30r < (1kHz ,最大输出时),三角波%2V <γ ,正弦波y~<2%。 三、选材: 元器件:ua741 2个,3DG130 4个,电阻,电容,二极管 仪器仪表: 直流稳压电源,电烙铁,万用表和双踪示波器 四、方案论证 方案一:用RC 桥式正弦波振荡器产生正弦波,经过滞回比较器输出方波,方波在经过积分器得到三角波。

基于51单片机的函数信号发生器的设计

龙源期刊网 https://www.360docs.net/doc/1511912283.html, 基于51单片机的函数信号发生器的设计 作者:朱兆旭 来源:《数字技术与应用》2017年第02期 摘要:本文所设计的系统是采用AT89C51单片机和D/A转换器件DAC0832产生所需不 同信号的低频信号源,AT89C51 单片机作为主体,采用D/A转换电路、运放电路、按键和LCD液晶显示电路等,按下按键控制生成方波、三角波、正弦波,同时用LCD显示相应的波形,输出波形的周期可以用程序改变,具有线路简单、结构紧凑、性能优越等特点。 关键词:51单片机;模数转换器;信号发生器 中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2017)02-0011-01 1 前言 波形发生器,是一种作为测试用的信号源,是当下很多电子设计要用到的仪器。现如今是科学技术和设备高速智能化发展的科技信息社会,集成电路发展迅猛,集成电路能简单地生成各式各样的波形发生器,将其他信号波形发生器于用集成电路实现的信号波形发生器进行对比,波形质量、幅度和频率稳定性等性能指标,集成电路实现的信号波形发生器都胜过一筹,随着单片机应用技术的不断成长和完善,导致传统控制与检测技术更加快捷方便。 2 系统设计思路 文章基于单片机信号发生器设计,产生正弦波、方波、三角波,连接示波器,将生成的波形显示在示波器上。按照对作品的设计研究,编写程序,来实现各种波形的频率和幅值数值与要求相匹配,然后把该程序导入到程序存储器里面。 当程序运行时,一旦收到外界发出的指令,要求设备输出相应的波形时,设备会调用对应波形发生程序以及中断服务子程序,D/A转换器和运放器随之处理信号,然后设备的端口输出该信号。其中,KEY0为复位键,KEY1的作用是选择频率的步进值,KEY2的作用是增加频 率或增加频率的步进值,KEY3的作用是减小频率或减小频率的步进值,KEY4的作用是选择三种波形。103为可调电阻,用于幅值的调节。自锁开关起到电源开关的作用。启动电源,程序运行的时候,选择正弦波,红色LED灯亮起;选择方波,黄色LED灯亮起;选择三角波,绿色LED灯亮起。函数信号发生器频率最高可达到100Hz,最低可达到10Hz,步进值0.1- 10Hz,幅值最高可到3.5V。系统框图如图1所示。 3 软件设计

模电课程设计-波形发生器

一、设计题目 波形发生电路 二、设计任务和要求 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;输出电压峰峰值V PP≥20V 三、原理电路设计: (1)方案的提出 方案一: ①先由文氏桥振荡产生一个正弦波信号(右图) ②把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 ③把方波信号通过一个积分器。转换成三角波。 方案二: ①由比较器和积分器构成方波三角波产生电路。(下图) ②然后通过低通滤波把三角波转换成正弦波信号。 方案三: ①由比较器和积分器构成方波三角波产生电路。(电路图与方案二相同) ②用折线法把三角波转换成正弦波。(下图)

(2)方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,C1=C2。即f=f 如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的风波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)单元电路设计

运放组成的波形发生器电路设计

运放组成的波形发生器电 路设计 This model paper was revised by the Standardization Office on December 10, 2020

运放组成的波形发生器电路设计、装配与调试 1. 运放组成的波形发生器的单元电路 运放的二个应用:⑴ 线性应用-RC 正弦波振荡器 ⑵ 非线性应用-滞回比较器 ⑴ RC 正弦波振荡器 RC 桥式振荡电路如图3-9所示。 图3-9 RC 桥式振荡电路 RC 桥式振荡电路由二部分组成: ① 同相放大器,如图3-9(a )所示。 ② RC 串并联网络,如图3-9(b )所示。 或图3-9(c )所示,RC 串并联网络与同相放大器反馈支路组成桥式电路。 同相放大器的输出电压uo 作为RC 串并联网络的输入电压,而将RC 串并联网络的输出电压作为放大器的输入电压,当f=f 0时, RC 串并联网络的相位移为零,放大器是同相放大器,电路的总相位移是零,满足相位平衡条件,而对于其他频率的信号,RC 串并联网络的相位移不为零,不满足相位平衡条件。由于RC 串并联网络在 f=f 0 时的传输系数F =1/3,因此要求放大器的总电压增益Au 应大于3,这对于集成运放组成的同相放大器来说是很容易满足的。由R 1、R f 、V 1、V 2及R 2构成负反馈支路,它与集成运放形成了同相输入比例运算放大器。 只要适当选择R f 与R 1的比值, 就能实现Au>3的要求。其中,V1、V2和R 2是实现自动稳幅的限幅电路。 1 1R R A f u + =RC f π210=

① 振荡原理 RC 桥式振荡电路如图3-9所示。根据自激振荡的条件,φ=φa+Φf=2πn ,其中RC 串并联网络作为反馈电路,当f=fo 时,φf=0°,所以放大器的相移应为φa=0°,即可用一个同相输入的运算放大器组成。又因为当f=fo 时,F=1/3,所以放大电路的放大倍数A ≥3。起振时A>3,起振后若只依靠晶体管的非线性来稳幅,波形顶部容易失真。为了改善输出波形,通常引入负反馈电路。其振荡频率由RC 串并联网络决定,图3-9(c )为RC 桥式振荡电路的桥式画法。RC 串并联网络及负反馈电路中的Rf+'2 R 、R1正好构成电桥四臂,这就是桥式振荡器名称的由来。在RC 串并联网络中, 取C C C R R R ====2121, 当虚部为零,即)/(11221C R C R ωω=时,3/1=F ② 稳幅原理 V 1、V 2和R 2是实现自动稳幅的限幅电路。V 1、V 2仅一只导通,导通的二极管和R 2并联等 效电阻为'2R 。根据同相放大器的放大倍数计算公式:1 ' 2 1R R R A f ++=可知输出电压幅度与 '2 R 有关。 )1()1(1 11111// 1 2 121211222211 222 2122 22 2221 11C R C R j R R C C C R j R C j R C R j R Z Z Z U U F C R j R C j R Z C j R Z o f ωωωωωωωω-+++ =++ ++= +==+= =+=?? ?

基于51单片机的函数信号发生器

基于51单片机的函数信号发生器 设计方案 利用单片机AT89C52采用程序设计方法产生锯齿波、三角波、正弦波、方波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产生10Hz—10kHz 的波形。通过键盘来控制四种波形的类型选择、拨码开关控制频率的变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。 设计要求 1)、利用单片机采用软件设计方法产生四种波形 2)、四种波形可通过键盘选择 3)、波形频率可调 4)、需显示波形的种类及其频率 方案设计 1 信号发生电路方案

通过单片机控制D/A,输出四种波形。此方案虽输出的波形不够稳定,抗干扰能力弱,不易调节,但此方案电路简单、成本低。因此选用此方案。 2 单片机的选择 AT89C52单片机是一种高性能8位单片微型计算机。它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机、而且其价格便宜。 3 显示方案 采用LCD液晶显示器1602。其功率小,效果明显,显示编程容易控制,可以显示字母。 4 键盘方案论证 采用独立式键盘。独立式键盘具有硬件与软件相对简单的特点,其缺点是按键数量较多时,要占用大量口线。 总体系统设计 该系统采用单片机作为数据处理及控制核心,由单片机完成人机界面、系统控制、信号的采集分析以及信号的处理和变换,采用按键

输入,利用液晶显示电路输出数字显示的方案。将设计任务分解为按键电路、液晶显示电路等模块。下图为系统的总体框图: 总体方框图 硬件实现及单元电路设计 1单片机最小系统的设计 AT89C52是片内有ROM/EPROM的单片机,因此,这种芯片构成的最小系统简单﹑可靠。用80C51单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如图(2) 89C51单片机最小系统所示。由于集成度的限制,最小应用系统只能用作一些小型的控制单元。其应用特点: (1)有可供用户使用的大量I/O口线。

模电课程设计(波形发生器)

课程设计 课程名称模拟电子技术基础课程设计题目名称波形发生电路_ 学生学院物理与光电工程学院 专业班级电子科学与技术(5)班 学号 学生姓名 指导教师 2013-12-10

一、题目: 波形发生电路 二、设计任务与技术指标 要求:设计并制作用分立元件和集成运算放大器组成的能产生正弦波、方波和三 角波的波形发生器。 基本指标: 1、输出的各种波形基本不失真; 2、频率范围为50H Z ~20KH Z ,连续可调; 3、方波和正弦波的电压峰峰值V PP >10V ,三角波的V PP >20V 。 三、电路设计及其原理 1) 方案的提出 方案一 ①用RC 桥式振荡器产生正弦波。 ②正弦波经过一个过零比较器产生方波。 ③方波通过积分运算产生三角波。 方案二 ①由滞回比较器和积分运算构成方波和三角波发生电路。(如图1所示) ②再由低通滤波把三角波转成正弦波。 方案三 ①由滞回比较器和积分运算构成方波和三角波发生电路。(同方案二) ②利用折线法把三角波转换成正弦波。(如图2所示) 图1 图3 图2

2)方案的比较 方案一中以RC串并联网络为选频网络和正反馈网络、并引入电压串联负反馈,从而产生正弦波。为了稳定正弦波幅值,一般要在反馈电阻一边串联一对反向的并联二极管,但这样会使正弦波出现交越失真。R1/R2=2时,起振很慢; R1/R2>2时,正弦波会顶部失真。调试困难。还有,RC桥式振荡器对同轴电位器的精确度要求较高,否则,正弦波很容易失真。 方案二的低通滤波产生正弦波适宜在三角波频率固定或变化小时使用,而本次课程设计要求频率50Hz-20KHz,显然不适合。 方案三滞回比较器和积分比较器首尾相接形成正反馈闭环系统,这样就形成方波发生器和三角波发生器。滞回比较器输出的方波经积分产生三角波,三角波又触发比较器自动翻转成方波。 另外,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。虽然反馈网络中电阻的匹配困难,但可以通过理论计算出每个电阻阻值后再调试。这样可以省下很多功夫。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 3)单元电路设计 方波---三角波产生电路

基于51单片机的信号发生器设计报告

基于51单片机的信号发生器设计报告 二零一四年十二月十一日

摘要 根据题目要求以及结合实际情况,本文采用一种以AT89C51单片机为核心所构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。本设计经过测试,性能和各项指标基本满足题目要求。 关键词:信号发生器 DAC0832芯片 LM358运放 89C51芯片

目录 摘要...................................................................... 目录...................................................................... 第一章绪论................................................................. 1.1单片机概述........................................................... 1.2信号发生器的概述和分类.............................................. 1.3问题重述及要求....................................................... 第二章方案的设计与选择................................................... 2.1方案的比较........................................................... 2.2设计原理 ............................................................. 2.3设计思想 ............................................................. 2.4实际功能 ............................................................. 第三章硬件设计............................................................ 3.1硬件原理框图......................................................... 3.2主控电路 ............................................................. 3.3数、模转换电路....................................................... 3.4按键接口电路......................................................... 3.5时钟电路 ............................................................. 3.6显示电路 ............................................................. 第四章软件设计............................................................ 4.1程序流程图........................................................... 参考文献.................................................................... 附录1 电路原理图 .......................................................... 附录2 源程序............................................................... 附录3 器件清单......................................................

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

基于51单片机函数信号发生器设计.

摘要: 本系统利用单片机AT89S52采用程序设计方法产生锯齿波、正弦波、矩形波三种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产1Hz—3kHz的波形。通过键盘来控制三种波形的类型选择、频率变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。 关键词:单片机AT89S52、DAC0832、液晶1602 Abstract: this system capitalize on AT89s52,it makes use of central processor to generate three kinds of waves, they are triangle wave, and use D/A conversion module, wave generate module and liquid crystal display of 1602, it can have the 1Hz-3KHz profile. In this system it can control wave form choosing, frequency, range,can have the sine wave, the square-wave, the triangular wave. Simultaneously may also take the frequency measurement frequency,and displays them through liquid crystal display of 1602. this design includes three modules. They are D/A conversion module, wave generate module and liquid crystal display of LED module. In this design, the wave generator into wave form module and D/A conversion module are discussed in detail. key word: AT89S52, DAC0832, liquid crystal 1602. 目录

课程设计——波形发生器

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

简易信号发生器单片机课程设计报告

课程设计(论文)任务书 电气学院电力系统及其自动化专业12(1 )班 一、课程设计(论文)题目:简易信号发生器设计 二、课程设计(论文)工作自 2015年1 月12 日起至2015 年 1月16 日止。 三、课程设计(论文) 地点:电气学院机房 10-303 四、课程设计(论文)内容要求: 1.课程设计的目的 (1)综合运用单片机原理及应用相关课程的理论知识和实际应用知识,进行单片机应用系统电路及程序设计,从而使这些知识得到进一步的巩固,加深和发展;(2)熟悉和掌握单片机控制系统的设计方法,汇编语言程序设计及proteus 软件的使用; (3)通过查阅图书资料、以及书写课程设计报告可提高综合应用设计能力,培养独立分析问题和解决问题的能力。 2.课程设计的内容及任务 (1)可产生频率可调的正弦波(64个点)、方波、锯齿波或三角波。 (2)显示出仿真波形。 (3)通过按键选择输出波形的种类。 (4)在此基础上使输出波形的幅值可控。

3.课程设计说明书编写要求 (1)设计说明书用A4纸统一规格,论述清晰,字迹端正,应用资料应说明出处。(2)说明书内容应包括(装订次序):题目、目录、正文、设计总结、参考文献等。应阐述整个设计内容,要重点突出,图文并茂,文字通畅。 (3)报告内容应包括方案分析;方案对比;整体设计论述;硬件设计(电路接线,元器件说明,硬件资源分配);软件设计(软件流程,编程思想,程序注释,) 调试结果;收获与体会;附录(设计代码放在附录部分,必须加上合理的注释)(4) 学生签名: 2015年1月16 日 课程设计(论文)评审意见 (1)总体方案的选择是否正确;正确()、较正确()、基本正确()(2)程序仿真能满足基本要求;满足()、较满足()、基本满足()(3)设计功能是否完善;完善()、较完善()、基本完善()(4)元器件选择是否合理;合理()、较合理()、基本合理()(5)动手实践能力;强()、较强()、一般()(6)学习态度;好()、良好()、一般()(7)基础知识掌握程度;好()、良好()、一般()(8)回答问题是否正确;正确()、较正确()、基本正确()、不正确() (9)程序代码是否具有创新性;全部()、部分()、无() (10)书写整洁、条理清楚、格式规范;规范()、较规范()、一般()总评成绩优()、良()、中()、及格()、不及格() 评阅人:

基于51单片机的简易函数信号发生器

创新性实验研究报告实验项目名称_简易函数信号发生器

四、实验内容

2、实验内容 1、运用keil软件对程序进行编写,运行程序,并进行程序修改。 2、运用protues软件进行硬件电路仿真设计。 3、将程序下载到仿真单片机中,并观测输出波形。 4、对程序进行修改,再次运行仿真软件,直到输出理想的波形。 5、仿照仿真软件进行硬件电路的焊接。 6、将程序下载到单片机,并用示波器测试输出波形。 7、对程序进行修改,直到输出满意的波形为止。

3、实验步骤 1、首先打开keil软件. 2、运用keil软件对程序进行编写,程序见附件。 3、打开protues软件. 4、运用protues软件对硬件电路进行设计。 9C51单片机是该信号发生器的核心,具有2个定时器,32个并行I/O口,1个串行I/O口,5个中断源。由于本设计功能简单,数据处理容易,数据存储空间也足够,因为我们采用了片选法选择芯片,进行芯片的选择和地址的译码。在单片机最小最小系统中,单片机从P1口接收来自键盘的信号,并通过P0口输出控制信号,通过DA转换芯片最终由示波器显示输出波形。单片机引脚分配如下:?XTAL1,XTAL2:外接晶振,产生时钟信号。 ?RST:复位电路; ?P2口:8位数字信号输出输出,外接DAC0832; ?P3.6口和P3.7口:DAC0832的时钟信号; 单片机模块 单片机输出的是数字信号,因为要得到模拟信号的波形就必须对其进行数模转换。我们采用了DAC0832数模转换器,该芯片具由8位输入锁存器、8位DAC寄存器、8位D/A转换器及转换控制电路四部分构成。由于其输出为电流输出,因为外加运算放大器LM324使之转换为电压输出。最后通过示波器显示输出的波形。

基于单片机的信号发生器设计

基于单片机的信号发生器设计

基于单片机的信号发生器 设计

摘要 在介绍MAX038 芯片特性的基础上,论述了采用MAX038 芯片设计数字函数信号发生器的原理以及整机的结构设计。对其振荡频率控制、信号输出幅度控制以及频率和幅度数显的实现作了较详细的论述。该函数信号发生器可输出三角波,方波和正弦波。 本文重点论述了整机通过D/A转换电路控制MAX038的实现过程,D/A转换电路采用了8位4通道的MAX505来实现。在幅度的控制上采用数字电位器AD5171,该芯片是I2C总线方式控制,文中给出了I2C总线的读写控制程序。系统支持按键操作和上位机操作两种模式。 关键词:函数信号;D/A ;单片机控制

Design of Signal Generator System Based on SCM Zisu zhou (College of Zhangjiajie, Jishou University, Jishou,Hunan 416000) Abstract Based on the introduction of MAX038 , we discussed the principle and the whole frame of the digital function signal generator. We described the control of the oscillatory frequent , amplitude and the digital display in detail. Thegenerator can output three kinds of waves : sine wave , square wave , triangle wave. This text has exposition the mirco-computer controls the D/A electric circuit of conversion realize the process. In D/A changing electric circuit adopt the 8 bit 4 channel come to realize. Porentiometer AD5171 is adopted in the control of length. This chip is that I2C bus control way. This system supports key-control or computer-control modes. Key words : function signal ;D/A ;single - chip microprocessor control ;

简易波形发生器的设计

目录 第一章单片机开发板 (1) 1.1 开发板制作 (1) 1.1.1 89S52单片机简介 (1) 1.1.2 开发板介绍 (2) 1.1.3 89S52的实验程序举例 (3) 1.2开发板焊接与应用 (4) 1.2.1开发板的焊接 (4) 1.2.2开发板的应用 (5) 第二章函数信号发生器 (7) 2.1电路设计 (7) 2.1.1电路原理介绍 (7) 2.1.2 DAC0832的工作方式 (9) 2.2 波形发生器电路图与程序 (10) 2.2.1应用电路图 (10) 2.2.2实验程序 (11) 2.2.3 调试结果 (15) 第三章参观体会 (16) 第四章实习体会 (17) 参考文献 (18)

第一章单片机开发板 1.1 开发板制作 1.1.1 89S52单片机简介 图1.1 89s52 引脚图 如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。 各功能部件的介绍: 1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。 2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。 3)中断系统:具有5个中断源,2级中断优先权。 4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。 5)串行口:1个全双工的串行口,具有四种工作方式。 6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。 7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。 8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。这四个端口的功能不完全相同。 A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用; B、P1口是一个准双向并行口,作通用并行I/O口使用; C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用; D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。 控制引脚介绍: 1)电源:单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。 2)时钟引脚XTAL1、XTAL2时钟引脚外接晶体与片内反相放大器构成了振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。 振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,

基于51单片机函数信号发生器设计

摘要:本系统利用单片机AT89S52采用程序设计方法产生锯齿波、正弦波、矩形波三种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产1Hz—3kHz的波形。通过键盘来控制三种波形的类型选择、频率变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。 关键词:单片机AT89S52、DAC0832、液晶1602 Abstract: this system capitalize on AT89s52,it makes use of central processor to generate three kinds of waves, they are triangle wave, and use D/A conversion module, wave generate module and liquid crystal display of 1602, it can have the 1Hz-3KHz profile. In this system it can control wave form choosing, frequency, range,can have the sine wave, the square-wave, the triangular wave. Simultaneously may also take the frequency measurement frequency,and displays them through liquid crystal display of 1602.this design includes three modules. They are D/A conversion module, wave generate module and liquid crystal display of LED module. In this design, the wave generator into wave form module and D/A conversion module are discussed in detail. key word: AT89S52, DAC0832, liquid crystal 1602.

波形发生器课程设计

1.设计题目:波形发生电路 2.设计任务和要求: 要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。 基本指标:输出频率分别为:102H Z 、103H Z ;输出电压峰峰值V PP ≥20V 3.整体电路设计 1)信号发生器: 信号发生器又称信号源或振荡器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。2)电路设计: 整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。 理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分; b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈; c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。 反相输入的滞回比较器:矩形波产生的重要组成部分。 积分电路:将方波变为三角波。 3)整体电路框图: 为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。三角波进入积分电路,得出的波形为所求的三角波。其电路的整体电路框图如图1所示:

图1 4)单元电路设计及元器件选择 a ) 方波产生电路 根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1o 2 in 1p 111 1R R u R u R R R u R u R u ++= ++= 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1 o 21in U U R R u R R u ==-= U th 称为阈值电压。滞回电压比较器的直流传递特性如图4所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。 RC 振荡电路 积分电路 方波 三角波 反相输入的滞回比较 生成 生成 输入 积分电路 输入

相关文档
最新文档