绝密-空间大地测量学复习

绝密-空间大地测量学复习
绝密-空间大地测量学复习

第一章概论

1.大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学

空间大地测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。

2. 国家平面坐标系统实现过程主要工作

(1)国家平面控制网布设

(2)建立大地基准、确定全网起算数据

(3)控制网的起始方位角的求定

(4)控制网的起始边长的测定

(5)其它工作

3.传统大地测量常规方法的局限性

(1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。

(2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。

(3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。

(4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。

(5)难以建立地心坐标系:海洋区域无法布设大地控制网,陆地只能区域测量,建立区域参考椭球与区域大地水准面吻合;无法建立全球参考椭球。

4. 时代对大地测量提出的新要求

(1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标;

(2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统

(3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等;

(4)要求提供精确的(似)大地水准面差距:GNSS等空间定位技术逐步取代传统的经典大地测量技术成为布设全球性或区域性的大地控制网的主要手段;人们对高精度的、高分辨率的大地水准面差距N或高程异常的要求越来越迫切。

(5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。

(6)要求出现一种全天候,更为快捷的、精确、简便的全新的大地测量方法。

5. 空间大地测量产生的可能性

(1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。

(2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。

(3)现代电子技术,尤其是超大规模集成电路技术。

(4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。

6. 空间大地测量学

利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间大地测量学。7. 空间大地测量的主要任务

一类是建立和维持各种坐标框架:

(1)建立和维持地球参考框架,包括全球性的和区域性的地球参考框架;

(2)建立和维持国际天球参考框架:国际天球参考框架ICRF可分为:BCRF(日心,用于研究行星绕日)和GCRF(地心,用于研究卫星绕地);

(3)测定地球定向参数;

一类是确定地球重力场:

意义:高分辨率高精度的地球重力场模型对于军事部门、航空航天部门,以及大地测量、地球动力学等地学研究部门意义重大;

空间大地测量的诞生从根本上改变了这种状况:

–根据卫星的轨道摄动来反演地球重力场;

–利用卫星测高技术来实际测定海洋地区的大地水准面反演海洋地面的重力场;

–利用高-低模式和低-低模式的卫星跟踪卫星以及卫星重力梯度测量技术来反演地球重场;–高分辨率、高精度、变化性。

8. 几种主要的空间大地测量技术

(1)VLBI甚长基线干涉测量

(2)SLR激光测卫/月(SLR/LLR)

(3)GNSS各种全球性的卫星导航定位系统合称GNSS;

(4)DORIS法国研制组建的采用多普勒测量的方法来进行卫星定轨和定位的综合系统;(5)利用卫星轨道摄动反演地球重力场

(6)卫星测高

(7)卫星跟踪卫星

第二章时间系统

1. 空间大地测量的两个基准

–时间和空间是物质存在的基本形式(时空基准);

–在空间大地测量中,描述物体的位置需要:空间基准(坐标系统)和时间基准(时间系统)2.时刻:某一事件的发生时间,是绝对时间,是一种特殊的时间间隔(起算于某一个约定的起点时刻)。

时间间隔/ / 时段:事物在两种状态之间经历的时间历程(起点时刻随机的时间段)。

3. 时间系统与时间框架

时间系统定义了时间测量的标准,包括时刻的参考基准和时间间隔的尺度基准。

时间框架通过守时、授时和时间频率测量比对在某一区域或者全球范围内实现和维持统一的时间系统。

4. 世界时:以地球自转作为时间基准的时间系统,叫世界时系统。

世界时分类:(1)恒星时:春分点的视运动;(2)太阳时:太阳的视运动。

5.恒星时(Sidereal Time- - ST)

?定义:–恒星时以春分点作为参考点,春分点连续两次经过地方上子午圈的时间间隔为一个恒星日,再均匀分割成小时、分和秒。

–恒星时与地方上子午圈的时间有关,为地方时。

6. 太阳时

(1)真太阳时:太阳中心连续两次经过某地的上子午圈的时间间隔称为一个真太阳日;再均匀分割为小时、分和秒。

?以地球自转为基础,以太阳中心为参考点的时间系统。

?大小相当于太阳中心相对于本地子午圈的时角。

?真太阳时是不均匀的

(2)平太阳时:以地球自转为基础,以平太阳中心作为参考点所建立的时间系统称为平太阳时。

?平太阳的周年视运动轨迹位于赤道平面,而不是黄道平面;它在赤道上的运动角速度为恒定的,等于真太阳的平均角速度。

(3)民用时:将平太阳时的起始点从平正午移到平子夜的平太阳时,mc =m+12h

(4)世界时UT(Universal Time):将格林尼治零子午线处的民用时称为世界时。

世界时与恒星时的大小关系:太阳日>恒星日

7. 历书时(ET)

为了避免世界时的不均匀性,1960年起引入了一种以地球绕日公转周期为基础的均匀时间系统,称为历书时。

起点定义:以1900年1月0日世界时12h作为历书时1900年1月0日12h。

历书时的测量:以观测月球绕地球的轨道周期为基础。

缺陷:

天文常数的修改会导致历书时的不连续;

实际历书时比理论精度要差的多;

要经过较长时间的观测和数据处理;

星表本身的误差。

8. 原子时(AT)

(1)原子时:原子能级跃迁时会发射或吸收电磁波,电子波频率很稳定,并且容易复现,所以原子可以作为很好的时间基准,因而建立的以物质内部原子运动为基础的原子时。

秒长:铯133元子基态,在两个超精细的能级间跃迁辐射振荡9192631770周所持取得时间为一个原子秒。

起点:原子时的起算历元1958年1月1日0h,其值与世界时UT2相同。

(2)国际原子时(TAI)

为了避免每一台原子钟因各种误差影响所造成的时间差异,建立国际统一的原子时系统,国际时间局1971年建立国际原子时(TAI)。

(3)协调世界时UTC

秒长严格等于原子时的秒长;

与世界时UT间的时刻差规定需要保持在0.9秒以内,否则将采取闰秒的方式进行调整。即UTC=TAI-1s·n,其中n为调整的整数参数。

(4)GPS 时(GPST)

GPS时间为原子时,采用原子时的秒长,起点为1980年1月6日0h。

GPS时与国际原子时TAI的关系为:

(5)GLONASS时为原子时,采用原子时的秒长,与UTC之间有三小时的偏差。

原子钟可分为基准型和应用型(守时型原子钟和星载原子钟)两种;

目前,可供空间应用的原子时钟有三种:铯钟、铷钟和氢钟。

10. 脉冲星时

脉冲星是一种快速自转的中子星;直径一般只有10~20km,是宇宙中最小的恒星;质量和太阳等恒星相仿。

特点:具有极端的物理环境;自转具有极高的稳定度。

11. 相对论框架下几种时间系统的定义

太阳系质心动力学时(TDB)、地心坐标时(TCG)、质心坐标时(TCB)

12. 时间传递

每台钟都有误差,具有不同的频率准确度和漂移率,因而同一瞬间由不同的钟所给出的时间是不相同的。

常用的时间传递的方法:

?短波无线电时号

?长波无线电时号

?电视比对

?搬运钟法

?利用卫星进行时间比对

?电话和计算机授时

?网络时间戳服务

13. 空间大地测量中的常用计时方法

(1)历法(calendar)

历法是规定年、月、日的长度以及它们之间的关系,制定时间序列的一套法则。

?主要分为:

阳历(公历):以回归年为基本单位。阳历分为:儒略历,格里历

阴历(回历):以朔望月为基本单位

阴阳历(农历):以朔望月计月,以回归年计年,二者兼顾。

(2)儒略日与简化儒略日

儒略日(JD)便于计算相隔若干年发生的两事件之间的天数

简化儒略日(MJD):MJD=JD -2,400,000.5

年积日:是在一年中使用的连续计时法。用它可方便地求出一年内两个时t1和t2间的时间间隔。

第三章坐标系统

1.岁差

由于赤道运动而引起的岁差称为赤道岁差,原来被称作日、月岁差;

由于黄道运动而产生的岁差称为黄道岁差,原来被称为行星岁差。

赤道岁差

定义:由于太阳、月球及行星对地球上赤道隆起部分的作用力矩而导致赤道平面的进动称为赤道岁差;运动速度为每年西移50.39秒

黄道岁差

定义:除太阳和月球对地球的万有引力外,其他行星也对地球和月球产生万有引力。影响地月系质心绕日公转的轨道平面,黄道面产生变化,进而使春分点产生移动,这种岁差称为黄

黄道岁差使春分点在天球赤道上每年约东移0.1秒,还会使黄赤交角ε变化。

总岁差:

由于赤道岁差和黄道岁差的综合作用,平春分点将从γ0移至γ,从而使天体的黄经发生变化,称为黄经总岁差。

变化量:

2.章动

定义:由于日、月以及行星相对地球的位置在不断变化从而导致OF随时间不断变化,使黄道面相对于地球的位置在不断变化,从而北天极、春分点、黄赤交角等在总岁差的基础上产生额外的微小摆动,这种周期性(18.6年)的微小摆动称为章动。

黄经章动与交角章动

由于真天极围绕平天极作周期性的运动时所引起春分点在黄道上的位移称为黄经章动道;由于真天极围绕平天极作周期性的运动时所引起黄赤交角的变化称为交角章动。

3. 极移

定义:由于地球内部物质和表面上物质运动使得地球相对于自转轴产生相对运动,引起地极的移动,这种现象称为极移。

平均极:

A.固定平极:由几个纬度观测台站的固定平纬所确定的平均极称为固定平极。

B.历元平极:由1个或几个观测台站的历元平纬所确定的平均极称为历元平极。

极移的成分:张德勒(Chandlar )摆动、受迫摆动、微小摆动、长期漂移。

4. 天球坐标系统

天球坐标系:用以描述自然天体和人造天体在空间的位置或方向的一种坐标系。

分类:依据所选用的坐标原点的不同可分:

站心天球坐标系(原点位于测站中心)

地心天球坐标系(原点位于地心)

太阳系质心天球(原点位于太阳系质心)

球面坐标系主要点和圈:

?基圈与基点:选取一个大圆作为基圈,该基圈的极点称为基点,过基圈的两个极点的大圆皆与基圈垂直。

?主圈与副圈:选取一个过基圈的两个极点的大圆作为主圈,其余的大圆称为副圈。

?主点:主圈与基圈的交点则称为主点。

?经度:过任一天体S的副圈平面与主圈面之间的夹角称为经度。

?纬度:从球心至天体的联线与基圈平面间的夹角称为纬度

天球赤道坐标系分类:

在空间大地测量中,使用最为广泛的天球坐标系是天球赤道坐标系。由于岁差和章动,天轴的指向在不断变动,天球赤道面和春分点的位置也会相应地不断变化,从而形成许多不同的

天球赤道坐标系。

●瞬时天球赤道坐标系;

●平天球赤道坐标系;

●协议天球坐标系;

●国际天球参考框架;

国际协议天球坐标系(International Celestial Reference System,ICRS)

国际天球参考框架架(ICRF,International Celestial Reference Frame)

5. 站心天球坐标系

定义:坐标原点在测站标石中心的天球坐标系叫站心坐标系,也称作测站天球坐标系。

卫星定位(卫星大地测量)中,使用较多的主要有:站心天球坐标系和站心地平坐标系6.归算工作一般可采用以下两种方法:

?归心改正:

周日视差改正和周年视差改正:适用于距离遥远的天体(如恒星)

测站与地心在某天体处的张角称为该天体的周日视差。

当地球公转轨道的平均半径为r在垂直于从日心至某天体的联线时,在该天体处的张角β称为该天体的周年视差。D为从日心至天体的距离;

?坐标转换:适用于卫星等距离地球较近的天体。

常用的站心天球坐标系一般有:站心天球赤道坐标系和站心地平坐标系

7. 地球坐标系

参心坐标系:参考椭球面与区域的大地水准面吻和好,在此椭球上建立的大地坐标系,参考椭球球心于地球质心一般不重合,这种坐标系叫参心坐标系。

地心坐标系:参考椭球球心于地球质心重合,参考椭球面与全球大地水准面吻合好在此椭球上建立的大地坐标系,叫地心坐标系。

地球坐标系的两种常用形式:空间直角坐标系和空间大地坐标系

大地坐标系是采用大地经度L、大地纬度B和大地高H来描述空间位置的。

空间直角坐标系的坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面(格林尼治时圈)与赤道的交点,Y轴位于赤道面上,且按右手系与X轴呈90夹角。

协议地球参考系(CTRS)和协议地球参考框架(CTRF):

国际地球参考系(ITRS)和国际地球参考框架(ITRF)

第四章VLBI原理及应用

1. 大气窗口

宇宙中大部分电磁波信号在通过地球大气层时,被吸收而无法到达地面。而穿透大气到达地面的信号只有:

?0.40~0.76μm的可见光,“可见光窗口”;

?0.76~2.50μm的近红外谱段

?3.50~4.20μm的中红外谱段,“红外窗口”

大气向人们开一扇“无线电窗口”,波长范围:0.1cm-60m左右。

“可见光窗口”和“无线电窗口”称为大气窗口。

2. 甚长基线干涉测量的定义

两台使用独立本振信号的射电望远镜A和B,同时对同一射电源进行观测,利用射电干涉测量原理测定信号到达A、B两站的时间延迟τ,以及延迟率dτ/dt;从而精确测定A到B基线向量、以及射电望远镜到射电源方向的一整套理论、方法和技术称为射电干涉测量。3.基本原理(PPT)

4. 甚长基线干涉测量应用

?能够分辨射电源精细结构

?对射电源位置以及望远镜两端测站的相对位置非常敏感,能够分辨它们之间位置的细微变化

?在天体测量和大地测量中应用广泛

5. 空间甚长基线干涉测量技术(SVLBI)

定义:将VLBI天线送往太空,大幅度延伸VLBI观测基线长度,提高观测分辨率,这种技术即为空间甚长基线干涉测量(Space VLBI,简称SVLBI)。

特点:

?大幅度提高VLBI分辨率,使之能够分辨出更精细的射电源结构和更好

地作射电源成图。

?VLBI天线受到地球引力场的影响,其观测量(两天线接收同一射电源信号的时延和时延变率)同时涉及到三个参考系:

由射电源星表实现的射电天球参考系

由空间VLBI的轨道运动方程实现的动力学参考系

由地面测站网实现的地固参考系

空间VLBI的组成:

(1)SVLBI站:天线和馈源系统;接收机和数据采集系统;姿态和轨道控制系统;参考相位和数据传输系统;能源系统;装配在空间站上的数据处理系统

(2)地面VLBI站:地面跟踪站的作用是通过两路无线电通道与SVLBI站进行不间断的联系。(3)地面跟踪站

(4)相关处理中心

6. SVLBI与地面VLBI的比较

?空间VLBI站本振频率的相频率锁定在地面跟踪站的氢脉泽频标上,这个频标由跟踪站通过S(或X)波段的向上无线电通道发送给空间VLBI站。

?空间VLBI站接收到的射电信号及其它数据通过K(X、S)波段向下无线电通道发送给跟踪站,并经格式化后记录到磁带上。

?空间VLBI站上必须配备高精度的天线姿态调整、轨道控制和检测系统。

?空间VLBI站的能源是通过接收太阳能来提供的。

?空间VLBI必须配备全球覆盖的地面支持系统。

7. VLBI观测过程

组成系统的两天线同时观测某一射电源,接收由它辐射出的射电信经各自的接收机放大混频后,记录在高密度的数据磁带上。观测结束后,将两测站记录的磁带送到数据处理中心进行数据回放和相关处理,从而得到用于大地测量的延迟和延迟率观测量。观测所需的时间和频率信号是由各天线独立配备的氢原子钟来提供的。

8. VLBI系统组成

VLBI系统主要由天线、接收机、记录终端、氢原子钟、相关处理机等部分组成。

(1)天线系统

天线是射电望远镜的一个重要组成部分,它主要由抛物面反射面、馈源和天线支架组成。抛物面反射天线:其作用是接收被观测射电源所反射出的射电信号,并将其聚集到抛物面的焦点上,并被馈源所吸收。

馈源:也称为波导或照明天线,其作用是选择观测波段,并将天线面收集到的电磁波转换成高频电流能量,传输给接收机。安装的两种形式:主焦馈源和卡焦馈源。

天线支架:主要用于支撑天线面并驱动它的运转,实现天线对被观测射电源的精密跟踪。可分为赤道式和地平式。

(2)接收机

?VLBI系统中的接收机实质上就是一架低噪声、高灵敏度的超外差接收机。

?组成部分:低噪声前置放大器、混频器、中频放大器、本振系统

?作用:它的作用是将由天线馈源输出的高频信号放大、混频后变为中频,并输送给记录终端。

(3)数据记录终端

(4)氢原子钟和时钟同步

VLBI中原子钟的主要作用:为其独立本振提供高稳定度的频率标准;为数据终端提供精确的记录时间

(5)VLBI相关处理系统:硬件相关处理机和软件相关处理机

第五章SLR和LLR原理及应用

1.激光测卫原理

用安装在地面测站的激光测距仪向安装了后向反射棱镜的激光卫星发射激光脉冲信号;该信号被棱镜反射后返回测站,精确测定信号的往返传播时间;进而求出仪器到卫星质心间的距离。目前的测距精度可达1cm左右。

为测距改正数

2.系统组成:主要包括地面部分和空间部分

空间部分为带后向反射镜的卫星;

地面部分则包括:

激光发生系统、激光光学发射和接收系统、光学系统转台、激光脉冲接收处

理系统、时间间隔计数器、时间系统;

标校系统、计算机控制记录系统、基石、电源系统、保护系统;

最后为数据传输系统。

3.激光测月

激光测月(LLR)的特点:技术原理与激光测卫基本相同,只不过将卫星上的激光后向反

射镜放置在月球上特定的观测点,原于月球的特点,激光测月与激光测卫也有所区别。

4.LLR 原理

用大功率激光测距仪向安置在月球表面上的反射棱镜发射激光脉冲信号;测定信号的往返传播时间;进而求出仪器到反射棱镜之间距离的方法和技术称为激光测月。

5. 激光测月与月球相关的改正

月球激光后向反射镜改正;

月球天平动改正:自由天平动(一般称月球旋转速率的变化为经度方向上的自由天平动)受迫天平动(由月球非对称性产生)

月球轨道改正。

6. 激光测月的应用

(1)月球潮汐的测量:月球在潮汐力的作用下产生的弹性形变也用勒夫数来表示。

(2)月球液核的研究:通过激光测月资料对月球能量耗散分析,显示月球存在一个较小的液核。

(3)月面位置坐标

(4)引力常数变化测定:月球轨道运行非常稳定,激光测月得到的月球轨道特别有利于确定引力常数;

(5)等效原理

第六章卫星测高

1.卫星测高基本原理

利用星载微波雷达干涉测高仪,通过测定微波从卫星到地球海洋表面再反射回来所经过的时间来确定卫星至海面星下点的高度,根据已知的卫星轨道和各种改正来确定某种稳态意义上或一定时间尺度平均意义上的海面相对于一个参考椭球的大地高或海洋大地水准面高。

2. 卫星测高观测值应加入的改正项

改正包括仪器校正

海面状况改正

对流层折射改正

电离层效应改正

周期性海面影响改正

3.卫星测高误差分析

根据误差来源不同,将误差改正项分为三类:

(1)卫星轨道误差

卫星轨道是测高仪进行测量的参考基准,任何轨道的测量误差都将直接引入海面高测量中。引起轨道误差的主要误差源可以分为四类

●地球重力场模型(影响最大)

●大气传播延迟

●光压

●跟踪站坐标误差

●固体潮汐和海洋潮汐

(2)环境误差

●海况(电磁偏差)影响:由于平均海面与平均散射面之间存在高度差产生的。

●电离层折射误差:当测高卫星信号穿过电离层时,会产生折射效应,其结果对传播信号

产生时延。

●对流层影响:电波信号通过大气层时,由于大气折射率的变化,传播路径会产生弯曲。

●逆气压改正:大气压的变化将引起海面变化,而且是逆压的,即气压增高,海面降低,

反之亦然。

(3)仪器误差

●跟踪系统偏差:由回波信号波形中离散采样点的校准偏差引起。

●波形样本放大校准偏差:由接收信号的放大程度是随着监视表面的剖面变化而变化引起

的。

●平均脉冲形状的不确定性与实践标志偏差

4. 测高数据平差方法

目的:进一步削弱于残余的轨道误差、海洋时变、各种物理改正误差对SSH的影响;进一步将其它测高数据的基准与T/P基准统一。

分类:交叉点平差和共线平差

(1)交叉点平差

交叉点:卫星从南半球向北半球运行在地面的投影轨迹称为升弧;从北半球向南半球运行的轨迹称为降弧。通常将升弧与降弧相交的点称交叉点,即轨迹网络的结点。

交叉点平差可分为区域平差、全球平差。

联合交叉点平差:在联合交叉点平差中,由于T/P数据的观测精度要高于其它卫星测高数据,因而将其全部固定,并且认为交叉点的不符值是残余的轨道误差、海洋时变、各种物理改正误差引起的。

(2)共线平差:

要求测高卫星轨道满足:一定分辨率的地面轨迹交叉点网络、一定重复周期的重复轨迹

海面重复轨迹可获得大量的海面高重复观测,提供了海面变化的丰富信息,由此确定的平均海面将达到很高的精度。

5. 卫星测高技术的应用

(1)卫星测高技术在大地测量学中的应用

利用卫星测高数据可确定高分辨率的大地水准面,继而精密确定地球形状,使其实现全球高程基准统一成为可能。

测高数据剖面计算垂线偏差

测高数据反演海洋重力异常

测高数据计算海洋大地水准面(更为实用的方法是逆Stokes方法、垂线偏差法和最小二乘配置法)

(2)卫星测高技术在地球物理学中的应用

反演反演海底地形构造与深部地球物理特征;

海洋大地水准面短波起伏可提供有关海底矿藏信息;

检测出海底地形;

可勾勒陆架构造及盆地分布等。

(3)卫星测高技术在海洋学中的应用

海洋自身的研究和气候与海洋运动的相互影响。

(4)卫星测高技术用于全球环境变化与检测

进行海面波浪分析和预报,还可反演估计海面风速场。卫星测高已成为监测全球海洋海况的重要技术;

监测海平面变化,也可以用来测定冰面高改变和冰盖质量均衡;

研究大气效应、海洋气象学以及海洋的环境特征对气候的影响及其相互作用。

第七章重力卫星测量

1. 牛顿力学的正演过程和反演过程

-已知作用力,分析质点受力产生的运动规律,可看成解牛顿力学问题的正演过程。

-已知或测定了受力质点在空间运动的上述表征其运动规律的参数(位置,速度,加速度),并由此确定(恢复)质点所受到的未知力源,是一个解牛顿力学问题逆过程,或称为反演问题。

2. 根据轨道摄动求解地球重力场的扰动位

扰动重力场使卫星的实际运行轨道偏离正常轨道,即产生轨道摄动,表现为卫星的实际运动状态与卫星的正常运动状态(正常重力场中的运动)的差异。

根据此差异(轨道摄动)即可求出扰动位(真实地球重力场与正常重力场的差异)。

扰动位与正常重力场叠加即得到真实重力场。

3.确定地球重力场的方法

(1)卫星轨道摄动(动力法)

利用卫星轨道摄动确定地球重力场是卫星重力技术最经典的方法。

-利用精密定轨技术确定重力卫星的精密轨道。

-考虑各种力模型,通过数值积分得到积分轨道。

-数值轨道与精密轨道不完全重合,原因是数值轨道采用的包括地球重力场,海潮,固体潮等各种模型不准确。

-利用这种差别(轨道摄动)建立其与各种先验模型参数改正值之间的关系,即可改正先验模型参数。

-如果除地球重力场摄动外的所有其它各种摄动均已准确测定或用模型算出,利用先验重力模型(EGM96或EGM2008),同时引入卫星在初始时刻的状态向量作为位置参数,通过最小二乘平差即可获得重力异常和卫星初始时刻状态向量的改正数。

(2)卫星能量守恒(能量法)

基于单星的能量守恒原理:当一个力学系统的势能与速度无关时,该系统的机械能守恒,即系统在其运动中保持动能和势能之和不变。

在实际描述卫星运动时,必须加以改正:保守力项和非保守力项

基于双星的能量守恒原理:Wolff根据能量守恒原理认为:沿轨速度的动能占主导性,影响了几乎全部的能量转换,而垂直于轨道面和向径的速度改变对于动能的变化贡献很小,因此被近似忽略。

(3)卫星重力梯度

利用卫星重力观测数据恢复重力场的方法可分为两类:

空域法:建立在经典位理论基础上的重力边值问题解法,即物理大地测量学中研究的大地测量边值问题,现称“空域法”。

时域法:建立在卫星动力学基础上的引力位调和(球谐)分析法,将观测值视为时间的函数,或时间序列,现称“时域法”

卫星重力梯度测量基本原理:

利用一个卫星内一个或多个固定基线(大约70cm)上的差分加速度计来测定三个互相垂

直方向的重力张量的几个分量,即测出加速度计检验质量之间的空中三向重力加速度差值。测量到的信号反映了重力加速度分量的梯度,即重力位的二阶导数。

4. 卫星跟踪卫星的模式-SST

高低模式(HL)

低低模式(LL)

高高模式(HH)

5.三种卫星比较

CHAMP卫星:采用高低跟踪模式;

GRACE卫星:采用SST-ll(低低卫星-卫星跟踪)技术,同时发射两颗低轨道卫星在同一个轨道上,彼此相距200km,一个“追踪”另一个。

GOCE卫星:重力梯度测量卫星,特别适合测定高精度和高空间解析度静态重力场—大地水准面和重力异常。

CHAMP,GRACE和GOCE工作在不同波谱内。由于它们各自有不同的测量原理,所以,就重力观测而言它们是完全互补的。

(1)CHAMP可以看成是一次概念证明,因为它是第一次非间断三维高低跟踪技术结合三维重力加速度测量。这个技术在精度和空间解析度上不会对现有重力场模型有多少改进,但是它将大大提高低阶球谐系数的精度,并使目前的模型更加可靠

(2)GRACE是第一个SST-ll卫星,它将使中长空间尺度的球谐系数精度提高约3个量级(3)GOCE主要适合于静态重力场的确定,它的低轨道飞行和直接的重力场参量的测量,使得其适用于重力场模型全波段的高精度恢复。

6.卫星重力测量的应用

(1)大地测量学

卫星重力测量为重力场提供高精度“骨架”,而地面方法则成为空间方法的补充和校准或进行高精度局部重力场的确定。

卫星重力消除了陆地困难地区和近极地重力空白。

(2)地震学

重力观测获得的高精度的地球重力场中长波分量及其时变信息已作为一种地震前兆信号,被用于地震科学研究和预测预报工作。

卫星重力将为跨越式提高地震监测能力提供前所未有的强大的技术支持,在未来的地震监测预测工作中具有巨大的应用前景。

(3)海洋学

反演海水质量再分布引起的海平面变化;

对海洋动态起伏和绝对表面环流进行估计;

稳态海洋环流探测的重要参考依据。

(4)地球物理学

冰盖学;

陆地岩石圈变化;

监测陆地水储量变化;

用于反演三维全球密度模型。

大地测量学复习提纲

大地测量学的复习提纲 Chap1 1.大地测量学的定义 大地测量学是通过在广大的地面上建立大地控制网,精确测定大地控制网点的坐标,研究测定地球形状,大小和地球重力场的理论,技术与方法的学科。2.应用大地测量学的任务 通过实地观测和数据处理,精密地确定出控制点在全区域统一坐标系统中的空间位置和重力场参数,并且监测这些控制网点随时间的变化量,这是应用大地测量学的基本任务。 Chap2 1.大地水准面的定义 设想海洋处于静止平衡状态时,将它延伸到大陆下面且保持处处与铅垂线正交的包围整个地球的封闭的水准面,我们称它为大地水准面。 2.垂线偏差的定义 垂线偏差——地面一点上,铅垂线方向和相应的椭球面法线方向之间的夹角。 3.大地经度的定义 大地经度L—过P点的椭球子午面与格林尼治的起始子午面之间的夹角。由起始子午面起算,向东为正,向西为负。 4.大地纬度的定义 大地纬度B—过P点的椭球面法线与椭球赤道面的夹角。由赤道起算,从0到90°,向北为正,向南为负。 5.大地高的定义 大地高H—由P点沿椭球面法线至椭球面的距离。 6.大地方位角A的定义 过P点和另一地面点Q点的大地方位角A就是P点的子午面与过P点法线及Q点的平面所成的角度,由子午面顺时针方向量起。 7.站心坐标系 站心地平直角坐标系的定义是:原点位于地面测站点,z轴指向测站点的椭球面法线方向(又称大地天顶方向),x轴是原点的大地子午面和包含原点且和法线垂直的平面的交线,指向北点方向,y轴与x、z轴构成左手坐标系。 8.水准面的不平行性 (1)水准面之间为什么是不平行的? 水准面的不平行性是由两部分造成的。地面上一点的重力加速度分为正

(完整版)中南大学《大地测量学基础》考试复习要点

1大地测量学:是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门学科。 2大地测量学的基本内容 (1)确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及重力场。 (2)建立和维持国家和全球的天文大地水平控制网、工程控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。 (3)研究为获得高精度测量成果的仪器和方法等。研究地球表面向椭球面或平面的投影数学变换及有关大地测量计算。 (4)研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。 3大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学 (1)几何大地测量学(即天文大地测量学) 基本任务:是确定地球的形状和大小及确定地面点的几何位置。 主要内容:国家大地测量控制网(包括平面控制网和高程控制网)建立的基本原理和方法,精密角度测量,距离测量,水准测量;地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型等。 (2)物理大地测量学:即理论大地测量学 基本任务:是用物理方法(重力测量)确定地球形状及其外部重力场。 主要内容:包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法。 (3)空间大地测量学:主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。 4现代大地测量的特征: ⑴研究范围大(全球:如地球两极、海洋) ⑵从静态到动态,从地球内部结构到动力过程。 ⑶观测精度越高,相对精度达到10-8~10-9,绝对精度可到达毫米。 ⑷测量与数据处理周期短,但数据处理越来越复杂。 5大地测量学的发展简史:地球圆球阶段地球椭球阶段大地水准面阶段现代大地测量新阶段 6大地测量的展望 (1)全球卫星定位系统(GPS),激光测卫(SLR)以及甚长基线干涉测量(VLBI),惯性测量统(INS)是主导本学科发展的主要的空间大地测量技术 (2)用卫星测量、激光测卫及甚长基线干涉测量等空间大地测量技术建立大规模、高精度、多用途的空间大地测量控制网,是确定地球基本参数及其重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器发展的地面基准等科技任务的基本技术方案。(3)精化地球重力场模型是大地测量学的重要发展目标.

大地测量学基础复习提纲.doc

大地测量学基础复习提纲 第一部分误差理论与测量平差基础 第一章绪论 1. 什么是观测误差?分为哪几类?它们各自是怎样定义的?对观测成果有何影 响?如何处理?试举例说明。 2. 什么是观测条件?它与观测结果的质量有何联系? 3. 什么是多余观测?测量中为什么要进行多余观测? 4. 测量平差的基本任务是什么? 第二章误差分布与精度指标 1. 什么是观测值的真值和真误差、最或是值(最或然值、平差值)和改正数?三角形的闭合差是什么观测值的真误差?同一量的双观测值之差是不是真误差? 2. 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性? 3. 什么是精度?衡量精度的指标有哪些?它们各自是怎样定义的?如何计算? 4. 什么是准确度?什么是精确度?精度、准确度和精确度三者有何区别与联系?* 5.什么是测量数据的不确定性和不确定度?评定不确定度的关键是什么? 6. 相关观测向量X的协方差阵是怎样定义的?试说明DXX中各元素的含义。若X 向量中各个分量相互独立时,其协方差阵有何特点? 7. 两个独立观测值是否可称为不相关观测值?而两个相关观测值是否就是不独立 观测值呢? 第三章协方差传播律及权 1. 协方差(和协因数)的定义?什么是协方差(和协因数)传播律?有何用途?主要有哪几个公式?试写出这些公式的推导过程。 2. 当观测值的函数为非线性形式时,应用协方差(和协因数)传播律应注意哪些问题?试举例说明。 3. 简述协方差(和协因数)传播律的计算步骤。 4. 水 准测量中两种计算高差中误差的公式为和<7^ = 它们

各在什么前提条件下使用?并推导之。 5. 试简述同精度独立观测值的算术平均值中误差的计算公式A = 的推导过 程,并说明该式使用的前提条件。 6. 权是怎样定义的?权与中误差有何关系?有了中误差为什么还要讨论权? 7. 什么是单位权、单位权观测值及单位权中误差?对于某一平差问题,它们的值是唯一的吗?为什么? 8. 水准测量中的两种常用的定权公式巧=|^和/^. = 以及由不同次数的同 精度观测值求算术平均值的权的定权公式乃=$各在什么前提下使用?并说C 明式屮C的含义。 9. 在非列罗公式~ = V^T rtl,Wi代表什么量?n是观测值的个数吗?计算 得到的是什么量的中误差 A 10.在公式e7Q = f=12"中,6是什么量的权?n等于什么?求得的单位权中 误差^^代表什么量的中误差。 11. 何为观测值的综合误差?它包括哪些误差?观测值的综合方差是怎样定义的? 12. 试写出系统误差的传播公式及系统误差与偶然误差的联合传播公式。 第七章间接平差 1. 在间接平差中,为什么独立参数的个数应等于必要观测数,而且参数之间要函数独立?能否说选了足够的参数,每一个观测值都能表示成参数的函数? 2. 在平面控制网中,应如何选取参数? 3. 误差方程有何特点?

(完整word版)大地测量学考试复习资料汇总.doc

大地测量学考试复习资料 ㈠考试题型:填空题、选择题、名词解释、简答题、绘图题、计算题 ㈡名词解释: 1.大地测量学的定义:大地测量学是测量和描述地球并监测其变化,为人类活动提供关于 地球等行星体的空间信息的一门地球信息学科,既是基础学科,又是应用学科。 2.大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主 题解算。 3. 大地主题正算 :已知P1点的大地坐标,P1至 P2的大地线长及其大地方位角,计算P2点 的大地坐标和大地线在P2点的反方位角。 4.大地主题反算:已知椭球面上两点的大地经纬度求解两点间的大地线长度与正反方位 角。 5. 地图投影:将椭球面上元素(包括坐标,方位和距离)按一定的数学法则投影到平面上,研 究这个问题的专门学科叫地图投影学。 6.大地水准面:假定海水面完全处于静止和平衡状态(没有风浪、潮汐及大气压变化的影响),把这个海水面伸延到大陆下面,形成一个封闭曲面,在这个面上都保持与重力方向正交的特 性,则这个封闭曲面称为大地水准面。 7. 球面角超:球面多边形的内角和与相应平面上的内角和与(n-2 )× 180°的差值(或答为球面三角形和 180°也可)。 8. 底点纬度:在 y =0 时,把 x 直接作为中央子午线弧长对应的大地纬度B,叫底点纬度。 9.高程异常:似大地水准面与椭球面的高程差。 10.水准标尺零点差:一对水准标尺的零点误差之差。 11.总椭球体:总椭球体的中心与地球的质心重合,其短轴与地球的地轴重合,起始子午面 与起始天文子午面重合,而且与地球体最佳密合的椭球体。 12.子午线收敛角:高斯投影面上任意点子午线的投影线的切线方向与该点坐标的正北方向 的夹角。 13.水准标尺基辅差:精密水准标尺同一视线高度处的基本分划与辅助分划之差。 14.子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。 15.卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合 的圈。 16.椭园偏心率:第一偏心率第二偏心率 17.大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。 18. 空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X 轴,在赤道面上与X 轴正交的方向为Y 轴,椭球体的旋转轴为Z 轴,构成右手坐标系O-XYZ。 19.法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。 20. 相对法截线:设在椭球面上任意取两点 A 和 B,过 A 点的法线所作通过 B 点的法截线和过 B 点的法线所作通过 A 点的法截线,称为 AB 两点的相对法截线。 21.大地线:椭球面上两点之间的最短线。 22.垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方 向值应加的改正。 23.标高差改正:由于照准点高度而引起的方向偏差改正。 24.截面差改正:将法截弧方向化为大地线方向所加的改正。

大地测量学知识点整理

第一章 大地测量学定义 广义:大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。 狭义:大地测量学是测量和描绘地球表面的科学。包含测定地球形状与大小,测定地面点几何位置,确定地球重力场,以及在地球上进行必须顾及地球曲率的那些测量工作。 大地测量学最基本的任务是测量和描绘地球并监测其变化,为人类活动提供关于地球等行星体的空间信息。 P1 P4 P6(了解几个阶段、了解展望) 大地测量学的地位和作用: 1、大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用 2、大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用 3、大地测量是发展空间技术和国防建设的重要保障 4、大地测量在当代地球科学研究中的地位显得越来越重要 5、大地测量学是测绘学科的各分支学科(其中包括大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础科学 现代大地测量学三个基本分支:几何大地测量学、物理大地测量学、空间大地测量学 第二章 开普勒三大行星运动定律: 1、行星轨道是一个椭圆,太阳位于椭圆的一个焦点上 2、行星运动中,与太阳连线哎单位时间内扫过的面积相等 3、行星绕轨道运动周期的平方与轨道长半轴的立方之比为常数 地轴方向相对于空间的变化(岁差和章动)(可出简答题) 地轴相对于地球本体内部结构的相对位置变化(极移) 历元:对于卫星系统或天文学,某一事件相应的时刻。 对于时间的描述,可采用一维的时间坐标轴,有时间原点、度量单位(尺度)两大要素,原点可根据需要进行指定,度量单位采用时刻和时间间隔两种形式。 任何一个周期运动,如果满足如下三项要求,就可以作为计量时间的方法: 1、运动是连续的 2、运动的周期具有足够的稳定性 3、运动是可观测的 多种时间系统 以地球自转运动为基础:恒星时和世界时 以地球公转运动为基础:历书时→太阳系质心力学时、地球质心力学时 以物质内部原子运动特征为基础:原子时 协调世界时(P23) 大地基准:建立大地基准就是求定旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转

测绘学基础知识要点与习题答案

《测绘学基础》知识要点与习题答案 Crriculum architecture & answers to exercise of Fundamentals of Geomatics 总学时数:测绘64;地信、规划48实验学时:12,计4次学分:6/4 课程性质:专业基础课先修课程:高等数学,专业概论,概率统计学 教学语言:双语教学考核方式:考试实习:3周计3学分 平时成绩: 20%(实验报告、提问、测验、课堂讨论及作业) 1.课程内容 测绘学基础是测绘科学与技术学科的平台基础课。该分支学科领域研究的主要内容是小区域控制测量、地形图测绘与基本测绘环节的工程与技术,即:应用各类测绘仪器进行各种空间地理数据的采集包括点位坐标与直线方位测定与测设、地形图数字化测绘等外业工作和运用测量误差与平差理论进行数据处理计算、计算机地图成图等内业工作。授课内容主要包括地球椭球与坐标系、地图分幅、空间点位平面坐标与高程及直线方位测定与测设、误差理论与直接平差、大比例尺地形图数字成图等基本理论与方法。 2.课程特色 测绘学基础为测绘学科主干课程,为学生进一步学习以“3S”为代表的大地测量学、摄影测量学、工程测量学等专业理论与技术奠定基础。同时,该课程本身也是测绘学的一门分支学科──地形测量学(Topographical Surveying)。该门课程具有理论、工程和技术并重、实践性强等特点,其教学水平和教学质量是衡量测绘学科教育水准的关键要素,实施多样化课堂教学,注重培养学生动手能力和创新能力,以达到国家级精品课的要求为建设目标。 3.课程体系 第一章绪论Chapter 1 Introductory 内容:⑴了解测绘学科的起源、发展沿革与分支学科的研究领域;⑵测绘学的任务与作用。 重点:大地测量学与地形测量学的研究领域和工作内容。 难点:无。 §1-1测绘学的定义DEFINITION OF GEOMATICS 研究测定和推算地面点的几何位置、地球形状及地球重力场,据此测量地球表面自然形态和人工设施的几何分布,并结合某些社会信息和自然信息的地球分布,编制全球和局部地区各种比例尺的地图和专题地图

大地测量学复习总结(3)word资料15页

1.垂线同总地球椭球(或参考椭球)法线构成的角度称为 绝对(或相对)垂线偏差 2.以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时 3.以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。一个真太阳日就是真太阳连续两次经过某地的上中天(上子午圈)所经历的时间。 4. 以格林尼治平子夜为零时起算的平太阳时称为世界时 5.原子时是一种以原子谐振信号周期为标准 6.归算:就是把地面观测元素加入某些改正,使之成为椭球面上相应元素。 7.把以垂线为依据的地面观测的水平方向值归算到以法线为依据的方向值而加的改正定义为垂线偏差改正 7.大地线椭球上两点间的最短程曲线。 8. 设椭球面上P点的大地经度L,在此子午面上以椭圆中心O为原点建立地心纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x轴夹角称为P点的归化纬度u。 9.仪器加常数改正因测距仪、反光镜的安置中心与测距中心不一致而产生的距离改正,称仪器加常数改正,包括测距仪加常数和反光镜加常数。 10. 因测距仪的基准频率等因素产生的尺度参数成为乘常数。 11. 基本分划与辅助分划相差一个常数301.55cm,称为基辅差,又称尺常数

12.控制网可靠性:控制网能够发现观测值中存在的粗差和抵抗残存粗差对平差的影响 13. M是椭球面上一点,MN是过M的子午线,S为连接MP的大地线长,A 为大地线在M点的方位角。以M为极点;MN为极轴;P点极坐标为(S, A)?一点定位,如果选择大地原点:则大地原点的坐标为: ?多点定位,采用广义弧度测量方程 1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京,而在前苏联的普尔科沃。相应的椭球为克拉索夫斯基椭球。 1954年北京坐标系的缺限: ①椭球参数有较大误差。 ②参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+68m。 ③几何大地测量和物理大地测量应用的参考面不统一。我国在处理重力数据时采用赫尔默特1900~1909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。 ④定向不明确。 1.大地测量学的定义:大地测量学是在一定的时间—空间参考系统中, 测量和描绘地球及其他星体的一门学科。(研究和确定地球的形状、大小、重力场、整体与局部运动和地表面点的几何位置以及它们的变化的理论和技术的学科)。现代定义精确测定地面点的空间位置,研

绝密-空间大地测量学复习

第一章概论 1.大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学 空间大地测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立大地基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统大地测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设大地控制网,陆地只能区域测量,建立区域参考椭球与区域大地水准面吻合;无法建立全球参考椭球。 4. 时代对大地测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)大地水准面差距:GNSS等空间定位技术逐步取代传统的经典大地测量技术成为布设全球性或区域性的大地控制网的主要手段;人们对高精度的、高分辨率的大地水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的大地测量方法。 5. 空间大地测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间大地测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间大地测量学。7. 空间大地测量的主要任务 一类是建立和维持各种坐标框架:

大地测量学基础思考题

《大地测量学基础》(第二版)复习思考题 (供同学复习时参考,不作为期末考试出题依据) ══════════════════════════════════ 第1章思考题 1、什么是大地测量学?它的地位和作用体现在哪几个方面? 2、普通测量学和大地测量学有何区别和联系?常规大地测量学和现代大地测量学主要有哪些分支?现代大地测量学有何特征? 3、了解大地测量的发展过程。 4、为什么说现代大地测量是以空间测量技术为代表的? ══════════════════════════════════ 第2章思考题 1、简述开普勒三大行星运动定律。 2、掌握岁差、章动、极移的基本概念和相关术语。 3、什么是国际协议原点?它的作用是什么? 4、研究时间的重要性?时间的两个含义?作为时间基准的周期运动应满足哪三项要求? 5、什么是大地水准面和大地体,大地水准面有何特点? 6、什么是总地球椭球体和参考椭球体?

7、什么是高程异常和大地水准面差距? 8、掌握大地坐标系和天文坐标系的定义。 9、质心和参心空间直角坐标系是怎样定义的? 10、什么是椭球定位和定向?局部定位和地心定位?定向满足的两个平行条件? 11、什么是参考椭球一点定位和多点定位? 12、什么是大地原点及大地起算数据? 13、熟悉1954北京坐标系,1980年国家大地坐标系、新1954年北京坐标系,WGS-84世界大地坐标系和CGCS200国家大地坐标系的基本情况。 14、掌握二维直角坐标变换的四参数公式和三维直角坐标变换的七参数公式。

══════════════════════════════════ 第3章思考题 1、什么是地球引力、离心力、重力?重力的单位是什么? 2、什么是位函数?引力位和离心力位的具体表达式如何? 3、什么是重力位和重力等位面?重力等位面的性质有哪些? 4、什么是正常重力位?为什么要引入正常重力位? 的正常重力公式?并搞清各项的意义,高出椭球面H米的正 5、顾及α和2 常重力如何计算? 6、地球大地基准常数的意义? 7、什么是水准面的不平行性?对几何水准测量影响如何? 8、掌握正高、正常高、力高的定义、基准面及计算公式。正高、正常高和大地高的关系如何?

物理大地测量学复习资料

物理大地测量学 习题集 编写:物理大地测量学课程组 单位:武汉大学测绘学院 时间:2006年6月

第一章概述 1、物理大地测量学的主要任务是什么? 用物理的方法研究和测定地球的形状、地球重力场及其各自随时间的变化。 2、为什么要研究和确定地球重力场? ●地球重力场同其他物理场一样,是客观存在的,不以人的意志为转移,是物质的一种存 在形式。 ●重力场是地球最重要的物理特性,制约着该行星上及其附近空间发生的有关力学事件, 引力是宇宙物质存在的最普遍属性,制约着宇宙的形成和发展。 ●地球重力场反应地球物质的空间分布,运动和变化,确定地球重力场的精细结构及其随 时间的相依变化将为现代地球科学解决人类面临的资源问题,环境和灾害等紧迫课题提供基础地学信息。 3、物理大地测量学的学科内容有哪些? ?重力位理论: ?地球形状及其外部重力场的基本理论 ?全球性地球形状: ?区域性地球形状 ?重力探测技术 第二章重力测量原理 1、给出重力的定义及单位。 狭义的重力是指地球表面上物体所受的地球的吸引力和离心力的和,广义的重力指宇宙中所有形体对物体的吸引力以及离心力的和,重力的单位是Gal,此外还有mGal,微伽等。 地球所有质量对任一点所产生的引力以及该点随地球相对于惯性中心运动而产生的离心力之和

宇宙中所有物质对任一点产生的引力以及该点随地球相对于惯性中心运动而产生的离心力之和 2、重力测量方式有哪些?目前有哪些重力测量技术? 重力测量方式有绝对重力测量,相对重力测量,固定台站重力测量,流动台站重力测量。 重力测量技术有动力法重力测量技术以及静力法重力测量技术 3、什么是重力基准?我国历史上采用了哪些重力基准? 相对重力测量测定的是两点的重力差,为了求得绝对重力值,必须有一个已知的绝对重力点作为相对重力测量的起始点,为此必须建立统一的重力基准。 国家57重力基本网 国家85重力基本网 国家2000重力基本网 4、简述利用自由落体测定绝对重力的基本原理。 5、简述利用振摆测定绝对重力和相对重力的基本原理。 6、简述垂直型弹簧重力仪测定相对重力的基本原理。 7、什么是零飘?在重力测量中如何消除零飘? 因弹性系统存在弹性疲劳现象,在不受外力作用下重力仪的读书随时间而连续变化 8、陆地重力测量主要受哪些因素的影响? 9、重力测量数据处理包括哪些内容?

大地测量学知识点

大地测量学知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大地坐标系:采用大地经度L 、大地纬度B 和大地高H 来描述地面上一点的空间位置的。 克莱罗定理: 大地测量学:在一定的时间与空间参考系中,测量和描绘地球及其他行星体的一门学科。 开普勒三定律:行星运动的轨迹是椭圆;太阳位于其椭圆的一个焦点上; 在单位时间内扫过的面积相等; 运动的周期的平方与轨道的长半轴的立方的比为常数。 岁差:由于日、月等天体的影响,有类似于旋转陀螺在重力场中的进动,地球的旋转轴在空间围绕黄极发生缓慢旋转,是地轴方向相对于空间的长周期运动,旋转周期为26000年。 章动:月球运行的轨道与月的之间距离是不断变化的,使得月球引力产生的大小和方向不断变化,从而导致北天极在天球上绕黄极旋转的轨道不是平滑的小圆,而是类似圆的波浪曲线运动。 极移:地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化。 大地经度L:为大地起始子午面与该点所在的子午面所构成的二面角,由起始子午面起算,向东为正,称东经(0°~180°),向西为负,称西经(0°~180°)。 大地纬度:大地纬度B是过该点作椭球面的法线与赤道面的夹角,由赤道面起算,向) sin 1(2?βγγ??+=e

北为正,称北纬(0°~90°),向南为负,称南纬(0°~90°)。 大地水准面:平均海水面按处处与重力方向垂直的特性向大陆、岛屿内延伸而形成的闭合曲面,是完全静止的海水面所形成的重力等位面。 总(平均)地球椭球:与地球的物理性质、大地体的几何大小相同的旋转椭球体。 参考椭球:大地水准面形状不规则,而最佳拟合于区域性大地水准面的旋转椭球面叫做~。 正常椭球:大地水准面的规则形状(一般指旋转椭球面)。 椭球定位:指确定该椭球中心的位置,分为:局部定位和地心定位。 椭球定向:指确定椭球旋转轴的方向。 一点定位: 多点定位: 大地测量参考框架:固定在地面上的控制网坐标参考架,高程参考架,重力参考架。 1954年北京坐标系:是我国广泛采用的大地测量坐标系。该坐标系源自于原苏联采用过的1942年普尔科沃坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球。 1980年国家大地坐标系(亦称1980西安坐标系) :是1978年我国决定建立新的国家大地坐标系统,对全国天文大地网施行整体平差。采用国际大地测量协会1975年推荐的参考椭球。 新1954年北京坐标系(BJ54新):是由1980年国家大地坐标系(GDZ80)转换得,,,K K K K K K K K L B A H H λ?α====正∑∑==min) min(22 新新或ζN

大地测量学基础(高起专) 地质大学期末开卷考试题库及答案

大地测量学基础(高起专) 单选题 1. _______要求在全球范围内椭球面与大地水准面有最佳的符合,同时要求椭球中心与地球质心一致或最为接近。(A) 地心定位(B) 单点定位(C) 局部定位(D) 多点定位参考答案:A 2. _______用于研究天体和人造卫星的定位与运动。(4分) (A) 参心坐标系(B) 空间直角坐标系C) 天球坐标系(D) 站心坐标系参考答案:C 3. 地球坐标系分为大地坐标系和_______两种形式。(4分) (A) 天球坐标系(B) 空间直角坐标系(C) 地固坐标系(D) 站心坐标系参考答案:B 4. 地球绕地轴旋转在日、月等天体的影响下,类似于旋转陀螺在重力场中的进行,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆锥体,旋转周期为26000年,这种运动成为_______。(4分) (A) 极移(B) 章动(C) 岁差(D) 潮汐参考答案:C 5. 以春分点作为基本参考点,由春分点周日视运动确定的时间,称为_______。(4分) (A) 恒星时(B) 世界时(C) 协调世界时(D) 历书时参考答案:A 多选题 6. 下列属于参心坐标系的有:_______。(4分) (A) 1954年北京坐标系(B) 1980年国家大地坐标系(C) WGS-84世界大地坐标系(D) 新1954年北京坐标系参考答案:A,B,D 7. 下列关于大地测量学的地位和作用叙述正确的有:_______。(4分) (A) 大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。 (B) 大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用。 (C) 大地测量是发展空间技术和国防建设的重要保证。(D) 大地测量在当代地球科学研究中的地位显得越来越重要。 参考答案:A,B,C,D 8. 大地测量学的发展经历了下列那几个阶段:_______。(4分) (A) 地球圆球阶段(B) 地球椭球阶段(C) 大地水准面阶段(D) 现代大地测量新阶段参考答案:A,B,C,D 9. 地固坐标系分为_______。(4分) (A) 地心坐标系(B) 天球坐标系(C) 站心坐标系(D) 参心坐标系参考答案:A,D 10. 大地测量学的基本体系由下列哪几个基本分支构成:_______。(4分) (A) 几何大地测量学(B) 物理大地测量学(C) 空间大地测量学(D) 重力大地测量学参考答案:A,B,C 判断题 11. 根据椭球定位与定向原理知,在大地原点上的垂线与法线是不重合的。(4分)参考答案:错误 12. 纬度是指某点与地球球心的连线和地球赤道面所成的线面角。(4分)参考答案:错误 13. 建立大地基准只需要求定旋转椭球的参数及其定向。(4分)参考答案:错误14. 1954北京坐标系与新1954北京坐标系采用的椭球参数相同,定位相近,但定向不同。参考答案:正确 15. 椭球定位是指确定椭球旋转轴的方向。(4分)参考答案:错误 16. 物理大地测量学的基本任务是:用全站仪或GPS技术确定地球的形状大小及确定地面点的几何位置。(4分) 参考答案:错误 17. 利用GPS定位技术进行点位测定不受任何环境的限制。(4分)参考答案:错误 18. 行星运动中,与太阳连线在单位时间内扫过的面积相等。(4分)参考答案:正确 19. 黄赤交角指的是黄道与地球赤道的夹角。(4分)参考答案:正确 20. 在大地测量学范畴内中,过地面任意两点的铅垂线彼此平行。(4分)参考答案:错误 填空题 21. 大地测量学是关于测量和描绘地球形状及其___(1)___ 并监测其变化,为人类活动提供关于地球的空间信息。(1).参考答案:重力场 22. 北京54坐标系采用的是___(2)___ 椭球参数。(4分) (1).参考答案:克拉索夫斯基 23. 80国家大地坐标系的大地原点定在我国中部,具体选址是泾阳县永乐镇,简称为___(3)___ 。(4分) (1).参考答案:西安原点 24. 站心坐标系是以___(4)___ 为原点而建立的坐标系。(4分) (1).参考答案:测站 25. 进行不同空间直角坐标系统之间的坐标转换,需要求出坐标系统之间的___(5)___ 。 (1).参考答案:转换参数 单选题 1. 按地面各点的正常高沿垂线向下截取相应点,将许多这样的点连成的一个连续曲面称为 (A) 大地水准面(B) 水准面(C) 似大地水准面(D) 地球椭球面参考答案:C 2. 以_______为参考面的高程系统为大地高程。(6分) (A) 水准面(B) 似大地水准面(C) 大地水准面(D) 地球椭球面参考答案:D 3. 地面上任一点沿垂线的方向到大地水准面上的距离称为_______。(6分) (A) 正常高(B) 正高(C) 大地高(D) 力高参考答案:B 4. 对地面点A,任取一个水准面,则A点至该水准面的垂直距离为_______。(6分) (A) 绝对高程(B) 海拔(C) 高差(D) 相对高程参考答案:D 5. 我们把完全静止的海水面所形成的重力等位面,专称它为_______。(6分) (A) 大地水准面(B) 水准面(C) 似大地水准面(D) 海平面参考答案:A 多选题 6. 确定地球形状的基本方法有:_______。(5分) (A) 天文大地测量方法(B) 重力测量方法(C) 空间大地测量方法(D) 高程测量方法参考答案:A,B,C

大地测量学复习提纲-中国石油大学(华东)地信.doc

第一部分误差理论与测量平差基础 第一章绪论 1.什么是观测误差?分为哪几类?它们各自是怎样定义的?对观测成果有何影响?如何处理?试举例说明。 2.什么是观测条件?它与观测结果的质量有何联系? 3.什么是多余观测?测量中为什么要进行多余观测? 4.测量平差的基本任务是什么? 第二章误差分布与精度指标 1.什么是观测值的真值和真误差、最或是值(最或然值、平差值)和改正数?三角形的闭合差是什么观测值的真误差?同一量的双观测值之差是不是真误差? 2.在相同的观测条件下,大量的偶然误差呈现出什么样的规律性? 3.什么是精度?衡量精度的指标有哪些?它们各自是怎样定义的?如何计算? 4.什么是准确度?什么是精确度?精度、准确度和精确度三者有何区别与联系? *5.什么是测量数据的不确定性和不确定度?评定不确定度的关键是什么? 6.相关观测向量X的协方差阵是怎样定义的?试说明DXX中各元素的含义。若X向量中各个分量相互独立时,其协方差阵有何特点? 7.两个独立观测值是否可称为不相关观测值?而两个相关观测值是否就是不独立观测值呢?第三章协方差传播律及权 1/协方差(和协因数)的定义?什么是协方差(和协因数)传播律?有何用途?主要有哪几个公式?试写出这些公式的推导过程。 2.当观测值的函数为非线性形式时,应用协方差(和协因数)传播律应注意哪些问题?试举例说明。 3.简述协方差(和协因数)传播律的计算步骤。 4.水准测量中两种计算高差中误差的公式为=诉(J吨和(J h 它们各在什么前提条件下使用?并推导之。仙 5.试简述同精度独立观测值的算术平均值屮误差的计算公式Cx =~r= 6.的推导过程,并说明该式使用的前提条件。5/77 6.权是怎样定义的?权与中误差有何关系?有了中误差为什么还要讨论权? 7.什么是单位权、单位权观测值及单位权中误差?对于某一平差M题,它们的值是唯一的吗?为什么? 8.水准测U屮的两种常用的定权公=—^P.=—,以及由不同次数的同精度观测值求算术平均值的权的定权公式 11.何为观测值的综合误差?它包括哪些误差?观测值的综合方差是怎样定义的?

word大地测量学知识点分解良心出品必属

一、水准面与大地水准面 1 、水准面我们把重力位相等的面称为重力等位面,也就是我们通常所说的水准面。水准面有无数个。 1 )水准面具有复杂的形状。 2 )水准面相互既不能相交也不能相切。 3)每个水准面都对应着唯一的位能W=C常数,在这个面上移动单位质量不做功,亦即所做的功等于0,即dW=-gsds可见水准面是均衡面。 4 )在水准面上,所有点的重力均与水准面正交。于是水准面又可定义为所有点都与铅垂线正交的面。故设想与平均海水面相重合,不受潮汐、风浪及大气压变化影响,并延伸到大陆下面处处与铅垂线相垂直的水准面称为大地水准面大地水准面作为测量外业的基准面,而与其相垂直的铅垂线则是外业的基准线。似大地水准面与大地水准面在海洋上完全重合,而在大陆上也几乎重合,在山区只 有2-4m的差异我们选择参考椭球面作为测量内业计算的基准面,而与其相垂直的法线则是内业计算的基准线。 1.参心坐标系 建立一个参心大地坐标系,必须解决以下问题:(1) 确定椭球的形状和大小;(2) 确定椭球中心的位置,简称定位;(3) 确定椭球中心为原点的空间直角坐标系坐标轴的方向,简称定向; (4) 确定大地原点。 我国几种常用参心坐标系: BJZ54 、GDZ80 2.地心坐标系 地心坐标系分为地心空间大地直角坐标系和地心大地坐标系等。地心空间大地直角坐标系又

可分为地心空间大地平面直角坐标系和空间大地舜时直角坐标系。 1 )建立地心坐标系的意义: 2 )建立地心坐标系的最理想方法是采用空间大地测量的方法。 3 )地心坐标系的表述形式(判断) 参心坐标系 厂地球坐标系Y I地心坐标系「天球空间直角坐标系夭球坐标系Y [天球球面坐标系 1)WG一84大地坐标系 WGS-84 坐标系统的全称是World Geodical System-84 (世界大地坐标系 -84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统一WGS-7徑标系统而成为GPS的所使用的 坐标系统 WG一84坐标系的几何定义是:坐标系的原点是地球的质心,Z轴指向BIHI984 . 0 定义的协议地球极(CTP)方向,X轴指向BIHl984.0的零度子午面和CTP赤道的交点,y轴和Z、X 轴构成右手坐标系。

《大地测量学基础》试题(试题参考)

一、解释下列术语(每个2分,共10分) 大地水准面 球面角超 底点纬度 高程异常 水准标尺零点差 二、填空(1-15小题每空1分;16题4分,共36分) 1、在地球自转中,地轴方向相对于空间的变化有______和_____。 2、时间的度量单位有______和______两种形式。 3、重力位是______和_____之和,重力位的公式表达式为_______。 4、椭球的形状和大小一般用_______来表示。 5、在大地控制网优化设计中把_____、______和_____作为三个主要质量控制标准。 6、测距精度表达式中,的单位是______,表示的意义是_____;的单位是______,表示的意义是_____。 7、利用测段往返不符值计算的用来衡量水准测量外业观测的精度指标用_____来表示,其意义是 ______。 8、利用闭合环闭合差计算的用来衡量水准测量外业观测的精度指标用_____来表示,其意义是 ______。 9、某点在高斯投影3°带的坐标表示为XA=3347256m, YA=37476543m,则该点在6°带第19带的实际坐标为xA=___________________,yA=___________________。 10、精密水准测量中每个测段设置______个测站可消除水准标尺______零点差的影响。 11、点P从B=0°变化到B=90°时,其卯酉圈曲率半径从______变化到_____。 12、某点P的大地纬度B=30°,则该点法线与短轴的交点离开椭球中心的距离为_____。 13、高斯投影中,_____投影后长度不变,而投影后为直线的有_____,其它均为凹向_____的曲线。 14、大地线克莱劳方程决定了大地线在椭球面上的_______;在椭球面上某大地线所能达到的最大纬度为60°,则该大地线穿越赤道时的大地方位角表达式为_____(不用计算出数值)。 15、在换带计算中,3°的_____带中央子午线经度和6°相同,坐标不用化算。 16、按下表给出的大地经度确定其在高斯投影中的带号和相应的中央子午线经度(答案写在试卷纸上,本小题4分,每空0.5分) 点号大地点经度 六度带三度带 1 114°00′ 2 -56°10′ 1、建立国家平面大地控制网的方法有哪些?其基本原则是什么? 2、在精密水准测量概算中包括哪些计算工作? 3、什么是大地主题正反算?简述高斯平均引数正反算的基本思想。 4、为什么要分带和换带计算?有哪两种换带方法?坐标换带的实质是什么? 四、证明:。(6分) ? 五、计算与绘图: 设高斯平面上有一点,其坐标值为x1=0m,y1=-290km,试绘图说明该点换算至相邻带上时,y2之概值是多少?注:设a =6400km,π取3.14,精确到km(10分) 六、论述题:

大地测量学考前复习资料

1、大地水准面:假定海水面完全处于静止和平衡状态(没有风浪、潮汐及大气压变化的影 响),把这个海水面伸延到大陆下面,形成一个封闭曲面,在这个面上都保持与重力方向正交的特性,则这个封闭曲面称为大地水准面。 2、球面角超:球面多边形的内角和与相应平面上的内角和与(n-2)×180°的差值 3、底点纬度:在y =0时,把x 直接作为中央子午线弧长对应的大地纬度B ,叫底点纬度。 4、高程异常:似大地水准面与椭球面的高程差。 5、水准标尺零点差:一对水准标尺的零点误差之差。 2、总椭球体:总椭球体的中心与地球的质心重合,其短轴与地球的地轴重合,起始子午面与起始天文子午面重合,而且与地球体最佳密合的椭球体。 3、大地主题反算:已知椭球面上两点的大地经纬度求解两点间的大地线长度与正反方位角。 4、子午线收敛角:高斯投影面上任意点子午线的投影线的切线方向与该点坐标的正北方向 的夹角。5、水准标尺基辅差:精密水准标尺同一视线高度处的基本分划与辅助分划差。 大地测量学:是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。 大地测量学的基本体系:几何大地测量学(确定地球的形状和大小及地球地面点的几何位置)、物理大地测量学(重力测量,确定地球形状及其外部重力场)、空间大地测量。 建立大地基准的任务:就是求定旋转椭球的参数及定向和定位。 建立大地基准的目的:建立一个与某个国家或地区拟合最佳的旋转椭球。 正高:以大地水准面为参考的高程系统。 正常高:以似大地水准面为参考面的高程系统。 地高:把纬度45°重力值作为高程系统的重力水准面。 三者关系:H=H 正常+ξ H=H 正+N ξ—高程异常 N —大地水准面差距 1954北京坐标系:1)椭球参数有较大误差。2)参考椭球面与我国大地水准面存在着自西 向东的系统倾斜。3)几何大地测量和物理大地测量的应用参考面不统一。 4)定向不明确。 1980国家大地坐标系:1)采用1975国际大地测量与地球物理联合会上推荐的4个椭球参 数。2)参心大地坐标在1954的基础上建立起来的。3)椭球面同大地水 准面在我国境内最为密合。4)定向明确。5)大地原点在我国中部。6) 大地高程基准采用1956黄海高程系统。 重力:是引力和离心力的合力。 W=V+Q 重力位:是引力位与离心力位的合力。 W=f ?∫r dm +22w (y x 22+) 水准面的特性:1)不平行。2)不相交。3)不相切。4)无穷多个。dg dw l =d l d 与dw 一一对应关系g 不同dw 相同l d 就不同故不平行; l 与w 对应水准面 是重力等位面,故不相交、不相切。 理论闭合差产生的原因:几何水准测量是依据水准面平行的原理测量高差,由于水准面不平 行,对应的△h 与△h ′不相等,这样经过不同路线测量的某一点高程就 不一样。 垂线偏差:把地面上一点的重力向量g 和相应的椭球面上法线向量n 之间的夹角叫垂线偏差。 水准面偏差:两个相邻水准面之间的垂线距离。 参考椭球:具有一定几何参数、定位及定向的用以代表某一地区大地水准面的地面椭球。

《测量学》考试重点

《测量学》考试重点 一、名词解释 1.水准面:水准面是受地球重力影响形成的,它的特点是其面上任意一点的铅垂线都垂直 与改点的曲面。 2.大地体:由地球水准面所包围的地球形体,它代表了地球的自然形状和大小。 3.参考椭球面:与大地水准面非常接近的能用数学方程表示的旋转椭球体相应的规则曲面。 4.绝对高程:地面点沿铅垂线至大地水准面的距离。 5.相对高程:假定一个水准面作为高程起算面,地面点到假定水准面的垂直距离。 6.高差:地面两点间的绝对高程或相对高程之差。 7.高程测量:确定地面点高程的测量工作。 8.视准轴:物镜光心和十字丝焦点的连线。 9.望远镜放大率:眼睛由望远镜观察虚像所张的夹角与直接观察远处的实物所张的角的比 值。 10.高差法:根据高差推算待定点高程的方法。 11.水平角:指相交于一点的两方向线在水平面上的竖直投影所形成的夹角。 12.竖直角:指在同一竖直平面内,观测实现与水平线之间的夹角。 13.测回法:测角的基本方法,用于两个目标方向之间水平角的测量。 14.竖盘读数指标差:正镜观测时,实际的始读数为X0左=900+X,倒镜观测时,时读数为X0右 =2700+X,其差值X称为竖盘指标差。 15.直线定线:当地面两点之间的距离大于钢尺的一个尺段时,就需要在直线方向上标定若 干个分段点,这项工作称为直线定线。 16.电磁波测距仪:用电磁波(或光波或微波)作为载体,传输测距信号,以测量两点间距 离的一种仪器。 17.测量误差:每次对观测对象进行得到的数值与观测对象真值之间的差值。 18.系统误差:在一定的观测条件下作一系列观测时,其符号和大小均保持不变,或按一定 规律变化着的误差。 19.偶然误差:在相同的观测条件下,作一系列的观测,如果观测误差在大小和符号上都表 现出随机性,即大小不等,符号不同,但统计分析的结果都具有一定的统计规律性,这种误差称为偶然误差。 20.中误差:m=±√[ΔΔ]/n,式中,m表示中误差,[ΔΔ]表示一组等精度观测误差Δi 自乘的总和,n表示观测数。 21.误差传播定律:阐述观测值中误差与函数中误差之间关系的定律。 22.直线定向:确定直线与标准方向之间的水平角度称为直线定向。 23.方位角:由标准方向的北端起,顺时针方向度量至某直线的水平夹角。 24.导线测量:导线测量是平面控制测量的一种方法。在地面上按一定的要求选定一系列的 点(导线点),将相邻点联成直线而构成折线形,依次测定各折线边(导线边)的长度和各转折角(导线角);根据起算数据,推算各边的坐标方位角从而求出各导线点的坐标。 25.等高线法:用等高线表示地形的方法。 26.坡度:直线段两端点的高差与其水平距离的比值。 27.施工测量:每项工程在施工阶段所进行的测量工作。(也称为测设、定线放样、放样) 28.高程传递法:当测设的高程点和已知水准点之间的高差很大只用水准尺已无法进行测设 时,可借用钢尺向下或向上引测,即高程传递法。

相关文档
最新文档