中考数学圆的综合综合经典题及答案

中考数学圆的综合综合经典题及答案
中考数学圆的综合综合经典题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.

(1)求证:AC∥OD;

(2)如果DE⊥BC,求AC的长度.

【答案】(1)证明见解析;(2)2π.

【解析】

试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.

试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,

∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;

(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三

角形,∴∠AOC=60°,∴弧AC的长度=606

180

π?

=2π.

点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.

2.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;

(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.

①当α=30°时,请求出线段AF的长;

②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;

③当α=°时,DM与⊙O相切.

【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切

【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;

(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,

∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;

②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;

③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得

α=∠NAD=90°.

点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.

3.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.

(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?

(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?

(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?

【答案】(1)52

2

;(2)52;(3)

2042

3

-

【解析】

分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,

A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F .由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;

(2)设运动的时间为t 秒,根据题意得:CC′=2t ,DD′=t ,则C′D′=CD+DD′-CC′=4+t -2t=4-t ,由第(1)的结论列式得出结果;

(3)求出相切的时间,进而得出B 点移动的距离. 详解:(1)假设第一次相切时,△ABC 移至△A′B′C′处, 如图1,A′C′与⊙O 切于点E ,连接OE 并延长,交B′C′于F ,

设⊙O 与直线l 切于点D ,连接OD ,则OE ⊥A′C′,OD ⊥直线l , 由切线长定理可知C′E=C′D , 设C′D=x ,则C′E=x , ∵△ABC 是等腰直角三角形, ∴∠A=∠ACB=45°, ∴∠A′C′B′=∠ACB=45°, ∴△EFC′是等腰直角三角形, ∴C′F=2x ,∠OFD=45°, ∴△OFD 也是等腰直角三角形, ∴OD=DF , ∴

2x+x=1,则x=2-1,

∴CC′=BD -BC-C′D=5-1-(2-1)=5-2, ∴点C 运动的时间为52

-; 则经过

52

2

-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,

A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F , ∵CC′=2t ,DD′=t ,

∴C′D′=CD+DD′-CC′=4+t -2t=4-t , 由切线长定理得C′E=C′D′=4-t , 由(1)得:4-t=2-1, 解得:t=5-2,

答:经过5-2秒△ABC 的边与圆第一次相切; (3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t , 则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t , 由切线长定理得C′E=C′D′=4-1.5t , 由(1)得:4-1.5t=2-1, 解得:t=

1022

3

-, ∴点B 运动的距离为2×

10223-=2042

3

-.

点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.

4.如图1

O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .

()1如图2,当//PD AB 时,求PD 的长;

()2如图3,当DC AC =时,延长AB 至点E ,使12

BE AB =,连接DE .

①求证:DE 是O 的切线;

②求PC 的长.

【答案】(1)26;(2)333-①见解析,②. 【解析】

分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;

()2①首先得出

OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即

可;

②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.

详解:()1如图2,连接OD ,

//OP PD PD AB ⊥,,

90POB ∴∠=,

O 的直径12AB =,

6OB OD ∴==,

在Rt POB 中,30ABC ∠=,

3

tan30623OP OB ∴=?=?

=, 在Rt POD 中,

22226(23)26PD OD OP =-=-=;

()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,

DC AC =,

30DBC ABC ∴∠=∠=,

60ABD ∴∠=,

OB OD =,

OBD ∴是等边三角形, OD FB ∴⊥,

1

2

BE AB =,

OB BE ∴=, //BF ED ∴,

90ODE OFB ∴∠=∠=,

DE ∴是O 的切线; ②由①知,OD BC ⊥,

3

cos30633CF FB OB ∴==?=?

=, 在Rt POD 中,OF DF =,

1

3(2

PF DO ∴=

=直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.

点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出

OBD 是等边三角形是解题关键.

5.如图1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为0),如图2,把这个量角器与一块30°(∠CAB =30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线C 绕点C 从CA 开始沿顺时针方向以每秒2°的速度旋转到与CB ,在旋转过程中,射线CP 与量角器的半圆弧交于E .连接BE . (1)当射线CP 经过AB 的中点时,点E 处的读数是 ,此时△BCE 的形状是 ; (2)设旋转x 秒后,点E 处的读数为y ,求y 与x 的函数关系式; (3)当CP 旋转多少秒时,△BCE 是等腰三角形?

【答案】(1)60°,直角三角形;(2)y =4x (0≤x ≤45);(3)7.5秒或30秒

【解析】

【分析】

(1)根据圆周角定理即可解决问题;

(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);

(3)分两种情形分别讨论求解即可;

【详解】

解:(1)如图2﹣1中,

∵∠ACB=90°,OA=OB,

∴OA=OB=OC,

∴∠OCA=∠OAC=30°,

∴∠AOE=60°,

∴点E处的读数是60°,

∵∠E=∠BAC=30°,OE=OB,

∴∠OBE=∠E=30°,

∴∠EBC=∠OBE+∠ABC=90°,

∴△EBC是直角三角形;

故答案为60°,直角三角形;

(2)如图2﹣2中,

∵∠ACE=2x,∠AOE=y,

∵∠AOE=2∠ACE,

∴y=4x(0≤x≤45).

(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,

∵AC⊥BC,

∵EO∥AC,

∴∠AOE=∠BAC=30°,

∴∠ECA=1

∠AOE=15°,

2

∴x=7.5.

②若2﹣4中,当BE=BC时,

易知∠BEC=∠BAC=∠BCE=30°,

∴∠OBE=∠OBC=60°,

∵OE=OB,

∴△OBE是等边三角形,

∴∠BOE=60°,

∴∠AOB=120°,

∴∠ACE=1

∠ACB=60°,

2

∴x=30,

综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;

【点睛】

本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.

6.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为

∠DAB和∠CBA的平分线.

(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;

(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);

(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,

sin∠AGF=4

5

,求⊙O的半径.

【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.

【解析】

分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;

(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.

详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:

证明:∵AD∥BC,AD=BC,

∴四边形ABCD为平行四边形;

故答案为:AD=BC;

(2)作出相应的图形,如图所示;

(3)∵AD∥BC,

∴∠DAB+∠CBA=180°,

∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,

∴∠AEB=90°,

∵AB为圆O的直径,点F在圆O上,

∴∠AFB=90°,

∴∠FAG+∠FGA=90°,

∵AE平分∠DAB,

∴∠FAG=∠EAB,

∴∠AGF=∠ABE,

∴sin∠ABE=sin∠AGF=4

5

AE AB ,

∵AE=4,

∴AB=5,

则圆O的半径为2.5.

点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.

7.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线

与的交点为.

(1)问题发现

如图1,当时,线段的长等于_________,线段的长等于_________.

(2)探究证明

如图2,当时,求证:,且.

(3)问题解决

求点到所在直线的距离的最大值.(直接写出结果)

【答案】(1);;(2)详见解析;(3)

【解析】

【分析】

(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;

(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;

(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.

【详解】

(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,

∴AE=AD=2,

∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,

∴BD1=;

故答案为:;;

(2)证明:由题意可知,

,,

∵是由绕点逆时针旋转得到,

∴,,

在和中,

∴,

∴,.

∵,

∴,

∴,

∴,且.

(3)点的运动轨迹是在的上半圆周,

点的运动轨迹是在的弧段.

即当与相切时,有最大值.

点到所在直线的距离的最大值为.

【点睛】

此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知

识,根据题意得出PG 的最长时P 点的位置是解题关键.

8.如图,在ABC △中,10AC BC ==,

3

cos

5

C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的

P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .

()1当P 与边BC 相切时,求P 的半径;

()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,

并直接写出x 的取值范围;

()3在()2的条件下,当以PE 长为直径的

Q 与P 相交于AC 边上的点G 时,求相交

所得的公共弦的长.

【答案】(1)409;(2))2

5880

010320

x x y x x -+=<<+;(3)105-

【解析】 【分析】

(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=3

5

,则sinC=

45,sinC=

HP CP =R 10R -=4

5

,即可求解; (2)PD ∥BE ,则EB PD =BF

PF

,即:22

48805x x x y x

y

--+=

,即可求解;

(3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解. 【详解】

(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,

连接HP ,则HP ⊥BC ,cosC=35,则sinC=35

, sinC=

HP CP =R 10R -=45,解得:R=40

9

; (2)在△ABC 中,AC=BC=10,cosC=

3

5

, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,

则BH=ACsinC=8, 同理可得:

CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2

284x +-=2880x x -+, DA=

25x ,则BD=45-25

x ,

如下图所示,

PA=PD ,∴∠PAD=∠CAB=∠CBA=β,

tanβ=2,则cosβ=

5,sinβ=

5

EB=BDcosβ=(45-

25

x)×

5

=4-

2

5

x,

∴PD∥BE,

∴EB

PD

BF

PF

,即:2

2

4880

5

x x x y

x y

--+-

=,

整理得:y=()

2

5x x8x80

0x10

-+

<<;

(3)以EP为直径作圆Q如下图所示,

两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,

∵点Q时弧GD的中点,

∴DG⊥EP,

∵AG是圆P的直径,

∴∠GDA=90°,

∴EP∥BD,

由(2)知,PD∥BC,∴四边形PDBE为平行四边形,

∴AG=EP=BD,

∴5

设圆的半径为r,在△ADG中,

55

AG=2r,

5

5

51

+

则:

5

5

相交所得的公共弦的长为5

【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

9.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ

k CQ

+=

,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =

(或2BQ

CQ

). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r . (1)如图1,当2r =

时,

①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值. ②A 2(1+2,0)是否为⊙C 的“2相关依附点”. (2)若⊙C 上存在“k 相关依附点”点M , ①当r=1,直线QM 与⊙C 相切时,求k 的值. ②当3k =

时,求r 的取值范围.

(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.

【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)

333b -<.

【解析】 【分析】

(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ

k CQ

=计算即可解决问题;

②根据定义求出k 的值即可判断;

(2)①如图,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在

x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可;

②如图3中,若直线QM 与

C 不相切,设直线QM 与C 的另一个交点为N (不妨设

QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ ,推出

2MQ NQ DQ

k DQ CQ CQ

+=

==,可得当3k =时,3DQ =,此时221CD CQ DQ =-=,

假设

C 经过点Q ,此时2r ,因为点Q 早C 外,推出r 的取值范围是12r <;

(3)如图4中,由(2)可知:当3k =

时,12r <.当2r 时,C 经过点

(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b

=-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<. 【详解】

(1)①如图1中,连接AC 、1QA .

由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=?,即

11CA QA ⊥,1QA ∴是C 的切线,1222

2QA k QC ∴=

== ②

2(12,0)A +在

C 上,22121

22

k +∴=

=,2A ∴是C 的“2相关依附

点”.

2

(2)①如图2,当1r =时,不妨设直线QM 与

C 相切的切点M 在x 轴上方(切点M

在x 轴下方时同理),连接CM ,则QM CM ⊥.

(1,0)Q -,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时

23MQ

k CQ

=

②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设

QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,

()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =,∴2MQ NQ DQ

k DQ CQ CQ

+=

==,∴当3k =3DQ =221CD CQ DQ =-,

假设

C 经过点Q ,此时2r ,点Q 早C 外,r ∴的取值范围是12r <.

(3)如图4中,由(2)可知:当3k =

时,12r <.

当2r

时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,

3b =-,当直线3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为

333b -<<.

【点睛】

本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点

)B 是C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解

决问题,学会考虑特殊位置解决问题,属于中考压轴题.

10.如图1,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D .

(1)如图2,当PD ∥AB 时,求PD 的长;

(2)如图3,当弧DC =弧AC 时,延长AB 至点E ,使BE =

1

2

AB ,连接DE .

①求证:DE是⊙O的切线;

②求PC的长.

【答案】(1)26;(2)①证明见解析;②33﹣3.

【解析】

试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;

(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;

②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.

试题解析:(1)如图2,连接OD,

∵OP⊥PD,PD∥AB,

∴∠POB=90°,

∵⊙O的直径AB=12,

∴OB=OD=6,

在Rt△POB中,∠ABC=30°,

∴OP=OB?tan30°=6×=2,

在Rt△POD中,

PD===;

(2)①如图3,连接OD,交CB于点F,连接BD,

∵,

∴∠DBC=∠ABC=30°,

∴∠ABD=60°,

∵OB=OD,

∴△OBD是等边三角形,

∴OD⊥FB,

∵BE=AB,

∴OB=BE,

∴BF∥ED,

∴∠ODE=∠OFB=90°,

∴DE是⊙O的切线;

②由①知,OD⊥BC,

∴CF=FB=OB?cos30°=6×=3,

在Rt△POD中,OF=DF,

∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),

∴CP=CF﹣PF=3﹣3.

考点:圆的综合题

初三数学圆的知识点总结及经典例题详解

1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° ° 12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 不能确定 6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系? D B C A O ? ? C B A O ? B O C A D ? B O C A D ? B O C A D ? C B A O

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

2018中考数学圆(大题培优)

(2018?福建A卷)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E. (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小. (12.00分)(2018?福建B卷)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB. (1)求证:BG∥CD; (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

25.(10.00分)(2018?河北)如图,点A在数轴上对应的数为26,以原点O为 圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP. (1)若优弧上一段的长为13π,求∠AOP的度数及x的值; (2)求x的最小值,并指出此时直线l与所在圆的位置关系; (3)若线段PQ的长为12.5,直接写出这时x的值. 23.(10.00分)(2018?恩施州)如图,AB为⊙O直径,P点为半径OA上异于O 点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点. (1)求证:DE为⊙O切线; (2)若⊙O的半径为3,sin∠ADP=,求AD; (3)请猜想PF与FD的数量关系,并加以证明.

新初中数学圆的经典测试题含答案

新初中数学圆的经典测试题含答案 一、选择题 1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆. 下列说法中错误的是( ) A .勒洛三角形是轴对称图形 B .图1中,点A 到?BC 上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等 【答案】C 【解析】 【分析】 根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误. 【详解】 鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确; 点A 到?BC 上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误; 鲁列斯曲边三角形的周长=3×60180DE DE ππ?=? ,圆的周长=22 DE DE ππ?=? ,故说法正确. 故选C. 【点睛】 主要考察轴对称图形,弧长的求法即对于新概念的理解. 2.如图,在ABC ?中,90ABC ∠=?,6AB =,点P 是AB 边上的一个动点,以BP 为

中考数学圆的综合-经典压轴题及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数. 【答案】(1)证明见解析;(2)25°. 【解析】 试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论. (2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ??? ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1 252 B OCB AOP ∠=∠= ∠=?. 2.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形 (性质探究)如图1,试探究圆外切四边形的ABCD 两组对边AB ,CD 与BC ,AD 之间的数

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

九年级圆的基础知识点、经典例题与课后习题

圆 一:【知识梳理】 1.圆的有关概念和性质 (1) 圆的有关概念 ①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定 点为圆心,定长为半径. ②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧, 小于半圆的弧称为劣弧. ③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径. (2)圆的有关性质 ①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图 形,对称中心为圆心. ②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备: ①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。 上述五个条件中的任何两个条件都可推出其他三个结论。 ③弧、半圆、优弧、劣弧: 弧:圆上任意两点间的部分叫做圆弧 ..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。 半圆:直径的两个端点分圆成两条弧,每一条弧叫做半.圆.。 优弧:大于半圆的弧叫做优弧 .. 劣弧:小于半圆的弧叫做劣弧 ..。(为了区别优弧和劣弧,优弧用三个字母表示。) ④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧, 两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.

推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆 周角是直角;90”的圆周角所对的弦是直径. ⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。 ⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧 ..。 ⑦圆心角:顶点在圆心的角叫做圆心角 .... ⑧弦心距:从圆心到弦的距离叫做弦心距 .... (3)对圆的定义的理解: ①圆是一条封闭曲线,不是圆面; ②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长) 2.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半. (3)圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半. (4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.3. 点与圆的位置关系及其数量特征: 如果圆的半径为r,点到圆心的距离为d,则 ①点在圆上 <===> d=r; ②点在圆内 <===> d d>r. 其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。 4. 确定圆的条件: 1. 理解确定一个圆必须的具备两个条件: 圆心和半径,圆心决定圆的位置,半径决定圆的大小.

初三数学圆的知识点总结及经典例题详解

初三数学圆的知识点总结及经典例题详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

圆的基本性质 1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交.

4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形. 圆的基本性质 1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数 是 . A.100° B.130° C.80° D.50° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . ? B ? ? C B A O ? B O C A D D C A O

直线与圆位置关系知识点与经典例题

直线与圆位置关系 一.课标要求 1.能根据给定直线、圆的方程,判断直线与圆的位置关系; 2.能用直线和圆的方程解决一些简单的问题; 3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 二.知识框架 相离 几何法 弦长 直线与圆的位置关系 相交 代数法 切割线定理 相切 直线与圆 代数法 求切线的方法 几何法 圆的切线方程 过圆上一点的切线方程 圆的切线方程 切点弦 过圆外一点的切线方程 方程 三.直线与圆的位置关系及其判定方法 1.利用圆心0),(=++C By Ax b a O 到直线的距离22B A C Bb Aa d +++=与半径r 的大小来判 定。 (1)?r d 直线与圆相离 2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。 (1)有两个公共解(交点),即?>?0直线与圆相交 (2)有且仅有一个解(交点),也称之为有两个相同实根,即0=??直线与圆相切 (3)无解(交点),即????r d 练习 (位置关系)1.已知动直线5:+=kx y l 和圆1)1(:2 2=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交? (位置关系)2.已知点),(b a M 在圆1:22=+y x O 外,则直线1=+by ax 与圆O 的位置关系是() A.相切 B.相交 C.相离 D.不确定

(最值问题)3.已知实数x 、y 满足方程01422=+-+x y x , (1)求 x y 的最大值和最小值; (2)求y x -的最大值和最小值; (3)求22y x +的最大值和最小值。 〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。①转化为求斜率的最值;②转化为求直线b x y +=截距的最大值;③转化为求与原点的距离的最值问题。 (位置关系)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则n m +的取值范围是() (位置关系)5.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值范围是 6.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C ) A 、6π B 、4π C 、3π D 、2 π (位置关系)7.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是 ( ) A .2 B .21+ C .2 21+ D .221+ (最值问题)8.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( ) A .03222=--+x y x B .042 2=++x y x C .03222=-++x y x D .0422=-+x y x 10.若曲线21x y -=与直线b x y +=始终有两个交点,则b 的取值范围是__________. (对称问题)11.圆4)1()3(:2 21=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

中考数学圆综合练习题含答案

数学中考圆综合题附参考答案 1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC = 32,tan ∠AEC =3 5 ,求圆的直径. 2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 1. (1)证明:连接OC, ∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。 ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线. (2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD. ∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。由AD

相关文档
最新文档