数列求和精选难题易错题含答案

数列求和精选难题易错题含答案
数列求和精选难题易错题含答案

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。(1)若数列{an}是等比数列,求实数t的值;

(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn;

(3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。解:(1)由题意,当时,有

两式相减,得即:()

当时,是等比数列,要使时是等比数列,

则只需,从而得出

(2)由(1)得,等比数列的首项为,公比,

可得②

(3)由(2)知,

,,

,数列递增

由,得当时,数列的“积异号数”为1。

2、已知数列{an}的前n项和为Sn,满足.

(Ⅰ)求数列{an}的通项公式an;

(Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小值;

(Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论.

解:(Ⅰ)∵,

由,∴,

又,∴数列是以为首项,为公比的等比数列,

∴,即;

(Ⅱ),?

∴?

,?

∴,即n的最小值为5;

(Ⅲ)∵,

若,,成等比数列,?

由已知条件得,∴,

∴,

∴上式可化为,

∵,∴,

∴,

∴为奇数,为偶数,

因此不可能成立,?

∴,,不可能成等比数列.

3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15?

(1)求{an},{bn}的通项公式。?

(2)若数列{cn}满足求数列{cn}

的前n项和Wn。

设等差数列{an}的公差为d,等比数列{bn}的公比为q

∵a1=1,b1=3由a2+b2=8,得1+d+3q=8 ①

由T3-S3=15得3(q2+q+1)-(3+3d)=15 ②

化简①②∴消去d得q2+4q-12=0

∴q=2或q=-6

∵q>0∴q=2则d=1∴an=n bn=3·2n-1?

⑵∵an=n∴①

当时,…②

由①-②得∴cn=3n+3?

又由⑴得c1=7∴?

∴{an}的前n项和…?

4、已知各项均不相等的等差数列的前四项和是a1,a7。?

(1)求数列的通项公式;?

(2)设Tn为数列的前n项和,若对一切恒成立,求实数的最大值。

解:(1)设公差为d ,由已知得解得d=1或d=0(舍去)?

(2)

,即

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

数列易错题带答案

数列易错题带答案

1.若数列{}{},n n a b 、的通项公式分别是 a a n n ?-=+2007 ) 1(, n b n n 2008 )1(2+-+ =,且n n b a <,对任意n N * ∈恒 成立,则常数a 的取值范围是( ) A.[)1,2- B. [)+∞-,2 C. []1,2- D. ()1,∞- 2.已知等差数列{a n }的前n 项和是n a n S n 2 21 82--=, 则使2006 -,1,2,n =,且 25252(3) n n a a n -?=≥,且当1n ≥时, 2123221log log log n a a a -++ += ( ) A .(21)n n - B .2 (1)n + C .2 n D .2 (1)n - 5.已知{}n a 为等差数列,1 a +3 a +5 a =105, 246 a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达 到最大值的n 是

D .18 6.已知数列{}n a 的通项公式是32 122-+-=n n a n ,其前 n 项和是n S ,则对任意的m n >(其中* ∈N n m ,* ), m n S S -的最大值是 . 7.设等差数列{}n a 的前n 项和为n S ,若9 72 S =,则 249 a a a ++= 。 8.设等比数列{}n a 的公比12 q =,前n 项和为n S ,则44 S a = . 9.已知数列{}n a 满足:1 a =m (m 为正整数), 1,2 31,n n n n n a a a a a +??=??+? 当为偶数时,当为奇数时。若6 a =1,则m 所有可能的取值 为__________。 10.如果能将一张厚度为0.05mm 的报纸对拆,再对拆....对拆50次后,报纸的厚度是多少? 你相信这时报纸的厚度可以在地球和月球之间建一座桥吗?(已知地球与月球的距离约为8 410?米) 11.已知(2n x x +的展开式中前三项的系数成等 差数列. (1)求n 的值; (2)求展开式中系数最大的项. 12.已知数列{n a }的前n 项和22n S n n =+, (1)求数列的通项公式n a ;

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

数列求和方法分类及经典例题

数列求和方法总结 一、公式法 ()()111122 n n a a n n n .na d +-==+等差型 S ()111111n n na q a q q q =??=-?≠?-? ,2.等比型 S , →3.分式型/阶乘型 裂项相消法 () 1111111n n n n n a a a d a a ++??=- ???? ,其中为等差; ( 12n a d = ,其中为等差; ()()() ()113=+1+1+1n n n!n !n!.n !n!n !-?=- , ()()()( )1111153759 11121121231233n n . .,n N n *???++++∈+++++++KK KK K KK 例1:求下列各数列的前项和S ,,, 二、等差等比混合型 (){}=n n n a b kn b q ??+?→ 1.等差等比 错位相减法 n n S 例2:求下列各数列的前项和 ()()112n n .a n =+? ()()12312n n .a n ??=-? ??? ()()()3312n n .a n =-+?-

{}111122n n k n b a q a q ±+++→ 2.等差等比 分组求和 n n S 例3:求下列各数列的前项和 ()1111123248 .,,,KK ()2211121333333 n n .,,,,+++KK → 3.奇偶项不同 分组求和 n n S 例4:求下列各数列的前项和 ()()()1115913143n n .n -=-+-++--K 相邻异号 例:S ()11211n n n .a ,a a ,S -=+= 和为常数 例:求()122314=+2n n n .a ,a ,a a ,S -== 差为常数 例:求()12+11142=63n n n n n .a a ,a a ,a S ??== ??? 比为常数 例:,求及 三、倒叙相加/相乘型 n n S 例5:求下列各数列的前项和 ()11110142n x n .f (x ),S f ()f ()f ()f ()n n -= =++++ 已知求;()211121220121201220112 x .f (x ),f ()f ()f ()f ()f ()f ()x =+++++++KK KK 已知求;()1312.n n n n n ++ 在和之间插入个正数,使这个数成等比数列,求插入个数之积; ()1412.n n n n n ++ 在和之间插入个正数,使这个数成等差数列,求插入个数之和; 22112n n n n n n n +++??== ??? T ,S

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

《数列》练习题及答案

《数列》练习题 姓名_________班级___________ 一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 2 2.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N * ),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .2 3.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( ) A .33个 B .65个 C .66个 D .129个 4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.174 5.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R,都有f (x )·f (y )=f (x +y ),若a 1=12 ,a n =f (n )(n ∈N * ),则数列{a n }的前n 项和S n 的取值范围为( ) A .[12,2) B .[12,2] C .[12,1) D .[1 2,1] 6.小正方形按照如图所示的规律排列: 每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列; ③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N * ).其中正确的命题序号为( ) A .①② B .①③ C .①④ D .① 7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1 (n ∈N * ),则a 20=( ) A .0 B .- 3 C. 3 D. 32 8.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ 3 n }为等差数列的 实数λ=( ) A .2 B .5 C .-1 2 D.12 9.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( ) A .S 17 B .S 18 C .S 19 D .S 20 10.将数列{3 n -1 }按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100 组中的第一个数是( ) A .3 4 950 B .3 5 000 C .3 5 010 D .3 5 050 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列求和汇总例题与答案)

数列求和汇总答案 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 例1、已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得n n x x x x S +???+++=32(利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+的和。 解:2222222212345699100-+-+-+--+ 由等差数列的求和公式得 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. 例2求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----?+=-- ∴2 1)1()1()12()12(x x x n x n S n n n -+++--=+ 练习:求数列??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1}的通项之积 设n n n S 2 226242232+???+++=…………………………………①

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的 n 3 1 2 5、 S n k 3 [ n(n 1)]2 k 1 2 例】已知数列 a n 满足 a 1 1,a n 1 a n 4,n N * ,求数列 a n 的前 n 项和 S n . 练习 】已知 log 3 x ,求 x x 2 x 3 x n 的前 n 项和 . log 23 第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个 等差、等比或常见的数列,然后分别求和,再将其合并即可 . 若数列 c n 的通项公式为 c n a n b n ,其中数列 a n , b n 分别是等差数列和等比数 列,求和时一般用分组结合法。 na 1 (q 1) 2、等比数列前 n 和公式: S n a 1(1 q n ) a 1 a n q (q 1) 1 q 1 q (q 1) S n n a 1 a n na 1 21 自然数方幂和公式: 1、等差数列前 n 和公式: 3、 S n n k k1 1 n(n 1) 2 n 4、 S n k 2 k1 1 n(n 1)(2n 1) 6

1 1 1 1 1 【例】数列1 ,2 ,3 ,4 , ,n n, 求数列的前n项和. 2 4 8 16 2n

练习】数列a n 的通项公式a n 2n2n 1 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用 . 裂项法的实质是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的 常用的通项分解(裂项)如: 1 1 1 例1】数列1,112,1 213, ,1 2 31n, ,求该数列的前n项和 .通项) 1) a n 2) a n n1 a n 11 nk 3) a n 2n 1 2n 1 2 2n 1 2n 1 a n 5) a n log a 1 1log a n 1 log

数列练习题(含答案)

数列测试题(答案在底部) (本测试共18题,满分100分,时间80分钟) 日期 姓名 得分 一、填空题:(共十小题,每题4分,共40分) 1. 数列{n a }的通项公式是41n a n =-,n s 为前几项和,若数列为等差数列,则实数t=__________. 2.。的等比中项为和_______27log 4log 89 3.223233(33)(333)(3333)_____________n n n S S =+++++++++++=L L 已知,则。 4.在等差数列n a {}中,当()r s a a r s =≠时,n a {}必定是常数数列,然而在等比数列n a {}中,对某些正整数r 、s (r s ≠)时,当r s a a =时,数列n a {}不是常数列的一个例子是__________________________________________________。 5. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列{n a }是等和数列且1a =2,公和为5,那么这个数列的前n 项和的计算公式为n S =__________________。 6.设数列{n a }的通项公式是2n a n c =+(c 是常数),且2468102 30,a a a a a ++++=则{n a }的前n 项和的最小值为_________. 7.数列2,5,11,20,x ,47,…中x 等于___________。 8.在100以内能被3整除但不能被7整除的所有自然数的和等于_________。 9.某流感病毒是寄生在宿主的细胞内的,若该细胞开始时2个,记为02a =,它们按以下规律进行分裂,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,,3小时后分裂成10个并死去1个,……记n 小时后细胞的个数为n a ,则n a =___________(用n 表示)。 10.已知一个数列n a {}的各项是1或3两个数值。首项为1,且在第K 个1和第K+1个1之间有(2K-1)个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…….则第12个1为该数列的第_________项。 二、选择题:(共四小题,每题4分,共16分) 11.等差数列等于,则中,若8533 5,53}{S S S a n ==( )

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

数列求和精选难题易错题含答案

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。(1)若数列{an}是等比数列,求实数t的值; (2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。解:(1)由题意,当时,有 两式相减,得即:() 当时,是等比数列,要使时是等比数列, 则只需,从而得出 (2)由(1)得,等比数列的首项为,公比, ① 可得② 得 (3)由(2)知, ,, ,数列递增 由,得当时,数列的“积异号数”为1。 2、已知数列{an}的前n项和为Sn,满足. (Ⅰ)求数列{an}的通项公式an;

(Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小值; (Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论. 解:(Ⅰ)∵, 由,∴, 又,∴数列是以为首项,为公比的等比数列, ∴,即; (Ⅱ),? ∴? ,? ∴,即n的最小值为5; (Ⅲ)∵, 若,,成等比数列,? 即 由已知条件得,∴, ∴, ∴上式可化为, ∵,∴, ∴, ∴为奇数,为偶数, 因此不可能成立,? ∴,,不可能成等比数列. 3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15? (1)求{an},{bn}的通项公式。? (2)若数列{cn}满足求数列{cn}

的前n项和Wn。 设等差数列{an}的公差为d,等比数列{bn}的公比为q ∵a1=1,b1=3由a2+b2=8,得1+d+3q=8 ① 由T3-S3=15得3(q2+q+1)-(3+3d)=15 ② 化简①②∴消去d得q2+4q-12=0 ∴q=2或q=-6 ∵q>0∴q=2则d=1∴an=n bn=3·2n-1? ⑵∵an=n∴① 当时,…② 由①-②得∴cn=3n+3? 又由⑴得c1=7∴? ∴{an}的前n项和…? 4、已知各项均不相等的等差数列的前四项和是a1,a7。? (1)求数列的通项公式;? (2)设Tn为数列的前n项和,若对一切恒成立,求实数的最大值。 解:(1)设公差为d ,由已知得解得d=1或d=0(舍去)? 。 (2) ,即 又

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

数列求和与求通项方法汇总与经典例题

15 数列求通项问题 数列求通项方法一:累加法,解决形如型数列通项问题)(1n f a a n n =-+. 例.设数列}{a n 的前n 项和为S n ,}{a n }满足a 1=1,a n +1﹣a n =n d ,n ∈N *.若n d =3n ,求数列}{a n 的通项公式; 解:(1)若a n +1﹣a n =d n =3n ,则a 2﹣a 1=3, a 3﹣a 2=32,a 4﹣a 3=33,……a n ﹣a n ﹣1=3n ﹣1, 累加得:a n ﹣a 1==,又由a 1=1,∴a n =. 数列求和方法二:构造法,解决形如型或接近于等差或d pa n n +=+1a .等比数列型 例.已知数列{a n }满足a 1=1且a n +1=2a n +1,求a n ; 解:∵a n +1=2a n +1,∴a n +1+1=2a n +2=2(a n +1),又a 1+1=2≠0,所以, ∴数列{a n +1}是等比数列,公比q =2,首项为2.则, ∴; 例 数列{a n }中,a 1=1,a n +1=2a n +n ﹣1.求数列{a n }的通项公式. 解:根据题意,a n +1=2a n +n ﹣1,则a n +1+n +1=2a n +n ﹣1+n +1=2a n +2n =2(a n +n ) 所以,所以数列{a n +n }为等比数列. 数列{a n +n }为以2为公比的等比数列,又a 1=1,所以a 1+1=2. 所以,所以. 例.设S n 是数列{a n }的前n 项和,且a 1=﹣1,a n +1=S n ?S n +1,求{a n }的通项公式. 解:因为a n +1=S n +1﹣S n ,所以S n +1﹣S n =S n ?S n +1. 两边同除以S n ?S n +1得﹣=﹣1.因为a 1=﹣1,所以=﹣1. 因此数列{ }是首项为﹣1,公差为﹣1的等差数列. 得=﹣1+(n ﹣1)(﹣1)=﹣n ,S n =﹣.

相关文档
最新文档