直升机飞行力学复习题

直升机飞行力学复习题
直升机飞行力学复习题

Chapter One

某中心铰接式直升机,以巡航速度做水平直线飞行,已知此时直升机俯仰姿态角02?=-, 纵向周期变距为017B =, 旋翼纵向周期挥舞角013s a =-. 该直升机旋翼轴前倾角为00δ=, 试确定::

直升机爬升角 θ=

机身迎角

α= 旋翼迎角 s α=

旋翼吹风挥舞 10a =

平飞爬升角0°

机身迎角-2°

桨盘平面迎角-2°

吹风挥舞4°

Chapter Two

1. 单旋翼/尾桨式直升机各个操纵杆、舵控制什么操纵面?用以改变哪些空气动力?

2. 杆力梯度为什么不能过大或过小?

3. 共轴式直升机、纵列式直升机、倾转旋翼飞行器都没有尾桨,悬停时如何改变方向?

1. 操纵——气动面——响应 P13表2-1

前推/后拉杆——纵向周期变距,桨盘前倾/后倒——前飞/后飞,俯仰

左推/右推杆——横向周期变距,桨盘侧倒——侧飞滚转

油门/总距杆——改变总距——改变垂向速度

脚蹬——改变尾桨总距——改变航向

2. 为什么杆力梯度不能太大也不能太小P16

太大时大操纵较吃力太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。

3. 共轴、纵列、倾转旋翼机如何悬停转弯

共轴——上下旋翼总距差动

纵列——前后横向周期变距一个向左一个向右

倾转旋翼——一侧后倒一侧前倒

Chapter Three

1.黑鹰直升机的旋翼转向为顶视逆时转,问:

●悬停时遇到迎面突风,旋翼如何倾倒?驾驶员为保持悬停,应如何操纵予以修正?

●驾驶员的修正动作,使桨叶如何周期变距?

2.作定速、定高及左、右转弯时,纵向操纵有何不同?

3.无铰旋翼的桨叶有挥舞运动吗?

1.黑鹰直升机旋翼右旋悬停时遇到阵风旋翼如何挥舞此时如何操纵

前方来的阵风会导致旋翼后倒右倒。应向前、向左推杆。

前推杆导致90°桨距变小,270°桨距变大,

左推杆导致180°桨距变小,0°桨距变大。

2.不改变高度和速度时左转弯和右转弯有区别没,以右旋直升机为例

左转时需要增加尾桨总距,为了平衡尾桨拉力的增加需要左推杆以增加侧向力,这却导致了旋翼拉力的降低,进而需要提总距,又导致向前拉力的增加因而需要后拉杆。总之右旋直升机前飞左转弯的操纵为踩脚蹬—左压杆—提总距—后拉杆。

同理,右旋直升机右转弯的操纵为松脚蹬—减小左压杆—减总距—减小前推杆

3. 无铰式旋翼有挥舞吗

没有挥舞铰但是通过桨叶根部的柔性段或者桨榖柔性件的弹性变形实现挥舞运动。

Chapter Four

1.刚体有6个自由度,研究或计算直升机机身的运动,只用六个主控方程为什么不行?

2.指出线化小扰动方程中的哪些项反应了直升机纵横向运动的耦合?

1. P51或者见讲义PPT 第四章第二页

2. 直升机线化运动方程中哪些项体现了横纵向的耦合P53

操纵输入系数矩阵C中,FX对横向周期变距A1、FZ对纵向周期变距B1的导数均不为0即横向周期变距对后向力有影响而纵向周期变距对侧向力也有影响。

Chapter Five

1.平衡计算的任务是什么?

2.直升机飞行前要检查装载情况,保证重心位置在规定的范围内,为什么不许超出规定范

围?

3.有的直升机无尾斜梁,尾桨比旋翼低,有什么优缺点?

4.Bell-412直升机为水面迫降应急放出了左、右浮筒,试比较浮筒放出前后,直升机的操

纵量和姿态有何不同,假设左、右浮筒在直升机重心所在的横截面内。

5.直9直升机的涵道尾桨比旋翼低,正常悬停时的横向姿态向哪一侧倾斜?转入前飞后,

随着速度的增加,为什么会自行逐渐改平?(注:直9的旋翼转向为顶视顺钟向)直9为什么需要有大垂尾及两片平尾端板?

1.配平的任务是什么

根据平衡条件确定直升机稳定飞行所需的操纵量和直升机的姿态角。

2.为什么重心在特定的范围内P70

重心太前抑制直升机后飞及悬停低速性能,而太靠后则影响大速度前飞性能以及稳定性,因此重心需要限制在一定的范围内。

3.尾桨低于旋翼的好处及坏处P70

好处:尾梁扭转载荷不大,不需要加固垂尾以安装尾桨。总之可以减小结构重量。

坏处:前飞时尾桨桨盘处于旋翼下洗流中,直升机需侧倾一个角度以平衡尾桨、旋翼高度差所引起的滚转力矩。

4.比较有无浮筒时驾驶员的操纵

增加浮筒,相当于在前飞时增加一个作用于重心以下的后向力,相比于无浮筒时驾驶员的操纵需要增加纵向周期变距、提高总距、减小横向周期变距、增加尾桨总距。

Chapter Six

1.平尾安装角一般为负,如果安装成正角度,前飞状态能否提供正的空速稳定性?能否提

供俯仰阻尼?

2.挥舞铰偏置量的大小对直升机的空速稳定性、迎角稳定性、横向稳定性(上反效应)、

航向稳定性各有什么影响?

3.纵向悬停振荡和横向悬停振荡周期是否相同?

4.共轴式直升机为什么多用双垂尾?

5.如果直升机存在螺旋不稳定性,应采取什么改进措施?

6.为什么直升机是前重心时纵向稳定性比后重心时好?P118

1.分析速度稳定性及俯仰阻尼,当平尾正装的时候,稳定前飞时,前方来流速度的增量将

导致平尾上产生一个额外的低头力矩,因而是速度不稳定的。

当直升机以俯仰角速度绕Z轴转动时,比如抬头,将使得平尾的迎角增加,产生额外的低头力矩,阻碍直升机抬头,因而是阻尼力矩。

2.分析挥舞铰偏置量对速度稳定性、迎角稳定性、上反效应及航向稳定性的影响。

当飞行速度增加时,来流左右不对称性增加导致桨尖平面后倒,所引起的桨榖力矩使得直升机抬头,因而挥舞铰偏置量对速度的变化是起静稳定作用的。

当机身迎角增加时,前行桨叶升力增加的多些,后行桨叶升力增加的少些,导致桨尖平面后倒,所附加的桨榖力矩也使得直升机抬头,因而挥舞铰偏置量是迎角静不稳定的。

当直升机向右倾斜时,拉力分量导致直升机向右移动,进而导致旋翼前后气流不对称引起桨尖平面左倒,所附加的桨榖力矩也使得机身左倾,因而是静稳定的。

3.纵向悬停振荡模态与横向悬停振荡模态的区别

纵向悬停振荡:该模态类似于单摆运动,表现为速度与俯仰角两个运动变量之间的耦合,但由于旋翼是迎角静不稳定的,该模态往往是振荡发散的。

横向悬停振荡:与纵向悬停振荡类似,但由于尾桨垂尾的存在,该模态除了滚转角与侧向速度两个变量的耦合,还附加了航向的摆动;如果尾桨垂尾提供的侧向阻尼足够大该模态将是振荡收敛的。

4.为什么共轴双旋翼需要两个垂尾

因为没有尾桨,共轴双旋翼需要更大面积的垂尾来提供航向稳定性、横向运动阻尼、航向运动阻尼。从减轻结构重量的角度上讲,需要面积相同时,双垂尾比单垂尾更有利。

Chapter Seven

1.直升机操纵响应带宽的物理含义是什么?

2.下述两种情况下,直升机的垂直运动阻尼是否增大?垂直操纵灵敏度是否增大?达到稳

态升降的时间是否缩短?

●增大旋翼实度

●增大旋翼转速

3.直升机对总距操纵的响应是随时间单调变化的,P132(式7-7)而对驾驶杆或舵的响

应都是振荡的,式P134(7-14)试分析其原因?

1.带宽的物理含义

直升机对于低频操纵有较好的跟随性,操纵响应幅值与操纵量成正比,相位滞后也较小;

在进行高频操纵时,直升机跟随性变差,滞后变大且响应幅度减小。因而直升机存在一个操纵频率的适应范围称为带宽。

2.分析下列因素对直升机垂直运动的阻尼、操纵灵敏度及时间常数的影响

●增加实度

●增加桨尖速度

仅仅考虑旋翼的作用

当旋翼实度增加时,运动阻尼增加,操纵灵敏度不变,时间常数减小。

当桨尖速度增加时,运动阻尼增加,操纵灵敏度增加,时间常数减小。

3.直升机对总距控制的响应是非振荡的,而对驾驶杆或舵的响应是振荡的,为什么

Chapter Eigh t

1.“认定的”飞行品质等级是什么人、根据什么而给出的?P154 “预估的”飞行品质等级是

什么人、根据什么而给出的?为什么需要两种评定方法相结合来确定直升机的飞行品质?P165

2.直升机的飞行品质分为哪几个等级?P144 “认定”的品质等级和“预估”的品质等级各

是如何得到的?

直升机飞行力学复习题答案

Chapter One A helicopter of central articulated rotor makes a level flight with cruse speed. In this flight condition, the pitching attitude angle is 20, longitudinal cyclic pitching angle is B1 70, rotor longitudinal flapping angle is a1s 30. Assuming the tilted angle of rotor shaft is 00, please determining the following angles: Helicopter climb angle Fuselage attack angle Rotor attack angle s Rotor flapping due to forward speed a10 中心铰式旋翼直升机以巡航速度前飞。俯仰角-2 °,纵向周期变距7°,纵向挥舞角-3 °,旋翼轴前倾角0° 平飞,爬升角0° 机身迎角-2 ° 桨盘平面迎角-2 ° 吹风挥舞4°

Chapter Two 1. For the main/tail rotor configuration helicopter, the pilot applies which stick or rudder to control what kind of surfaces and corresponding aerodynamic forces? 2. Whythe gradient of control stick forces can' t be too large or small? 3. Co-axis, tandem and tilted-rotor helicopters have no tail rotor. How to change the direction in hover for these helicopters? 1. 操纵——气动面——响应P13 表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/ 后倒——前飞/后飞,俯仰 左推/ 右推杆——横向周期变距,桨盘侧倒——侧飞,滚转 油门/ 总距杆——改变总距——改变垂向速度脚蹬——改变尾桨总距——改变航向 2. 为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力,太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3. 共轴、纵列、倾转旋翼机如何悬停转弯?共轴——上下旋翼总距差动纵列——前后横向周期变距一个向左一个向右倾转旋翼——一侧后倒一侧前倒

直升机飞行力学复习题

Chapter One 某中心铰接式直升机,以巡航速度做水平直线飞行,已知此时直升机俯仰姿态角02?=-, 纵向周期变距为017B =, 旋翼纵向周期挥舞角013s a =-. 该直升机旋翼轴前倾角为00δ=, 试确定:: 直升机爬升角 θ= 机身迎角 α= 旋翼迎角 s α= 旋翼吹风挥舞 10a = 平飞爬升角0° 机身迎角-2° 桨盘平面迎角-2° 吹风挥舞4° Chapter Two 1. 单旋翼/尾桨式直升机各个操纵杆、舵控制什么操纵面?用以改变哪些空气动力? 2. 杆力梯度为什么不能过大或过小? 3. 共轴式直升机、纵列式直升机、倾转旋翼飞行器都没有尾桨,悬停时如何改变方向? 1. 操纵——气动面——响应 P13表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/后倒——前飞/后飞,俯仰 左推/右推杆——横向周期变距,桨盘侧倒——侧飞滚转 油门/总距杆——改变总距——改变垂向速度 脚蹬——改变尾桨总距——改变航向 2. 为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3. 共轴、纵列、倾转旋翼机如何悬停转弯 共轴——上下旋翼总距差动

纵列——前后横向周期变距一个向左一个向右 倾转旋翼——一侧后倒一侧前倒 Chapter Three 1.黑鹰直升机的旋翼转向为顶视逆时转,问: ●悬停时遇到迎面突风,旋翼如何倾倒?驾驶员为保持悬停,应如何操纵予以修正? ●驾驶员的修正动作,使桨叶如何周期变距? 2.作定速、定高及左、右转弯时,纵向操纵有何不同? 3.无铰旋翼的桨叶有挥舞运动吗? 1.黑鹰直升机旋翼右旋悬停时遇到阵风旋翼如何挥舞此时如何操纵 前方来的阵风会导致旋翼后倒右倒。应向前、向左推杆。 前推杆导致90°桨距变小,270°桨距变大, 左推杆导致180°桨距变小,0°桨距变大。 2.不改变高度和速度时左转弯和右转弯有区别没,以右旋直升机为例 左转时需要增加尾桨总距,为了平衡尾桨拉力的增加需要左推杆以增加侧向力,这却导致了旋翼拉力的降低,进而需要提总距,又导致向前拉力的增加因而需要后拉杆。总之右旋直升机前飞左转弯的操纵为踩脚蹬—左压杆—提总距—后拉杆。 同理,右旋直升机右转弯的操纵为松脚蹬—减小左压杆—减总距—减小前推杆 3. 无铰式旋翼有挥舞吗 没有挥舞铰但是通过桨叶根部的柔性段或者桨榖柔性件的弹性变形实现挥舞运动。 Chapter Four 1.刚体有6个自由度,研究或计算直升机机身的运动,只用六个主控方程为什么不行? 2.指出线化小扰动方程中的哪些项反应了直升机纵横向运动的耦合?

飞行力学知识点

1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。 2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度 3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。 4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度 5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。 6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。 7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。 8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。 9.定常运动:运动参数不随时间而改变的运动。 10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力 11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩 12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间 13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量 14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量 15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。 16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点 17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动 18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系 19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线 20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。 (书上版:是固联于飞机并随飞机运动的一种动坐标系。它的原点O位于飞机的质心;Oxt 轴与翼弦或机身轴线平行,指向机头为正;Oyt轴位于飞机对称面内,垂直于Oxt轴,指向上方为正;Ozt轴垂直飞机对称面,指向右翼为正。) 21.翼载荷:飞机重力与及面积的比值 22.纵向静稳定力矩:由迎角引起的那部分俯仰力矩称之为纵向静稳定力矩 23.航向静稳定性:飞行器在平衡状态下受到外界非对称干扰而产生侧滑时,在驾驶员不加操纵的条件下,飞行器具有减小侧滑角的趋势 1.作用在飞机上的外力主要有飞机重力G、空气动力R、发动机推力P 2.飞机的过载分为切向过载n x、法向过载n y组成 3.飞机的着陆过程可分为:下滑、拉平、平飞减速、飘落、地面滑跑。

飞行力学试题题库

飞行力学试卷A 一、简答题 1、试说明最大升阻比max K 随M 数的变化规律,并解释其变化原因。 2、试说明最大升阻比A 随M 数的变化规律,并解释其变化原因。 3、试说明最大升阻比0x c 随M 数的变化规律,并解释其变化原因。 4、试描述发动机的转速(油门)特性,并绘出变化曲线。 5、试描述发动机的速度特性,并绘出变化曲线。 6、试描述发动机的高度特性,并绘出变化曲线。 7、试叙述基本飞行性能计算时的假设条件。P16 8、飞机设计师为提高在亚音速范围的飞机性能,通常采用哪些措施。P19 9、简述飞机的飞行包线,并绘制图形表示。(包括个限制条件)P25 10、简述在飞行包线内的第一平飞范围内驾驶员的操作。P32 11、简述“反操纵”的含义。 12、简述飞行状态和飞行员操纵的关系(改变驾驶杆和油门对飞机的影响)。P33 13、采用那些措施可以改善飞机的航程和航时。P61 14、影响飞机进行正常盘旋时要考虑的三种限制因素P72 15、简述推导飞机运动方程时的假设条件P93 16、简述飞机的机体坐标系(包括X 、Y 、Z 轴及相关角度) 17、简述飞机的气流坐标系(包括X 、Y 、Z 轴及相关角度) 18、简述飞机的航迹坐标系(包括X 、Y 、Z 轴及相关角度) 19、简述在无量纲化公式中A z z qSb M m =中,q 、S 、A b 分别代表什么含义。 20、简述机身对飞机的纵向力矩的影响。P114 21、写出平尾力矩系数对升力系数的偏导数y zpw c m ??,并解释各参数的含义。P116 22、简述飞机质心一定的情况下,飞机的焦点随飞行M 数的影响。P120 23、简述襟翼偏转的影响。P121 24、飞机安装水平尾翼的作用。P123 25、如何避免飞机在跨音速飞行时出现“反操纵”现象。P129 26、简述补偿飞机舵面铰链力矩的调整片的作用。P131 27、简述飞机的相对密度,并解释其各个参数。P142 28、写出握杆机动点的表达式,握杆机动点的物理含义。P143 29、写出松杆机动点的表达式,松杆机动点的物理含义。P145 30、质心前限的确定原则。 31、采用什么手段可以增大飞机的航向静稳定性。 32、差动副翼的原理。P162 33、简述飞机副翼操纵的反效问题。P163 34、简述改善飞机横向操纵效能的措施。 35、简述飞机的“蹬舵反倾斜”现象P170

直升机飞行力学复习题答案

Chapter One A helicopter of central articulated rotor makes a level flight with cruse speed. In this flight condition, the pitching attitude angle is 02?=-, longitudinal cyclic pitching angle is 017 B =, rotor longitudinal flapping angle is 013s a =-. Assuming the tilted angle of rotor shaft is 00δ=, please determining the following angles: Helicopter climb angle θ= Fuselage attack angle α= Rotor attack angle s α= Rotor flapping due to forward speed 10a = 中心铰式旋翼直升机以巡航速度前飞。俯仰角-2°,纵向周期变距7°,纵向挥舞角-3°,旋翼轴前倾角0° 平飞,爬升角0° 机身迎角-2° 桨盘平面迎角-2° 吹风挥舞4°

Chapter Two 1.For the main/tail rotor configuration helicopter, the pilot applies which stick or rudder to control what kind of surfaces and corresponding aerodynamic forces? 2.Why the gradient of control stick forces can’t be too large or small? 3.Co-axis, tandem and tilted-rotor helicopters have no tail rotor. How to change the direction in hover for these helicopters? 1.操纵——气动面——响应P13表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/后倒——前飞/后飞,俯仰左推/右推杆——横向周期变距,桨盘侧倒——侧飞,滚转 油门/总距杆——改变总距——改变垂向速度 脚蹬——改变尾桨总距——改变航向 2.为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力,太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3.共轴、纵列、倾转旋翼机如何悬停转弯? 共轴——上下旋翼总距差动 纵列——前后横向周期变距一个向左一个向右 倾转旋翼——一侧后倒一侧前倒

飞机的飞行性能

飞机的飞行性能 在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。 速度性能 最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。这是衡量飞机性能的一个重要指标。 最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。 巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。这是衡量远程轰炸机和运输机性能的一个重要指标。 当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。 高度性能 最大爬升率:是指飞机在单位时间内所能上升的最大高度。爬升率的大小主要取决与发动机推力的大小。当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。 理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。由于达到这一高度所需的时间为无穷大,故称为理论升限。 实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。 飞行距离 航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。 活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。飞机的活动半径略小于其航程的一半,这一指标直接构成了歼击机的战斗性

飞行力学基础

第二章飞行力学基础 2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向 某方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面 指向地心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表 o g z g 轴,如图2.1-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的 方向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂 x 图2.1-1 机体坐标系与地面坐标系

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 图2.1-2 速度坐标系与地面坐标系

空气动力学与飞行力学复习题10

】 《空气动力学与飞行力学》复习题 一、选择题 1.连续介质假设意味着。 (A) 流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有间隙 (D) 流体不可压缩 2.温度升高时,空气的粘度。 (A) 变小(B)变大 (C) 不变 3.水的体积弹性模量空气的体积弹性模量。 ( (A) < (B)近似等于 (C) > 8.的流体称为理想流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 9.的流体称为不可压缩流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 10.静止流体的点压强值与无关。 (A) 位置(B)方向 (C) 流体种类(D)重力加速度 11.油的密度为800kg/m3,油处于静止状态,油面与大气接触,则油面下处的表压强为kPa。 — (A) (B) (C) (D) 12.在定常管流中,如果两个截面的直径比为d1/d2= 3,则这两个截面上的速度之比V1/ V2 = 。 (A) 3 (B)1/3 (C) 9 (D)1/9 13.流量为Q,速度为V的射流冲击一块与流向垂直的平板,则平板受到的冲击力为。 (A) QV (B)QV2(C) ρQV (D)ρQV2 14.圆管流动中,层流的临界雷诺数等于。 (A) 2320 (B)400 (C) 1200 (D)50000 15.超音速气流在收缩管道中作运动。 > (A) 加速(B)减速 (C) 等速 16.速度势只存在于 (A) 不可压缩流体的流动中(B)可压缩流体的定常流动中 (C) 无旋流动中(D)二维流动中 17.流函数存在于 (B) 不可压缩流体的平面流动中(B)可压缩流体的平面流动中 (C) 不可压缩流体的轴对称流动中(D)任意二维流动中 18.水的粘性随温度升高而 , A . 增大; B. 减小; C. 不变。 19.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

《飞行性能与计划》综合复习提纲解析

《飞行性能与计划》复习要点 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高 3)在起飞航道阶段,FAR要求起飞净航迹需高于障碍物35英尺。

空气动力学与飞行力学复习题10

《空气动力学与飞行力学》复习题 一、选择题 1.连续介质假设意味着。 (A) 流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有间隙 (D) 流体不可压缩 2.温度升高时,空气的粘度。 (A) 变小(B)变大 (C) 不变 3.水的体积弹性模量空气的体积弹性模量。 (A) < (B)近似等于 (C) > 8.的流体称为理想流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 9.的流体称为不可压缩流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 10.静止流体的点压强值与无关。 (A) 位置(B)方向 (C) 流体种类(D)重力加速度 11.油的密度为800kg/m3,油处于静止状态,油面与大气接触,则油面下处的表压强为kPa。 (A) (B) (C) (D) 12.在定常管流中,如果两个截面的直径比为d1/d2= 3,则这两个截面上的速度之比V1/ V2 = 。 (A) 3 (B)1/3 (C) 9 (D)1/9 13.流量为Q,速度为V的射流冲击一块与流向垂直的平板,则平板受到的冲击力为。 (A) QV (B)QV2(C) ρQV (D)ρQV2 14.圆管流动中,层流的临界雷诺数等于。 (A) 2320 (B)400 (C) 1200 (D)50000 15.超音速气流在收缩管道中作运动。 (A) 加速(B)减速 (C) 等速 16.速度势只存在于 (A) 不可压缩流体的流动中(B)可压缩流体的定常流动中 (C) 无旋流动中(D)二维流动中 17.流函数存在于 (B) 不可压缩流体的平面流动中(B)可压缩流体的平面流动中 (C) 不可压缩流体的轴对称流动中(D)任意二维流动中 18.水的粘性随温度升高而 A . 增大; B. 减小; C. 不变。 19.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。 20.理想流体的特征是 A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT。 21.静止液体中存在 A. 压应力;B. 压应力和拉应力;C. 压应力和切应力;D. 压应力、切应力和拉应力; 22.用U形水银差压计测量水管内A、B两点的压强差,水银面高差h p=10cm ,p A-p B为

2006年西工大飞行力学考研试题答案(A)

试题名称:飞行器飞行力学(A 卷) 试题编号: 470 说 明:所有答题一律写在答题纸上 第 1 页 共 2 页 一、 填空题(30分,每小题3分) 1.攻角定义为导弹速度矢量在 的投影与 夹角。 2.轴对称导弹定常飞行时的纵向平衡关系式为 。 3.铅垂平面内弹道曲率半径与法向过载的关系式为 。 4.极限过载与临界迎角的关系式为 。 5.前置量导引法的导引关系式为 。 6.阵风干扰将产生 和 运动参数的初始偏差。 7.用动力系数描述的纵向短周期扰动运动动态稳定条件为 。 8.引入滚转角和滚转角速度信号的自动驾驶仪调节规律为 。 9.纵向阻尼动力系数的表达式为 。 10.轴对称导弹的主要理想操纵关系式为 。 二、问答题(30分,每小题5分) 1.导弹在水平面内作侧滑而无倾斜飞行的方案有哪些?其理想控制关系式分别是怎样的? 2.何谓横向静稳定性?影响飞航式导弹横向静稳定性的因素有哪些? 3.前置量导引法的前置角ε?的选取原则是什么? 4.影响导弹反应舵偏的过渡过程品质指标有哪些?影响它们的传递参数分别主要是什么? 5.为什么要在法向过载反馈的纵向姿态运动回路中加入限幅器? 6.导弹按理想弹道飞行,其过载应满足怎样的关系式? 三、分析讨论题(45分,每小题15分) 1.已知调节规律z K K ??δ???=?+? ,由反应此舵偏信号的z ??δ??? 、、参数偏差的过渡过程曲线,讨论在??参数偏差还为正时,舵面便出现了负偏值,即出现提前偏舵的现象、原因和结果。 2.分析弹道倾角对侧向动态稳定性的影响。 3.分析面对称导弹当存在绕1ox 轴的滚动角速度1x ω时,产生相对于1oy 轴的偏航力矩的物理成因。

火箭军工程大学飞行力学2017年考研初试真题

火箭军工程大学 2017年硕士研究生入学考试专业课试题 科目:飞行力学 时间:180分钟 满分:150分 注意:答案写在答题纸上,答在试卷上无效!答题时不用抄题,只需写清题号。 一、填空题(本题满分15分,其中每小题各3分。 ) 1、在弹道导弹弹道学中,弹体相对于平移坐标系的角速度矢量T ω等于地球自转角速度矢量e ω与 角速度矢量之和。 2、箭体坐标系相对于发射坐标系的俯仰角、偏航角、滚转角的定义分别为 、 、 。 3、在地面发射坐标系中远程火箭主动段质心动力学方程中的离心惯性力项和哥氏惯性力项的矢量表达式分别为 、 。 4、弹道导弹主动飞行段的一般质心运动动力学矢量方程中的力有 、 、 、 、 、 ;以及一般绕质心转动的动力学矢量方程中的力矩有 、 、 、 、 。 5、导弹自由飞行段弹道形状是 ,偏心率大小e 决定其类型,当e=0时为 ,当01时为 。 二、判断题(本题满分15分,其中每小题各3分。请在每题的A 、B 答案中判断出一个正确的结果填入每题的括号内。 ) 1、重力加速度是() A 、 引力加速度与离心加速度之和 B 、 等于引力加速度 2、总升力单位矢量方向为( ) A 、总升力面与111z o y 平面的交线 B 、 总攻角平面与v v z o y 1平面的交线 3、主动段引力损失大小( ) A 、 取决于主动段的飞行时间 B 、 取决于主动段的飞行时间和速度倾角 4、弹道导弹的被动段包括() A 自由飞行段与再入段 B 瞄准段与自由飞行段 5、射程角为( )。 A 、轨道上某点地心矢经矢量与发射坐标系y 轴的夹角 B 、地球自转角速度矢量与轨道上某点地心矢经矢量的夹角 三、计算题(本题满分45分,其中每小题各15分。) 1、火箭推力10 吨,可近似认为全由动推力产生,忽略气动力的作用,起飞重量5吨。垂直飞行10秒后,质量变成了4.75吨,计算此时能达到多大的速度?(ln0.95=-0.05) 2、导弹在垂直平面内飞行,质量375m kg =,推力15P =千牛,速度s m V /600=,弹 道倾角 30=θ,攻角3α=,飞行高度km H 10=(对应的大气密度3 0.413/kg m ρ=,29.78/g m s =),参考面积20.2S m =,参考长度 3.5L m =,重心 1.8g X m =,相应气动

飞行性能考试选择题库

1. 已知压力高度3000英尺处的温度偏差为ISA+10℃,则该高度的实际气温为()。 A: B:19 C:25 D:30 正确答案: 2 2. 国际标准大气ISA规定,海平面温度为()℃,海平面压力()mbar。 A:15,1003 B:59,1003 C:15,1013 D:59,1013 正确答案: C 3. 低速飞行常用飞机的________来衡量飞机气动性能的好坏,高速飞行常用________来衡量飞机气动性能的好坏。 A:升阻比,马赫数 B:最大升阻比,气动效率 C:阻力系数,升阻比 D:阻力系数,最大升阻比 正确答案: B 1. 飞机起飞场道结束时和着陆过跑道头时的高度分别是___ (ft) A:15,35 B:35,15 C:50,35 D:35,50 正确答案: D 2. 飞机一发故障,在V1时决定继续起飞,在跑道头上空35ft处速度不小于___。 A:V2 B:V2+5 C:V2+10 D:V2+15 正确答案: A 3. 在平衡跑道条件下起飞,_____。 A:从起飞加速到V1的距离,等于从V1停下来的距离 B:起飞性能最好

C:C. 加速到V1之前1秒一台发动机失效,使飞机停下来的距离,等于继续起飞到高度35ft,速度达到V2的距离 D:起飞距离与着陆距离相等 正确答案: C 4. 若起飞中只计入净空道,和不计净空道相比____。 A:最大起飞重量增大且相应的V1降低 B:最大起飞重量减小且相应的V1降低 C:最大起飞重量增大且相应的V1增大 D:最大起飞重量减小且相应的V1增大 正确答案: C 5. 适当增大起飞襟翼角度,可导致____。 A:较短的滑跑距离 B:较大的离地速度VLOF C:上升性能改进 D:减小飞机阻力 正确答案: A 6. 最大轮胎速度是指()。 A:地速 B:空速 C:表速 D:VMBE 正确答案: A 7. FAA规定,用假设温度法减推力起飞,减推力的最大值不得超过______,假设温度比实际温度______。 A:25,高 B:30,高 C:25,低 D:30,低 正确答案: A 8. FAR对飞机起飞净航迹与障碍物之间的高度规定是飞机净航迹()。 A:至少高于障碍物35英尺 B:高于障碍物50英尺 C:高于障碍物30英尺 D:根据具体情况而定

飞行力学硕士研究生入学考试试题

试题名称:战术导弹轨迹与姿态动力学(A卷)试题编号: 470 说明:所有答题一律写在答题纸上第 1 页共 3 页一、选择题(30分,每小题5分。请在每题的A、B答案中选择一个 正确的结果填入每题的括号内。) 1.运动学弹道() A. 由动力学方程和运动学方程所确定的导弹重心运动轨迹 B. 将导弹视为可控质点,由运动学方程和理想约束方程所确定的导弹重心 运动轨迹 2.寻的制导() A. 不需从目标或制导站提供信息,完全由弹上制导设备产生导引信号,使 导弹沿预定弹道飞向目标 B. 利用弹上导引装置接收目标辐射或反射的能量形成导引信号,控制导弹 飞向目标 3.极限过载() A. 对应于临界迎角的法向过载 B. 舵面偏转到最大值时,平衡飞行器所能产生的法向过载 4.导弹运动微分方程的线性化方法是在()条件下建立的 A. “系数冻结”法 B. 小扰动 5.描述自由扰动运动的是() A. 运动参数偏量的非齐次微分方程 B. 运动参数偏量的齐次微分方程 6.扰动运动微分方程的动力系数由()参数决定 A. 基准运动 B. 实际运动

试题名称:战术导弹轨迹与姿态动力学(A 卷) 试题编号: 470 说 明:所有答题一律写在答题纸上 第 2 页 共 3 页 二、 问答题(40分,每小题5分) 1.何谓复合制导? 其并联与串联式组合方式有什么不同?串联式复合制导的转接问题应考虑哪些问题? 2.导弹质心移动的动力学方程和绕质心转动的动力学方程分别在什么坐标系中建立有最简单的形式?并简述坐标系的定义。 3.何谓导引弹道?导引弹道的弹道特性与哪些因素有关?研究导引弹道时常引入什么假设? 4.什么是等法向加速度曲线?如何应用等法向加速度曲线确定导弹的攻击禁区? 5.动态稳定性和静稳定性分别是如何定义的?两者的区别是什么?纵向短周期扰动运动的动态稳定性和静稳定性关系是怎样的? 6.导弹扰动运动的特征根与扰动运动的形态、扰动运动的动态稳定性有什么关系? 7.飞行器的纵向静稳定裕度与哪一个动力系数相关?它是如何影响纵向过渡过程品质的? 8.倾斜扰动运动的稳态值有什么特点? 三、 分析讨论题(40分,每小题20分) 1.若高度稳定与控制的自动驾驶仪方程为1)()z f T h T s K K K K h δδδ?+=+(,其中h K 为高度传感器的放大系数,h 为传感器实测的高度差,?为导弹俯仰角。请分析导弹消除负高度差的全部动力学过程,并说明在自动驾驶仪方程中引入?的作用。 2.应用采用三点导引法的弹道与其等法向加速度曲线和主梯度线的关系,讨论迎击和尾追两种攻击方式情况下的需用过载变化特点。 四、 推导证明题(20分,每小题10分) 1.设目标在某一铅垂平面内作等速水平直线飞行,导弹在此平面内作等速飞行。证明导弹按追踪导引方法导引飞行的追踪曲线方程为

第二炮兵工程大学考研试题862飞行力学(2015年~2016年)

第二炮兵工程大学2015年 硕士生招生考试初试业务课考试试题 862飞行力学 科目代码:862 科目名称:飞行力学 适用学科:航空宇航科学与技术、航天工程(专业学位) 一、填空题(本题满分15分,其中每小题各3分。 ) 1. 导弹的可用过载定义为 偏转到 值时的导弹所能产生的 过载。 2.导弹作为刚体的六自由度动力学模型包括 个描述 移动的动力学方程和 个描述 转动的动力学方程。 3.作用在飞行器上的空气动力一般可以分解在 坐标系的 轴、 轴、 轴上,分别称其为 力、 力、 力。 4. 导弹做等速直线爬升的方案飞行,其应满足的条件为 。 5. 弹道偏角定义为 矢量在 的投影与 的夹角。 二、判断题(本题满分15分,其中每小题各3分。请在每题的A 、B 答案中判断出一个正确的结果填入每题的括号内。 ) 1.动力学弹道 ( ) A. 由动力学方程和运动学方程所确定的导弹重心运动轨迹 B. 将导弹视为可控质点,由运动学方程和理想约束方程所确定的导弹重心运动轨迹 2. 可用过载 ( ) A. 对应于临界迎角的法向过载 B. 舵面偏转到最大值时,平衡飞行器所能产生的法向过载 3. 寻的制导( ) A. 不需从目标或制导站提供信息,完全由弹上制导设备产生导引信号, 使导弹沿预定弹道飞向目标 B. 利用弹上导引装置接收目标辐射或反射的能量形成导引信号,控制导弹飞向目标 4.导致下洗延迟力矩的参数( ) A. B. ,αβ ,,x y z ωωω5.飞行器焦点定义为( ) A. 总空气动力的作用线与飞行器纵轴的交点 B. 由攻角所引起的那部分升力的作用点 Y α α?三、计算题(本题满分45分,其中每小题各15分。) 1.已知导弹舵面升力为100kg ,舵面压心至铰链轴的距离为 0.5m ,求当舵偏角和攻角分别为15和20时,所产生的铰链力矩值。 2.已知导弹质量为922.5kg , 推力和升力导数分别为367kg 和120kg /,求导弹Y α 以25的弹道倾角做直线爬升铅垂平面运动时的俯仰角值。 3.已知导弹过载,弹道倾角,求导弹切向加速度值。 2 2.5x n =30θ= 四、问答题(本题满分75分,其中每小题各5分。)

飞机的飞行性能.

飞机的飞行性能 2014-06-15 飞机的飞行性能 在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。 速度性能 最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。这是衡量飞机性能的一个重要指标。 最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。 巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。这个速度一般为飞机最大平飞速度的'70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。这是衡量远程轰炸机和运输机性能的一个重要指标。 当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。 高度性能 最大爬升率:是指飞机在单位时间内所能上升的最大高度。爬升率的大小主要取决与发动机推力的大小。当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。 理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。由于达到这一高度所需的时间为无穷大,故称为理论升限。 实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。 飞行距离

飞行力学知识点

《飞行动力学》掌握知识点 第一章 掌握知识点如下: 1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局。 2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等。 3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线。(P7) 答:涡轮喷气发动机的性能指标推力T和耗油率f C等均随飞行状态、发动机工作状态而改变。下面要简单介绍这些变化规律,即发动机的特性曲线,以供研究飞行性能时使用。 1)转速(油门特性) 在给定调节规律下,高度和转速一定时,发动机推力和耗油率随转速的变化关系,称为转速特性。图1.10为某涡轮喷气发动机T和f C随转速n的变化曲线。 由于一定转速对应一定油门位置,故转速特性又称油门特性或节流特性。 2)速度特性 在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系,称为速度特性。图1.11为某涡轮喷气发动机T和f C随Ma变化曲线。 3)高度特性 在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系,称为高度特性。图1.12为某涡轮喷气发动机的T和f C随H的变化曲线。

第二章 掌握知识点如下: 1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。 2)飞机定直平飞的最小速度受到哪些因素的限制?(P40) 答:最小平飞速度 min V 是指飞机在某一高度上能作定直平飞的最小速度。 1)受最大升力系数 max L C 限制的理想最小平飞速度S C W V L ρmax min 2= ; 2)受允许升力系数 a L C .限制的最小允许使用平飞速度S C W V a L a ρ.2= ; 3)受抖动升力系数 sh L C .限制的抖动最小平飞速度S C W V sh L sh ρ.2= ; 4)受最大平尾偏角 m ax .δL C 限制的最小平飞速度S C W V L ρδδmax max .min 2)(= ; 5)发动机可用推力 a T 。一般情况下,高空飞行由于a T 的下降,min V 往往受到a T 的限制;在低空飞行时,min V 由最大允许升力系数a L C .来确定。 3)为提高飞机的续航性能,飞机设计中可采取哪些措施?(P64) 答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。

飞机飞行的各阶段简要介绍

飞机飞行的各阶段简要介绍 飞机要完成一次飞行任务要经过滑行、起飞、爬升、巡航、下降、着陆几个阶段。 1、滑行和起飞阶段 飞机完成航班飞行前各项地面勤务工作。包括旅客登机完成、货物行李装卸结束、机务人员检查完毕签署文件放行飞机、机组从航管部门等获取相关飞行资料、地面商务值机人员与机组共同核对人员、飞机装舱单正确等; 然后向航空管制部门、塔台申请并获准后,在机坪上启动好发动机,经滑行道到达跑道端准备起飞。是滑行阶段,在这一阶段飞机有如一个运动的车辆,要按照地面的交通要求来运行,滑行段是飞机重量最大的时刻,也是驾驶员做起飞前各种准备和检查的时刻,同空中飞行一样也需认真小心。 飞机起飞是一个直线加速运动,是飞机功率最大和驾驶员操作最繁忙的时候,它分两个阶段,飞机首先以最大功率在地面滑跑,在起始阶段由于速度不大,方向舵不起作用,驾驶员控制着前轮方向,以保持飞机直线前进,当速度到每小时80公里时驾驶员用驾驶杆操纵飞机,但在达到决断速度Vl以前,驾驶员的手绝对不离油门杆,以便在发生突然情况时中止起飞。超过Vl速度后驾驶员必须继续起飞,因为这时的速度太大,再中断起飞,飞机会冲出跑道造成事故。 Vl的数值根据飞机的大小、装置不同、跑道情况、外界环境(温度、气压值、地面风速)而不同。速度继续增加到一定数值时,机翼的升力和重量大致相等,驾驶员拉杆向后,飞机抬起机头,前轮离地,这个速度称为抬前轮速度。这时飞机开始升空,起飞的第一阶段滑跑完成,转入第二阶段即加速爬升阶段。飞机飞到规定的高度,起飞阶段结束。 从飞机滑跑开始到飞越35米高度的地面距离称为起飞距离,起飞距离越短越好。这个距离的长短取决于发动机的推力的大小,增升装置(襟翼、维翼)的性能,同时也和海拔高度及地面温度有关。 2、爬升阶段 有两种方式,一种是按固定的角度持续爬升达到预定高度。这样做的好处是节省时间,但发动机所需的功率大,燃料消耗大。另一种是阶梯式的爬升,飞机升到一定高度后,水平飞行以增加速度,然后再爬升到第二个高度,经过几个阶段后爬升到预定高度,由于飞机的升力随速度升高而增加,同时燃油的消耗使飞机的重量不断减轻,因而这样的爬升最节约燃料。 3、巡航阶段

飞机主要的飞行性能和飞行科目

飞机主要的飞行性能和飞行科目 一、飞机的主要飞行性能 飞机的飞行性能是评价飞机优劣的主要指标。主要的飞行性能包括下列几项: (一)最大平飞速度(V最大)。’ 飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。 飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。 影响飞机最大平飞速度的主要因素是发动机的推力和飞机的阻力。由于发动机推力、飞机阻力与高度有关,所以在说明最大平飞速度时,要明确是在什么高度上达到的。 通常飞机不用最大平飞速度长时间飞行,因为耗油太多,而且发动机容易损坏,缩短 使用寿命。除作战或特殊需要外,一般以比较省油的巡航速度飞行。 对歼击歼来说,V最大更重要一些。歼击机靠它来追上敌机,予以歼灭。同时也靠它变被动为主动。 创造世界速度纪录的飞机,都是以最大平飞速度作为评定标准。其速度单位是“公里/小时”。 (二)巡航速度(V巡) ‘ 巡航速度是指发动机每公里消耗燃油最少情况下的飞行速度。这时飞机的飞行最经济,航程也最远,发动机也不大“吃力”。对于远程轰炸机和运输机,巡航速度也是一项重要的性能指标。其单位也是“公里/小时”。 (三)爬升率(V、,) 飞机的爬升率是指单位时问内飞机所上升的高度,其单位是“米/分”或“米/秒”。 爬升率大,说明飞机爬升快,上升到预定高度所需的时间短。

爬升率是歼击机的一项重要性能。 爬升率与飞行高度有关。随着飞行高度增加,空气密度减少,发动机推力降低,所以一般最大爬升率在海平面时,随着高度增加而减小。 (四)升限(H) 飞机上升所能达到的最大高度,叫做升限。“升限”对战斗机是一项重要性能。歼击机升限比敌机高,就可居高临下,取得主动权。 飞机的升限有两种:一种叫理论升限,它指爬升率等于零时的高度,没有什么实际意义;常用的是“实用升限”。所谓“实用升限”就是飞机的爬升率等于每秒5米时的高度。此外还有动力升限,它是靠动能向上冲而取得最大高度的。一般创纪求的升限是指动力升限。(五)航程及续航时间 航程是指飞机一次加油所能飞越的最大距离。用巡航速度飞行可取得最大航程。增加航程的主要办法是多带燃料、减小发动机的燃料消耗和增大升阻比K。 航程远,表示飞机的活动范围大。对军用飞机来说,可以直接威胁敌人的战略后方,远程作战能力强;对民用客机和运输机来说,可以把客货运到更远的地方,而减少中途停留加油的次数。 续航时间是指飞机一次加油,在空中所能持续飞行的时间。这一性能对侦察机、海上巡逻机和反潜机是很重要的;歼击机的续航时间长,也有利于对敌作战。增加续航时间的措施同增加航程的措施相类似。现代作战飞机大都挂有副油箱,就是为了多带燃料,以增大航程和航时。某些飞机为了增大航程,并减小起飞时的载油量,以缩短滑跑距离或增加其它载重,可用空中加油的办法,在飞行途中由加油机补给燃料。 (六)作战半径 飞机从某一机场起飞,执行作战任务后再返回原机场,这距

相关文档
最新文档