简洁靓声的MOSFET单端甲类功放

简洁靓声的MOSFET单端甲类功放
简洁靓声的MOSFET单端甲类功放

简洁靓声的MOSFET单端甲类功放

一款非常简洁的设计,集线路简洁、调试简单、工作稳定、音色迷人、性价比高等优点于一身。

试验用的元件都是凑合着用的,功率放大用2SK2645、恒流源用2SK3067。但试听效果却很让人开心!!于是决定重新画板。。。。

绝对发烧!!每管1300MA的电流哦。

用IRFP240可以的,ARJ072没接触过所以不清楚,不过普通的双运放都可以的,如5532、4458、353、2064。。。。。。是双运放的话应该可以使用,LF353也是场效应双运放,上机试验

过效果很不错呢

电路的电压范围+-18--25V,等于或低于+-18V时稳压管可以不装,R3、R4分别短接。+-18V 时输出功率8W,+-25V时估计在15W左右吧。关于电流:感觉1300MA左右声音比较满意,再往上感觉声音变化没有温度的变化明显,900MA以下低频变薄。

最初试验用的K2645、K3067是从废旧开关电源上拆下来的,想不到都有那么好的表现,真是始料不及。

老兄这话会打击到很多人、换来许多砖头的哦!!

HOOD我做过好多次,现在还不时接来听听换换口味呢,但如果要在两者之间进行取舍的话我肯定选这个的。

晶体管音频功放音质不好的原因及改进方法

晶体管音频功放音质不好的原因及改进方法 晶体管功放都有非常优秀的特性测试指标,但实际音质音色都很不满意,即主观测试和客观音质有很大差异,其原因如下: 一、晶体管功放的开环特性不能令人满意,为了获得好的频响特性,都施加了深度达40db-50db的大环路负反馈,虽然得到非常高的闭环特性,但客观音质评价并不好,声音不柔和、不动听,这正是负反馈过度的通病。 二、晶体管功放的输出内阻Ri本来就非常低、在深度反馈下Ri又大幅度减小,电路阻尼系数Fd往往增大到100以上,Fd要比电子管功放大1-2个数量级(电子管功放Fd一般约在10以下)。这样高的Fd对扬声器的机电阻尼过重、扬声器振动系数处于过阻尼状态,振膜的运动则很迟钝,动态会变得很小、音质就显得生硬不圆润、缺层次、丰富的谐波被封杀、被过滤,微妙的谐波信息分量大量丢失,振膜细节刻画能力差,声音干瘪、缺乏色彩、不丰满、久听使人生厌,人声表现远不及电子管功放。三、电路稳定性差、易自激也是深度负反馈功放的一个通病,一般都是在电路中接入减小高频增益的相移补偿电容来破坏形成自激的条件。此举虽有效地抑制了自激振荡,却常常引起瞬态互调失真增大、高频响应变劣,声音则变得毛糙、尖锐、不悦耳、不耐听。 四、大功率晶体管功放大都是甲乙类功放,有很明显的交越失真,故保真度也差,往往又多管并联来增大功率,这样管子的结电客Cs会变大,高频响应不可能很好,同时也会使输出阻尼过重。 五、甲乙类功放的Ic变化特别大,但供电都是一些低压,负载输出特性差的简单电容式滤波电源。由于大电容滤波充放电速度迟缓,持续大信号时的滤波响应或电源能量输出往往跟不上Ic的动态变化,电源电压经常在峰谷之间作大幅度涨落,当电源容量不足或Ri较大时,峰值信号声音出现阻塞或喘息和拖尾现象,瞬态、动态响应也很不理想。 除上述众所周知的五条原因外,我认为开关失真是晶体管功放音质不好、声音不润、莫名其妙烧高音喇叭的根本原因。我们知道所有放大器件都是非线性器件,都会产生非线性失真,两个不同频率的信号通过非线性器件时就会产生新的频率成分。当晶体管脱离放大区就会产生开关失真,因开关失真产生的频率不是单一频率,所以因开关失真产生的多种信号经过非线性器件放大后不仅产生非线性失真,各频率之间还要产生互调失真,再生成新的频率成分,而它们恰恰是晶体管功放听感不好和莫名其妙烧高音喇叭的根本原因。 在全对称直流OCL放大器中,常采用下列方法获得好的音质和音色 1、前置输入级使用场效应管,可降低传导噪声和本底噪声,提高信噪比。对现在普遍使用的DVD、CD、VCD、等数字信号源,可消除一些数码声,再加上没有奇次谐波而只有偶次谐波,音色较圆润。前置输入级使用交叉耦合全互补高速宽频电路,使用特征频率FT高的晶体管,这样可加快转换速度,从而减少开关失真。 2、电压放大级采用共发共基极联电路。这种失配法对前后级有隔离作用,而且高频特性好,电路不易自激,工作稳定。使用特征频率FT高的晶体管减少转换时间,从而减少开关失真。 3、电流推动级通常由一至二级组成,为了降低输出阻抗、增加阻尼系数,常采用二级电流推动。为了避免电流推动级产生开关失真,较好的作法是、采用MOS管并增大本级的静态电流,这样本级不会产生开关失真,由于任何情况下电流推动级始终处于放大区,所以电流输出级也始终处于放大区,因此输出级同样不会产生开关失真和交越失真。 4、电流输出级为了避免开关失真和交越失真,通常改善方法是工作在甲类或动态甲类。 5、环路反馈采用电流反馈,可有效减小互调失真。 以上五个改进方法虽然可改善OCL全对称功放的性能,但并没有从根源上彻底解决,即开关失真没有彻底消除,只是部份减少了一些开关失真。 晶体管功放能否彻底消除开关失真?没有开关失真的功放有何特点?本人通过多年研究已彻底解决了晶体管功放的开关失真,生产的多部样机一致性好,性能稳定。 本机输入级采用J型场效应管或BJT管,前者噪声低,后者动态范围要大一些,静态工作电流1.2ma。电压放大级采用共发共基电路,使用BJT管,静态电流2ma。电流推动级由二级组成,使用BJT管。第一级静态电流2ma,第二级静态电流4ma。输出级采用倒达林吨电路,静态电流20ma。倒达林吨输出电路可以减小阻尼系数,并具有一定的放大系数。采用直流伺服电路稳定中点电位,环路反馈采用电流反馈减小互调失真。

KSA50甲类功放详细制作流程

这里是事先声明: (1)我是第一次装机子而且是甲类机---别人会问:第一次就装甲,你厉害啊----不是甲我有必要装么?我以前用的国产乙类,甲乙类厂机。 (2)买了四块KSA50---烧毁了一块,另外一块电源接反烧了俩二极管以及电源输入线路上的铜箔,重新弄好,正式上机是后来的两块,板子是惠州老刘的KSA50 (3)我的目的是听音乐,不是焊机为娱乐滴人----我不折腾,可能的话一块线路调到我要的声音,如果可能的话。 (4)老鸟可以无视我的经验,以下的只对菜鸟起作用,因为我连电路图差不多都看不懂,我是个吃现成的人---老鸟可以鄙视下 (5)发帖的目的是为了别人少走弯路,以下经验所诉只针对KSA50,以前开过贴不全面问题没有表述清楚,这次汇总下,终于挂上双声道了----这说明声音接近自己调试目的了,这点很重要。目的是个人准备给滤波电容最后拍定,测试声场定位,高中音 表现很理想了已经。(个人意见) 以下是正文: (1)选择之前很困惑,到底什么线路好?论坛上放水得多,冒充大侠的不少,真理只在少部分人手里---我相信这句话,但是群总的眼睛是雪亮的—我也相信这句话。既然 卖了那么多,买了那么多,存在即是道理,所以我选择了KSA50(也是因为群里的 朋友在推荐),想装PASS但是很多人对低音有微词,所以暂不考虑, (2)备料----KSA50整个淘宝就那么几款板子,直刻原厂的还是算了吧,我自问没那水平,我要的是KSA50基本框架,有些卖家适当的改进未必不见得是坏事,适合国情。 滤波电容的选择因为之前只对ELNA有所耳闻所以找了几个库存全新的JVC定制品 (这是第一次买料),机箱找遍淘宝只能是这个小甲箱(散热面积最大),那些个动 辄几十斤散热的大侠你还是别忽悠了,除非你想让你的散热片工作在50度以下!经过推算,淘宝上卖的最多的大甲箱A1000A998之类的绝对可以对付50W甲类!但 是由于是多块拼接所以紫铜均热板是必需的!!越大越好!(当然这样搞成本很高) 以之前对于音响系统的了解,双单声道无疑是最好的,干扰最低,而且这样搞散热 也很大---事实证明我的选择是对的!变压器是定制的,基本不叫—开机一瞬间微哼,后面听不到了,初级和次级大电流线径很重要,国内的牛和外国的还是有差距,因 为做的是甲类,线径不到大电流输出不能保证,我定制的是800W36V四线线径不 过1.5mm而已,勉强达标。IR桥上面散热片是用硅胶粘的牢靠的很(记住是硅胶不是硅脂)另外又买了一小盒含银硅脂,桥装在底板或者上盖板散热效率确实比 散热片强些,当然大型的散热片除外,桥的发热比散热片低,要是劣质产品那就超 标了。第二次备料----日化滤波18000uf四只,飞利浦23000uf四只,尼康BP-S 无极一堆,思碧等等小容量电容一堆,还有负反馈各种各样(我就不说了,个人听 音取向不同选择不同)。整流桥我都是买的IR,整个淘宝适合IR的整流桥电路板就一家,我后来发现很多朋友选择的螺栓型无电路板滤波和整流其实是很方便的,用电源板局限性很大。。。线材的选择---这里有必要说下,淘宝里铜镀银特氟龙基本都是很硬的那种,多股线芯很粗铜质有待考证,而且不符合线径一定线芯越多越 好的原则。老刘的和另外两家都一样,说实话我很不喜欢,因为我的是引线连接, 硬线非常不好用,后来别家买了软的特氟龙(有点水,不是说线水,线很好铜的纯 度高很软,这个外皮是透明的不燃但是60W烙铁温度高了外皮会化的很软但是还没融掉)最终测试用的是这种,对于外接线的大管要像我这样给上标记,我用的是热 缩管,避免线接错的悲剧发生。喇叭走线是4mm的怪兽,这线也不能焊,物理直连。 开关是红波的19mm开孔自复位开关,因为有软启动,没有软启动的选择机箱自带

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

18W胆场输出甲类功放电路

18W胆场输出甲类功放电路 这是一款输出功率18W的甲类功放,末级采用电流串联负反馈电路(输出级自给偏压电阻两端旁路电容被取消),电气性能优越。电路如图。胆机电路图片如下: 子管三只,6N3与6P1都是花生管,场管IRF450的市面折机品价位也这是一款输出功率18W的甲类功放,末级采用电流串联负反馈电路(输出级自给偏压电阻两端旁路电容被取消),电气性能优越。电路如图。 电子管三只,6N3与6P1都是花生管,场管IRF450的市面折机品价位也十分低廉。 6N3的放大倍数μ=35,互导gm=5.9mA/V,共

阴放大,6P1输出约4W,IRF450输出14W,共同输出18W。IRF450可用其他场效应功率管代替,但其反向耐压必须大于500V,功耗大于100W。本例IRF450工作电流113mA时,栅源压降3.5V,因此取R5为68Ω(注意,不同场管数据会有所差异,应实测)。若改变R6值,即可改变本机的输出功率。但如果IRF450工作电流过大,容易引起自激。 输出变压器需自制,其铁心截面积S=10cm2,初次级匝数为14∶1,阻抗比为1560Ω∶8Ω,初级漆包线∮=0.29mm,绕2100匝,次级线∮=1.00mm,绕150匝,不必分段绕制,就能取得良好效果。注意,不要使铁片交叉,固定铁心的铁夹或铁板条不能继续使用,要用铝板重做。铁心的三个柱面皆放一层牛皮纸做间隙层,确保铁心没有一点磁饱和,这样变压器失真才能减到最小,电感L铁心截面S=9cm2,漆包线∮=0.33mm,绕满即可,IRF450要用较大散热器以利散热。 本机无大环负反馈,瞬态响应良好,电路简捷。需要注意的是6P1的工作电流,应使其为50mA。需要调整的是R6的阻值,以定末级输出功率。

JK50系列晶体管扩音机的改进

JK50系列晶体管扩音机的改进 倪服务 杨建民 JK50系列晶体管扩音机如飞跃JK50-1A,民生JK50W、金龙JK50W、珠江JK50型等,社会拥有量相当大。美中不足的是它们的电源和功放部分采用的是PNP大功率锗管(3AD30C或3AD53C),一旦损坏,市场上很难买到。笔者采用市场极易购到的3DD15D硅管对该机的电源和功放电路进行改进,其效果很好。下面以飞跃JK50-1A型扩音机为例进行介绍。 一、电源电路的改进 JK50-1型晶体管扩音机电源用4只管子组成三级复合管作调整管,如图1所示。BG14、BG15相并联后再与BG16、BG17复合,以实现输出稳定的-22V工作电压。由于调整管3AD30C(或3AD53C)输出功率大,很容易损坏。笔者用β为60的3DD15D取代BG14、BG15改进成功,机器连续工作6~8 小时,调整管仍不烫手。具体改法如下:从原机上拆下BG14、BG15,用硬塑料片剪成比3DD15D略大的形状作绝缘垫片,再将两只3DD15D安装在原BG14、BG15的位置上(注意涂些硅脂以利于散热)。然后断开R66以及BG16(3AD6C)的集电极与发射极,使该管发射极与电源输出端相连接,集电极与整流滤波输出端间接一只200Ω/1W的电阻。再在BG14、BG15的发射极各串一只0.1Ω/1W的反馈电阻,改进后的电路如图2所示。注意,两只调整管的放大倍数最好相同或接近(约50~60)。

二、功放电路的改进 原机功放电路如图3所示,改进后的电路如图4所示。具体改法如下:首先拆下原机上的两只功放管BG12、BG13(3AD3C或3AD53C),在3DD15D上加硬塑料片作绝缘垫片再涂些硅脂装在原功放管位置上,然后将输出变压器的初级中心轴头与电源"+"端即原机的接地线连接,两管发射极相连后通过新增的电阻Re(Re=0.5Ω/1W)与电源"-"端连接。原机的两只3AD30C(或3AD53C)管基极是直接通过输入变压器次级中心轴头接地的,改用硅管3DD15D后由Rb1、Rb2(Rb1=27Ω/8W,Rb2=1.1kΩ/10W)组成偏置电路。为防止发射结被瞬间击穿,分别在两管b、e极之间加上两只保护二极管(1N4007),因为 3DD15D的截止频率高于3AD30C(3AD53C),所以改进后的电路必须取消原电路中由C52和R60组成的反馈支路,否则会产生自激振荡。另外,在选择3DD15D时,β=80为最佳。而一般两管的放大倍数应以70~130为宜,两管放大倍数的差别不应大于10%。 通过以上的改进,使不少因很难购到3AD30C(3AD53C)的JK50-1 A型晶体管扩音机起死回生。

[整理]NE5532并联驱动的20W纯甲类功放.

NE5532并联驱动的20W纯甲类功放 这个电路由爱山乐水网友提供。好象是来源于日本发烧友 国外有很多制作精良的功率放大器,输出功率并不大,但其甜美优雅的音乐往往是很多大功率放大器所无法比拟的。 本文介绍的这款功放,虽然它的元件用得可算一般,其输出功率也只有20W,但其音乐表现力却极为出众,特别是对于古典音乐的重放尤其神韵。 【电路原理】 电路如图6-1所示,本机电路中使用两组独立的运算放大器(NE5532)分别构成两路完整的单端放大器,它们都工作在纯甲类方式下,各自独立构成性能优良的全波形放大器。放大后的信号在输出点再有机地混合,有效地降低了对音质危害极大的奇次谐波失真。激励级的双极二极管(VT1和VT2)作为电流控制器件,直接从运放的输出端吸取所需的基极电流,是一种较为理想的使用方式。VT3和VT4分别用作VT2、VT1的恒流源负载,保证了整机的稳定性,也使得本机可免去麻烦的调试手续。 激励级的VT1、VT2与输出级的两个大功率三极管构成交叉耦合方式。由于各二极管工作点之间的钳位作用,使得此电路的稳定性极好,在电源接通瞬间也不会出现冲击电流声。交叉耦合的另一个好处是激励级和输出级分别从正负电源端索取工作电流,这对提高放大器的共模抑制比十分有利。激励级的工作电流高达85mA,输出级的工作电流更是高达 1.7A 之巨(两管并联)。由于本机电流很大,制作时一定要给每一个三极管(包括激励级和恒流源负载三极管)都加上足够大的散热器,且电源变压器一定要有充足的余量(推荐为150W)。由于本机对电源的适应性很强,故电源电路只需简单的整流、滤波即可。有条件者可在供电

回路串入1~2H的电感以获得更佳的效果。

50W晶体管功放电路图

50W晶体管功放电路图 此功法电路可谓一装即成,特别适合初学者制作。这款功放一声道只需17个零件,却收到了意想不到的效果,还音效果真实,频响平直,解析力高,且功率可以达到50W。 具体电路如图(只画出一声道),全机用1/2W电阻,C2和C4用瓷盘电容即可,Q5、Q6采用大功率管2SC5200,变压器容量大于200W,次级输出电压AC22V*2 4A。 50W晶体管功放电路 调试方法:本机一般来说无需调整,装机后测中点电压在+-50mV内可以认为正常,否则可调整R2的阻值,如偏离电压高则加大R2,反之则减小。 JK50系列晶体管扩音机的改进 JK50系列晶体管扩音机如飞跃JK50-1A,民生JK50W、金龙JK50W、珠江JK50型等,社会拥有量相当大。美中不足的是它们的电源和功放部分采用的是PNP大功率锗管(3AD30C或3AD53C),一旦损坏,市场上很难买到。笔者采用市场极易购到的3DD15D 硅管对该机的电源和功放电路进行改进,其效果很好。下面以飞跃JK50-1A型扩音机为例进行介绍。 一、电源电路的改进 JK50-1型晶体管扩音机电源用4只管子组成三级复合管作调整管,如图1所示。BG14、BG15相并联后再与BG16、BG17复合,以实现输出稳定的-22V工作电压。由于调整管3AD30C(或3AD53C)输出功率大,很容易损坏。笔者用β为60的3DD15D取代BG14、BG15改进成功,机器连续工作6~8小时,调整管仍不烫手。具体改法如下:从原机上拆下BG14、BG15,用硬塑料片剪成比3DD15D略大的形状作绝缘垫片,再将两只3DD15D 安装在原BG14、BG15的位置上(注意涂些硅脂以利于散热)。然后断开R66以及BG16(3AD6C)的集电极与发射极,使该管发射极与电源输出端相连接,集电极与整流滤波输

动手制作 再造hood jlh 1969M小甲类功放 教程方法 制作图纸 科技小制作新满多

动手制作再造hood jlh 1969M小甲类功放教程方法制 作图纸科技小制作新满多 讲1969M之前,得讲一下JOHN LINSLEY HOOD 1969这个经典线路。。。 线路原形如下: John Linsley Hood 在1969年发表了这个电路,10W纯甲类功放,电路很简单,每声道由4只晶体管构成,虽然功率不大,但音色优美,吸引了不少DIY爱好者。。。 里不得不说一下老哥DIY过的1969。。。 小风扇起到一定的散热作用

A10的格局 搭焊在电路板上的零件 功放的输出电容,有7个并联在一起一个不太大的变压器 军工钽电容 输入插口 喇叭接线柱

John Linsley Hood 的1969 电路简洁,易于制作,音色也不错,因此衍生了许多个版本的1969。。。 1969M就是其中的一个。。 某高人根据1969设计的1969M(1969MOS)电路如下,因为末级改为场效应管,因此简称1969M,此版本可以工作在AB类,意味着不用那么大的工作电流,功率也比1969大。。。而原形的1969只能工作在纯甲类,效率低,只有10W 的输出,电流大,更需要体积不小的散热片。 为了做好1969M,于是把线路做了一次仿真,按照现有的条件,如电压,使用的管子进行测试,调整参数,使谐波失真达到最小。。 仿真软件是大名鼎鼎的Multisim!!!这是DIY烧友电脑上

必装软件,如果你没有,那就OUT了啊。。 Multim 10 启动画面 Multim 10 工作界面。。。看上去好像很专业。。不过玩几下基本上就能掌握。。。 新完成的1969M电源滤波用两只25V15000U的电容串联,没办法,单只的耐压不够啊。。。内部图 实际应用的电路图。。。 说明一下图中红色圈起来的部分

场效应管特性及单端甲类功放制作全过程

场效应管特性及单端甲类功放制作全过程 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 一、场效应管的特性 场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。 高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。 场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。 场效应管具有更好的热稳定性和较大的动态范围。 场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。 普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。 场效应管的防辐射能力比普通晶体管提高10倍左右。 转换速率快,高频特性好。 场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。 场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。 绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。 VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受

甲类功放

甲类功放 概述 甲类功放(A类功放)输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。当讯号趋向正极,线路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬声器而且推动扬声器发声。甲类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真(SwitchingDistortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路设计。但这种设计有利有弊,A类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为高热量。当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。 特点 甲类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足以补偿它的缺点。甲类功率功放发热量惊人,为了有效处理散热问题,甲类功放必须采用大型散热器。因为它的效率低,供电器一定要能提供充足的电流。一部25W 的甲类功放供电器的能力至少够100瓦AB类功放使用。所以甲类机的体积和重量都比甲乙类大,这让制造成本增加,售价也较贵。一般而言,甲类功放的售价约为同等功率甲乙类功放机的两倍或更多。 甲类功放声音上有饱满通透的优点,晶体管功率放大器是由三极管组成的,而三极管是由多组配对(N结及P结),这两个结构成的,当没有外加电压时是截止,只有在上面外加一个偏置电压并且高于它的门限电压,这个N/P结才会导通,有电流通过,三极管才开始工作。 甲类功放是把正向偏置定在最大输出功率的一半处,使功放在没有信号输入时也处于满负载工作状态,使得功放在整个信号周期内都导通都有电流输出。甲类功放使三极管始终工作于线性区,因此甲类功放几乎无失真,听感上质感特别好,尤其是小信号时,整个声音通透细节丰富。纯甲类功放它的造价也是惊人的,它电耗等于是一部空调。特别是百分之百的甲类功放就是指音箱阻抗怎样随频率变化,功放都能保持甲类工作而且输出功率足够,一对音箱虽然它的标称阻抗是8欧姆,便在工作时它的实际阻抗因素是会随频率变化的,时高时低,有时会低至1欧姆,这就要求功放的输出功率能随阻抗降低而倍增,也就是我们常看到的巨甲级数的功放所标输出功率指标,如贵丰单声道旗舰功放安替龙;175W(8Ω)、350W (4Ω)、700W(2Ω)1400W(1Ω),这才是百分之百纯甲功放。只有这样的功放才能使你听到纯甲类的音质。 纯甲类功放的几个为什么 一、为什么“热机”比“冷机”好听 功放刚开机尚无温升或温升较小时,机内温度和环境温度基本一致,此状态下功放称为冷机,这时各级静态电流还较小,末级电流仅二三十毫安(盛夏时稍大),相当于低偏置的甲乙类或乙类,声音自然“好听”不起来,但是随着结温的缓慢升高,每升高1℃,β增加约1%,Vbe减小约2.5mV,这两者同时作用,晶体管静态电流会升高得很快,当机器烘至热平衡时,各级工作点早已达到甲类额定偏置状态,此时声音也是地道的“甲类声”,因此也就相对“好听”。而且功放达热平衡后,各级静态工作点也趋稳定,也有利于改善听感。

最简单的甲类功放

最简单的甲类功放 2010年7期《无线电》上刊登了《场效应管耳机放大器DIY手记◎梓门编译》,自己DIY一个,感觉电路简单,但音量小,于是在网络上找到一些相近的资料,特对照参考,应加一个前级放大。BD8MI整理 摘自https://www.360docs.net/doc/1615461297.html,/Solid/IRF610-Class-A-Headphone-Amp/ 作者:Giovanni Militano,加拿大。 电路简洁、元件都是常见的,适合电脑、MP3等输出信号较大的设备。 原设计专用于耳机,作者为他自己的 32欧姆 Grado SR80 耳机设计的。但电路同样可以推动小功率的扬声器(偶是推的15W小音箱),音质不错,喜欢静静地欣赏音乐的朋友可以尝试下。电路如下: 下面简要说明制作过程和一点说明: 1、电路采用了LM317构成的恒流源作为负载,提高了电流增益,作者注明最大效率为25%。但因电路没有电压放大,所以只适合输输出信号较大的设备。当然,你也可以为它再增加一级FET的小信号放大电路,偶用的是常见的2SK245。 2、恒流源的电流取值,作者设定的是250mA,但经过偶试验,电流在100mA听感也不错,而且发热量要小了很多,几乎可以不用散热器。最好是多准备几个电阻(图中的5W电阻)自己感觉下。 3、电源问题,如果打算使用电脑的开关电源(直接用电脑电源的12V供电),需要做好滤波,偶用了两级LC滤波,滤除电源带来的噪声;如果是线性的电源适配器,简单的电容滤波即可。要求更高的可以用专门线性稳压电源供电。 4、偏置电压的调整:如果没有设备测试,完全可以靠听感进行调整,一般的场效应管栅极开启电压为4V多一点,在附近范围仔细调整,直到获得最佳听感。如果使用的电源电压并不固定,可以用个TL431甚至78L05~78L09稳压后用电阻分压,再送到偏置电压调整电位

动手制作HiFi靓声甲类功放

许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3885、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推 荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点: 1.采用板块积木式组合,可根据自身经济状况适当增减。 2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略 一、电压放大部分 使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上

大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音 质也更理想。 二、电流放大部分 有多种电流放大板可与上 述电压放大板配套,下表列出 所用功率管的部分参数供发 烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,

晶体管功放调试方法

晶体管功放调试方法 作者mzsrz 从早期的厚膜功放到现在的分立功放,前前后后我折腾了有20个年头。自知玩音响的水很深,比我能力强的人有很多,只是他们多半隐居论坛,很少发言。由于论坛在晶体管功放调试方面缺少相关的文章,所以斗胆抛砖引玉,把自己多年来的调试功放经验总结出来,让更多的朋友分享。有不对的地方,还请方家指证。 功放要做出声响来很容易,但是要想做好,就并不那么容易了,除了并不知道哪些是真正影响到功放性能的地方,往往把精力放在了一些并不太重要的事情上,把该注意的地方忽略掉了。更有些人以为用补品堆砌起来就是好功放,或参照某名机复刻以为就要有合理的设计和制作,还要有精心的调试,方能成材。可惜现在有些朋友DIY出来的功放其实都不如厂机,这并不是打击某些人的信心,而是事实。其主要原因是很多人能达到名机的水准,其实这些都是舍本求末的方法,因为他们并不懂得调试功放在DIY中的重要作用。于是我总结了以下几点加以说明。 调试秘诀之一是高次谐波失真越小越好。 功放低次谐波失真大一点无所谓(当然最好是没有,除非你喜欢听失真的声音),但是高次谐波一定不能有,这是晶体管功放生硬刺耳声音的元凶。当功放装配完成后,一个非常重要的工作就是调静态电流,它不是一个可有可无,可大可小的随意调整,而是一个非常有讲究的调整,调整得好往往可以改变一台功放的档次。在调静态电流时最好有失真仪或频谱仪,如果没有,乙类功放可按下表(取自《音频功率放大器设计手册》)给出的参数进行调整。甲类机器调到额定电流即可,这方面可以省略不考虑。 最优静态电流调整对照表:

图是指一对管的情况,如果是两对管,射极电阻又是独立(即4只),则静态电流加倍,但R两端电压不变,如果遇到上下两管不配对情况导致上下两管电流有误差,则取上下两管R1+R2的电压总和。 下图的测试频率是2kHZ,负载为8Ω,输出75W时的失真情况。我故意把功放设成欠偏臵(即静态电流很小)状态看看它的失真成份是怎么样的。(下面的图都是经过陷波器滤掉基频后再经低失真运放放大后的情况,为的是能更直观分析失真成份,因为频谱仪的分辨率有限) 静态电流不足时的测试图:可以看出高次谐波比优化调整后的测试图大了20多db

晶体管放大器结构原理图解

晶体管放大器结构原理图解 功率放大器的作用是将来自前置放大器的信号放大到足够能推动相应扬声器系统所需的功率。就其功率来说远比前置放大器简单,就其消耗的电功率来说远比前置放大器为大,因为功率放大器的本质就是将交流电能“转化”为音频信号,当然其中不可避免地会有能量损失,其中尤以甲类放大和电子管放大器为甚。 一、功率放大器的结构 功率放大器的方框图如图1-1所示。 1、差分对管输入级 输入级主要起缓冲作用。输入输入阻抗较高时,通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。 前置激励级的作用是控制其后的激励级和功劳输出级两推挽管的直流平衡,并提供足够的电压增益。 激励级则给功率输出级提供足够大的激励电流及稳定的静态偏压。激励级和功率输出级则向扬声器提供足够的激励电流,以保证扬声器正确放音。此外,功率输出级还向保护电路、指示电路提供控制信号和向输入级提供负反馈信号(有必要时)。 一、放大器的输入级功率放大器的输入级几乎一律都采用差分对管放大电路。由于它处理的信号很弱,由电压差分输入给出的是与输入端口处电压基本上无关的电流输出,加之他的直流失调量很小,固定电流不再必须通过反馈网络,所以其线性问题容易处理。事实上,它的线性远比单管输入级为好。图1-2示出了3 种最常用的差分对管输入级电路图。

图1-2种差分对管输入级电路 1、加有电流反射镜的输入级 在输入级电路中,输入对管的直流平衡是极其重要的。为了取得精确的平衡,在输入级中加上一个电流反射镜结构,如图1-3所示。它能够迫使对管两集电极电流近于相等,从而可以对二次谐波准确地加以抵消。此外,流经输入电阻与反馈电阻的两基极电流因不相等所造成的直流失调也变得更小了,三次谐波失真 也降为不加电流反射镜时的四分之一。 在平衡良好的输入级中,加上一个电流反射镜,至少可把总的开环增益提高6Db。而对于事先未能取得足够好平衡的输入级,加上电流反射镜后,则提高量最大可达15dB。另一个结果是,起转换速度在加电流反射镜后,大致提高了一倍。 2、改进输入级线性的方法 在输入级中,即使是差分对管采用了电流反射镜结构,也仍然有必要采取一定措施,以见效她的高频失真。下面简述几钟常用的方法。 1)、恒顶互导负反馈法 图1-4示出了标准输入级(a)和加有恒定互导(gm)负反馈输入级(b)的电路原理图。经计算,各管加入的负反馈电阻值为22Ω当输入电压级为-40dB条件下,经测试失真由0.32%减小到了0.032%。同时,在保持gm为恒定的情况下,电流增大两倍,并可提高转换速率(10~20)V/us。

自制80W甲类功率放大器

自制80W甲类功率放大器 这部功放的输入级是一对场效应管,优点是输入阻抗高,动态范围大和噪声低。VT3、VT4组成第二级放大,VT5提供1.8mA的电流给VT1、VT2;VT6提供9.5mA 的恒定电流给VT3、VT4。由于VD1的导通,电流电压即使有波动,不会影响到VT5、VT6的基准电压,保证了VT1、VT2两管电流的稳定。VT9~VT14组成互补输出级,它的输出电流受VT8的控制。VT8是一个恒压电路,动态内阻小,Vce8的电压恒定不变,调节RP2可以调整静态工作电流大小。VT7、C3、R13、VD2组成一个动态偏压电路,它的原理是:在信号输入增大时,VT7使VT8的基极电流下降,VT8的Vce 升高,VT9~VT14的电流也相应升高,最高峰值可达4~5A,使推挽输出自动工作在甲类状态,不仅减少交越失真和谐波失真,而且提高电源的利用率,动态偏压的控制量由Rl3决定。C5是加速高频信号的大环路负反馈电容,具有相位超前的补偿作用。可降低瞬态失真和互调失真,并可防自激。输入级还加有高频滤波网络,以便将一些不必要的高频噪音滤掉,提高信噪比。VT9、VT10、用TIP41和TIP42代替。VT11、VT12、VT13、VT14、可以用TIP35C和TIP36C代替。工作电压不要超过+50V和-50V,可以获得80W输出。 元器件选择 在电路所用晶体管的BVceo要求大于或等于电源电压的两倍。场效应管VDS>/=50V,Gm也必须一致。互补输出级应测量小电流到大电流 的直流放大倍数,要求线性好,每位相差不超过1%,输入级的?T可选 高一些,输出级的?T则应低些。电阻宜用性能稳定的金属膜电阻。C3 选用CA系列,其余均为CBB电容。在选管时,必须对推动级的晶体管 选择引起重视。实际上推动级的工作状态决定着未级输出工作能否轻松

FU50单端甲类功放的DIY方法

FU50单端甲类功放的DIY方法 作为一个电子管的生产大国,我国生产出了许多优秀的电子管,其中就有很多适合做音频放大的电子管。有一款电子管无论从价格还是效果上来说,都是值得推荐的,该管就是我国生产的FU50,它也曾广泛地运用于广播和通信中,当FU50接成三极管时,其特性曲线比较接近名管300B,接成三极管时的工作状态,其播放效果也是非常不错的,再加上价格并不贵,因此还是值得推荐给各位音响爱好者的。 一.原理简介 电子管甲类功放的放大工作点一般来说都是工作在电子管特性曲线的中心点,并对输入信号进行放大是双向对称的.工作点基本上是选择在特性曲线的直线段内,所以甲类的失真相对来说比其他的类型的电路要低些,再加上电子管单端甲类的偶次谐波含量较高,因此使得甲类单端功放播放出来的音乐特别润泽、特别甜美动听。 本文介绍的功放主要遵循以上的路线,并且考虑到使用成本不高的元器件来做出好效果的基本原则来制作本机。 相对高驱动电压的电子管来说FU50的驱动电压要求并不是太高,但为了保证有足够的驱动力和较低的失真,本机电压驱动部分还是使用了两级放大来驱动FU50,前级输入放大管Ql(6N8P)为双三极管,Q1的一半作为信号放大,另一半管充当末级管的电压激励放大,即使用了两级共阴电压放大电路,该组合仍具有较强的电压放大能力I有着较好的频向和较好的相位特性。由于6N8P属于低“管,因此我们采用了两级共阴作为电压放大,使它能够产生足够的增益来达到驱动后级的目的。FU50是一个五极管,将它接成三极管的工作形式,它所需要的驱动电压虽然不算低,但该共阴组合完全能够满足该管驱动所需要的电压。由于6N8P的“值较低,用该管做电压放大时也较容易获取低失真的电压放大信号,并能有效地降低整机的失真度。由于共阴组合较适合用于音频放大电路中,因此也被国内外许多音响厂家广泛地运用。 6N8P的电气参数和性能均较适合为本机电压放大级的放大管,6N8P电气参数见表1,其特性曲线如图2所示。6N8P的国外型号为6H8C(前苏联OTK产)、6SN7GT、6F8G、CVl81、QB65 (欧美型号)。 本机的电路图如图1所示。

关于电子管功放与晶体管功放的比较

关于电子管功放与晶体管功放的比较 电子管放大器在重量、效率、寿命方面比晶体管放大器不占优势。电子管寿命较低,使用一两千小时后某些技术指标明显下降。而晶体管及集成电路寿命却要长得多。另外,电子管放大器耗电高,又常常工作在甲类状态,更降低了效率,但基不存在瞬态互调失真、开关失真及交越失真等有害音质的因素。在成本方面,对同一档次的放大器,电子管功放一般明显高于晶体管功放。主要原因是电子管、输出变压器成本高,及电子管功放生产工艺不易自动化,生产效率低等。这在发达国家尢为明显 晶体管放大器的输出内阻往往比电子管功放小的多,它的阻尼系数fd很大,可达到100-200以上,而电子管功放的fd最大也不过为10-20。因此功放类型不同,应搭配不同的扬声器。扬声器出厂时应标明fd,以便人们选配。如果把适合电子管功放阻尼系数的扬声器接在晶体管放大器上,则扬声器的电阴尼过大,瞬态响应会变劣,音质明显下降。反之,适合高阻尼系数的扬声器接在电子管功率放大器上,则由于欠阻尼,音质也不会好。总之,阻尼系数一定要合适,即要求放大器与扬声器得到合理匹配 电子管功放音质明显优于晶体管功放。晶体管功放听起来高频、中高频有偏多感觉,低频感觉偏少,晶体管功放听

起来声音较硬,特别是低频声不够柔和,而高频声又显得尖刺、发燥,听起来有时感到高频段存在着交越畸变。当频率增高而音量又很大时,这些现象就更加明显。但晶体管功放的动态大、速度快,特别适宜于表现动态大一些的音乐。至于表现枪炮和雷电声当然更优于电子管功放了 电子管功放的音质总的来说是柔和动听,具体一点说,电子管功放低频声柔和清晰,高频声纤细雨而洁净。表现人声是其强项,也因此更贵 胆机与晶体机的比较,这里只谈两个问题,即性能价格比和音质。就音质而言,一般来说在三万元以下同等价格的放大器,胆机的音质通常优于晶体机;在三万至伍万元这个价位上是各有千秋;在伍万元以上,一般是晶体机有相对优势,此时晶体机优的是全面,胆机优的是特点;在伍万元以下价位的晶体机,一般来说除了在低音的力度、速度上和高音的明亮度上能优于胆机外,在音质、音色、音乐性、耐听性上均难以与胆机媲美,这是许多人共同的认识与经验 ,请不要被一些写手蒙蔽眼睛。说到缺点电子管功放和晶体管功放各自的缺点都比较突出,电子管功放重量体积大那晶体管大型甲类功放何尝不是这样。说到寿命,电子管功放的寿命主要是与"胆"管有关,"胆管"是逐渐缓慢的衰老但不会马上"挂"掉同时这也是在极限条件下2000小时连续工作不关机测试条件下得出的,试想谁会在这种条件下听音乐吗?晶体

相关文档
最新文档