一个 200W 开关电源的功率级设计总结

一个 200W 开关电源的功率级设计总结
一个 200W 开关电源的功率级设计总结

一个 200W 开关电源的功率级设计总结

1. 导言

新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。这些特徵对於将要应用的场合是不可或缺的。

2. 电路描述和设计

设计指标如下∶

·交流输入电压∶85-265VRMS

·功率因素∶> 0.95

·总输出功率∶200W

·三个直流输出∶5V/0.3A

12V/5A

24V/6A

电源分为两个单元。第一电源集成一个功率因素校正电路,内置在

FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个

24V/6A 和12V/5A 的输出。这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。这种变换器能产生一个稳压的24V 输出。12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。

第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。这个电源工作在待机模式下,它的无负载功耗低於500mW。因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。

为了简洁,设计计算和电路图将在每个模组中单独给出。最终完成的示意图和布局,可在附录中查到。

3. 功率因素校正

本节回顾了功率因素校正电路的电源选择。用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。图1为电路示意图

图1∶PFC级示意图,元件编号和FAN4800应用说明[1]相对应

3.1 整流器

由於主电源用来提供一个200W的输出功率,即总输入功率。假设PFC的

效率为90%,正激变换器效率为90%,其中输出功率为∶

考虑到最大输入电压为85VRMS,最大输入电流为∶

电磁干扰滤波器的常见共模扼流圈,必须承受这部分电流,同时具有约10mH 高电感。市场上有一些扼流圈,具有高电流,高电感和小尺寸的特徵,来自EPCOS 和TDK。扼流圈的实际值和类型由电磁干扰测试确定,依赖於工作条件,也许与本文提出的滤波器有所不同。

与输出串联的负温度系数热敏电阻(NTC)限制了浪涌电流,但并非电源工作所真正需要的。

整流器根据IIn,RMS选定,但注意到高额定电流二极管通常在某一电流下具有更低的电压降,使用一个额定电流略高的整流桥是有利的。对於实际设计,选择一个6A/800V桥GBU6K。

整流器功耗是可以预计的,通过一个恒定正向电压下已知的近似二极管正向特性乘以一个串联电阻。正向电压VF 和串联电阻Rs 必须从规格说明书中查,对於GBU6K 分别是0.8V和0.03Ω。功耗方程变成∶

如果我们假设一个绝对的最高结温度TJ 为150℃,最高室温为50℃,然後BR1 散热器的热大热阻(与空气之间)应为

3.2 电感L1

在讲述的设计中,通过L1的波纹电流的振幅被选定为输入电流的20%。在这种选择下,电感可以根据下列等式(5)计算∶

给出的电感差不多是1mH。当RMS电流等於RMS输入电流时,L1的峰值电流是

在这个电流和5A/mm2的电流密度下,所需的铜线截面积约为

0.58mm2。由於高频电流仅为输入电流的20%,趋肤效应和邻近效应不是很明确。三或四条细电线并联总面积能够达到所需面积就足够

了。在实际设计中,使用了三根直径为0.5mm的电线,电流密度略低於5A/mm2。L1 的磁环尺寸根据被称为磁环区域乘积Ap确定,即有效磁性截面积和绕组面积(骨架)的乘积。这个乘积很容易证明是

其中ACu是铜线面积,Bpeak 是饱和磁通密度(对於大多数铁氧体,≤0.35T)。fCu是铜填充因子,对於简单电感,约为0.5;对於含有几个线圈的变压器,约为0.4。确定这些数据後,L1的Ap需求值是

基於惯例,对大多数磁环,磁性截面积和绕组面积非常相近,需要的磁环面积为

因此,对於我们的应用,一个合适的磁环的Ae约为122mm2。虽然,要找到此磁截面的磁芯并不难,但电感的高度由於应用要求被限制在25mm。因此,经过一番对磁环和筒管规格说明书仔细搜索之後,选择了EER3542,它的Ae为107mm2,AW为154mm2,得到AP约为16500mm4。

中心臂上气隙的近似长度s 是∶

其中AL,0是无气隙磁芯的AL(查磁芯规格书),有气隙的磁芯的AL 是1mH/1242=65nH。如果後两个值的单位是nH,Ae 的单位是

mm2,那麽气隙长度s 的单位是毫米。在这次设计中,气隙长度约2毫米。

3.3 Q1和D1

因为最高额定输入电压是265VRMS,Q1的最大漏极电压为500V 似乎足够了。但是建议使用一个额定电压为600V的MOSFET,因为经验显示这个600V MOSFET,能够承受浪涌测试,根据无损坏IEC61000-4-5标准,而500V类型则需要额外的浪涌电压限制器。同样,这对於Boost二极管也是有效的。这是因为电解质电容C5能够吸收大量能量,保护一个600V 器件,而不是500V器件。

Q1和D1的峰值电流和通过L1 的峰值电流是相同的,即4.5A,而Q1的RMS 电流为∶

D1的RMS 电流为∶

尤其对於MOSFET,低功耗和峰值电流是选择某些器件的重要考虑因

素。经过一番计算,选择了一个最大RDSon约为0.45Ω@100℃的SuperFetTM FCP16N60。Q1 的总功耗分成传导功耗和开关功耗。传导功耗如下∶

开关损耗进一步分为,由於源漏电容(加上寄生电容的,例如L1 和PCB)放电导致的功耗和由於开关过程中电流和电压重叠带来的功耗,以及D1反向恢复带来的功耗。所有这三项都无法确切了解,但可以根据下面的表达式估计∶

FCP16N60的COSS,eff是110pF,而杂散电容Cext估计为150pF。50ns的交叉时间tcrossover 是一个合理的估计值,并且得到测量确认。二极管反向恢复导致的功耗预计为2W。

最终,Q1 的总功耗是∶

因此Q1散热器的最大热阻约为10℃/W

D1传导功耗的计算和BR1相类似∶

D1开关功耗估计在2W左右,得到试验确认。二极管的总功耗为

给二极管使用的一个合适散热片的热阻应该不超过25℃/W。

4、双管正激变换器

图2∶正激变换器示意图

图2是双管正激变换器。在这个应用中,FAN4800的PWM部分运作在电流模式,控制一个双管正激变换器。这个拓扑基本上和熟知的单管正激变换器相同。但它的优点是,两晶体管中的任何一个漏极电压只需要等於PFC的直流输出电压。相比之下,标准正激变换器需求两倍大小的

漏极电压,差不多800-900V。此外,对於双管正激变换器,变压器构造简单,便宜,因为它不需要复位绕组。

当然有缺点需要考虑∶使用的拓扑需要两个晶体管,其中一个的门极电压悬浮于高电压。如果细看,这些问题都不是大问题,因为功率MOSFET 的导通阻抗正比於漏极电压,为2至2.5 倍。这意味著两个晶体管,只须有一半耐电压同时只有一半导通阻抗,即可使用更少的矽面积得到相同的传导功耗。

所以两种解决方案的成本是相似的。

因为使用了门极驱动器FAN7382,第二缺点也没有了。这个器件包含一个完全独立的低端和高端门极驱动器。这是很重要的,因为在双管正激变换器中,所有的晶体管同时关闭和导通。当导通时,能量转移到次级;当关闭时,变压器经复位二极管D217和D218被去磁化。

图3∶AN-4134电子数据表引用

对於双管和单管正激来说,主要设计等式完全相同,所以飞兆半导体应用说明AN-4137及其相关的电子数据表,如图3所示 [2],可用於考虑一些变化後的计算。由於变换器直流电压由一个PFC预调节器产生,填入电子数据表的线路电压须选择适当,以获得正确的直流电压。在这个应用中,284VRMS用於两个最低和最高线电压。线频率并不影响计算。

接下来,考量直流母线电容大小(例如1000uF),因为使用到PFC,实际直流母线电容器两端的纹波电压相当小。

最高占空比也须严格小於0.5,允许变压器去磁化。为了留下一些馀量,最大占空比选择为0.45。

由於已经有了单个晶体管正激的表单,np/nr比(Excel:Np/Nr)和最大额定MOSFET电压可以忽略。

输出滤波电感L5的电流纹波因素Krf 的选择,通常是一个反复的过程。一方面,想使这个因素尽可能小,以减少初级和次级电流的RMS 和峰值。另一方面,L5 不得过大。因此,开始假设一个纹波因素,然後检查L5的配置结果是否可以接受。在这次设计中,KRF值为0.21,L5的计算电感为40μH。计算的绕组将完全填补一个EER2828磁环。根据选择的KRF,通过Q205和Q206的电流的RSM和峰值如下∶

如前所述,最高漏极电压稍微大於400V足够了,能有效使用额定电压为500V MOSFET。其次,输出建议使用600V MOSFET,而不是一个浪涌电压限制器。

SUPERFETTM FCP7N60具有下列数据

功耗能够很容易得到,与计算Q1功耗类似。

这里给出了一个功耗上限值。在实际中,励磁电感的谐振和节电输出电容使电压降低到400V以下,Q206的功耗当然是完全相同的。每一个MOSFET需要一个最大热阻为20℃/W的散热器。

电流感应电阻R233的值是这样选择的,最大峰值电流可能超过1.6A。如果电阻值为0.56Ω,这个条件实现了但没有馀量。出於这个原因,选择0.47Ω电阻,此时最大峰值电流为2.1A。

图4∶Buck变换器24V-12V的示意图

电感L5,变压器,二次整流和滤波,都可以根据Excel表计算。

在工作表给出的变压器AP等式的帮助下,为变压器选择了一个

EER2834磁环,绕组数据可在附录中查到。

整流二极管的反向电压计算值是57V,但是推荐使用一个指定最大电压至少100V的整流二极管。为了减少传导和开关损耗,最好使用肖特基二极管。RMS电流负载在电子数据表中给出,可以用来确定二极管;实际选择的是两个FYP2010DN二极管。

整流二极管D219和D220的平均电流为∶

确定功耗的方法与BR1和D1的方法相同。

再次,每个二极管使用的散热器热阻不超过20℃/W。

5、 DC/DC 变换器

如图所示的Buck 变换器工作在连续模式,由一个简单的,但是工作在100千赫的有效PWM 控制器控制。因为开放集电极输出,使用一个由Q211/212 组成的驱动器来驱动P沟道MOSFET。通过Q209,D223和L6的峰值电流是6.3A。功耗差不多很容易被确定了。结果是∶器件需要的散热器的热阻不小於25℃/W。

由於肖特基二极管的快速开关,寄生振荡激烈,必须采用RC 网络

R246/C250和R247/C249 抑制。虽然在文献中有很多如何确定这些网络值的等式,经验显示计算值仅仅是实验优化的一个初值。原则上,使用相容在一个FYP2010中的两个二极管是可能的,但在这种情况下,每个封装的功耗加倍了,散热复杂了。另一个用两个二极管代替一个的理由是,即自驱动同步整流器(未列出)准备的PCB 需要两个单独二极管。

图5∶待机电源示意图

6. 待机电源

由FSD210B 驱动的flyback 电源(图5),不仅产生5v输出电压,而且也给FAN4800和FAN7382供电。通过OC2,主电源在待机期间是完全关闭的,只有这个电源仍然工作。

通常这种电源没有什麽特别的,而且可以很容易地在AN-4137和相关电子数据表,或SMPS 设计工具[3]的帮助下进行设计。

实际设计的输出电压是5V,电流是0.3A,但有了上述工具,改变设计到一个不同输出电压和功率高达约6W,并不是一个问题。由於使用FOD2711BTV,输出电压下降到3.3V 也不是问题。

7. PCB 布局和机械构造

在文献[4]中可以找到功率电子布局规则,谈到高di/dt 的回路封闭区域和高dv/dt 节点的铜箔区域必须尽可能小,旨在减少电磁干扰。另外,Q1的源引脚,R233接地,R5右侧和FAN4800 接地引脚应该连接成星形,以减少共阻抗耦合的负面效应。

实际中的问题有∶对於较高输出功率,PCB会较大;功率半导体必须放置在大散热器上。结果是,往往不可能使回路小到应该达到的值,同时结合电流密度规则,布线和星形的铜芯面积会破坏完整的电路板。因此,

一种高功率电源PCB有时是一种妥协,尤其是考虑成本须选择单面PCB。

图6∶最终完成的电路板的布局和实照。尺寸是170毫米×156毫米

×25毫米(长×宽×高)

如果密切留意实际的电路板,你会发现一些不太重要的信号走的路线不一定是最短路径。这允许仿效星形连接的大型接地平面。此外,接地平面和热信号之间的间隔应尽可能小(考虑可靠性,对於给定电压,间距约2mm),以使回路最小。

其次是成本因素,由一个2mm 厚铝板组成的简单散热器,被弯曲

成‘U’形,并被应用到初级和次级。只有Q1,消耗更多功率,需要一个额外的散热器。

8. 测试结果

本电路板有一份详细的测试报告。这里显示了三项测试结果。

8.1 待机电源和输入电压

图7∶待机功率对应输入电压变化

见图7

8.2 全负载效率和输入电压

见图8

图8∶效率对应输入电压变化

输入电压大於110VRMS时,效率远高於预计的81%。对较小的电压,数据可通过一个低阻抗EMI滤波器和去除NTC1提高。

8.3 功率开关和二极管波形

见图9

图9∶Q212漏电流和电压

图9 的左侧显示Q212 的漏极电流(下迹线)和电压(上迹线)。从电流看来,CCM中的PSU工作是很明显的。该漏极电压被很好地箝制在直流电源电压,当MOSFET关闭时。变压器去磁化之後,电压开始下降。斜率由变压器激磁电感和MOSFET 的CDS确定的谐振值决定。当MOSFET 导通时,漏极电压有机会接近最低值,但由於励磁电感的高误差(+/-30%)这可能因不同电路板而异。

图10 的二极管波形清楚地显示了当二极管关闭时的寄生振荡。

图10∶D219电流和电压

基于THX208小功率开关电源设计

天津理工大学 课程设计报告 题目:基于THX208小功率开关电源设计 专业: 班级: 姓名: 学号: 指导教师: 2017年 1月

目录 一、设计要求 (2) 二、设计目的 (2) 三、设计的具体实现 (2) 1. 系统概述 (2) 2. 单元电路设计 (3) 四、结论与展望 (22) 五、心得体会及建议 (23) 六、参考文献 (24) 七、附录 (24) 1、作品照片 (25) 2、原理图 (26) 3、源程序清单 (27) 4、答辩PPT缩印稿 (30)

基于THX208小功率开关电源设计 --电路设计 一﹑设计要求 熟读详细使用手册,搭建电路实现5V/3W的开关电源,根据控制芯片原理,设计合理的辅助电路,通过计算和仿真分析,得到系统优化参数。掌握开关电源设计的核心技术,并对过程做了详细阐述。 1.根据需要选择开关电源的拓扑结构 2.基于THX208设计开关电源的控制核心部分 3.输出电压可调范围: +5V 4.输出5V 0.5A, CC/CV 二、设计目的 (1)利用所学开关电源的理论知识进行硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。 (2)我们这次的课程设计是以THX208为基础,设计并开发小功率开关电源。 (3)掌握各个接口芯片(如THX208等)的功能特性及接口方法,并能用其实现一个简单的应用系统。 三、设计的具体实现 1.系统概述 ①开关电源是利用现代电力电子技术,控制开关开通和关断的就、时间比率,维持稳定输出电压的一种电源,开关电源是一般又脉冲宽度调制(PWM)控制IC 和MOSFET构成。 开关电源主要是进行交流/直流、直流/直流、直流/交流功率转换的装置,通过对主变换回路以及控制回路的控制完成一系列的变换。主变换回路将输入的交流电转换后传递给了负载,所以它决定了开关电源电路的结构形式、转换要求以及负载能力等一系列的技术指标;而控制回路是按照输入,输出技术指标的要求来进行检测,控制主变换回路的工作状态。本设计开关电源控制集成电路主要包括电源电路、滤波整流电路、监测电路以及THX208控制芯片构成的控制电路。 方案一:单端正激式开关电源原理 单端正激式开关电源原理简述:电路原理框图如上所示。这种电路在形式上与单端反激式电路相似,但工作原理不太相同。当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%,由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大 方案二:单端反激式开关电源原理 反激式变换器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用广泛。所谓反激式变换器开关电源,是指当变换器的初级线圈被直流电压激励时,变换器的次级线圈没有向负载提供功率输出,而仅在变

低功耗小功率开关电源设计毕业设计

低功耗小功率开关电源设计毕业设 计 南华大学船山学院毕业设计 1 开关电源简介小功率开关电源以其诸多优良的性能,在测控仪器仪表、通信设备、学习与娱乐等诸多电子产品中得到广泛的应用。随着环境和能源问题日益突出,人们对电子产品的环保要求不断提高,对电子产品的能源效率更加关注。设计无污染、低功耗、高效率的绿色模式电源已成为开关电源技术研究的热点。研究一种中小功率开关电源,应用过渡模式有源功率因数校正、准谐振变频功率隔离变换控制和同步整流等多种先进的电源控制技术,以实现绿色开关电源设计的目的。开关电源的基本结构所有事物都要遵循能量守恒定律,开关电源也不例外,实际上,开关电源也要通过以能量形式传递完成的。从能量上看,开关电

源可以分为直流开关电源模式和交流开关电源模式,直流开关电源模式主要是输出为直流信号电能,而交流开关电源模式主要是输出为交流信号电能。直流开关电源模式为当前的主流模式,该开关电源模式的基本组成结构框图如下图所示:交流输入桥式整流滤波LC 组成滤波器DC/DC变换器转换输出整流滤波占空比控制电路DC直流输出放大电路控制电路图开关电源基本组成结构框图上图中可知:开关电源主要整流滤波、DC/DC变换电路、开关占空比控制电路以及控制电路等模块组成。第1页,共29页南华大学船山学院毕业设计交直流输入电压经LC滤波器,再通过桥式整流与母线电解电容平滑后变为直流电压,再经DC/DC变换器转换,再经二极管整流和电解电容的滤波至输出,为了能使电路成为一个闭环工作,在输出端引出一个控制电路再经放大电路到占空比控制电路至DC/DC变换器转换器形成一

个闭环。占空比控制电路中占空比的表示方法如下图所示:图占空比示意图上图中可知:占空比D=Toff/(TOff+Ton),周期T= Ton+Toff,频率f=1/T。传统开关电源的缺陷传统开关电源基本上采用的都是传统电路,传统电路大部分采用的电路芯片都为PWM控制的KA38系列芯片,这当中也要用到开关MOSFET管,还有就是也要加个启动电阻,根据P=U*U/R可知该电路上的待机功耗至少要大于,而低功耗的要求待机功耗至少要小于,甚至有些要小于。如果功耗大,对人口密集的中国来说,电能的损耗无疑是巨大的。另外传统电源存在着某些有害物质,根据我国CCC标准中的《关于在电气电子设备中限制使用某些有害物质指令》,从而没能达到环保的功能。绿色开关电源的发展方向于传统电源存在着诸多的缺陷,为了能量的有效利用,人们从而提出了绿色开关电源,绿色开关电源产品主要向高频、高效率、低功

大功率电源设计

《电力电子技术》课程设计说明书 大功率电源设计 院、部:电气与信息工程学院 学生姓名: 指导教师: 专业: 班级: 完成时间:2014年5月29日

摘要 主要介绍36kW 大功率高频开关电源的研制。阐述国内外开关电源的现状.分析全桥移相变换器的工作原理和软开关技术的实现。软开关能降低开关损耗,提高电路效率。给出电源系统的整体设计及主要器件的选择。试验结果表明,该装置完全满足设计要求,并成功应用于电镀生产线。 关键词:高频开关电源;全桥移相;零电压开关;软开关技术

ABSTRACT The analysis and design of 36 kW high frequency switching power supply are presented.The present state of switching power supply is explained.The operating principle of full bridge phase—shifted converter and realization of soft switching techniques are analysed.Soft switching can reduce switching loss and increase circuit s efficiency.Integer designing of power supply system and selection of main device parameters are also proposed.The experiment results demonstrate the power supply device satisfies design requirements completely.It has been applied in electric plating production line success—fully. Keywords:high frequency switching power supply;full bridge phase—shifted;zero voltage switching;soft switching tech— nlques

一个 200W 开关电源的功率级设计总结

一个 200W 开关电源的功率级设计总结 1. 导言 新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。这些特徵对於将要应用的场合是不可或缺的。 2. 电路描述和设计 设计指标如下∶ ·交流输入电压∶85-265VRMS ·功率因素∶> 0.95 ·总输出功率∶200W ·三个直流输出∶5V/0.3A 12V/5A 24V/6A 电源分为两个单元。第一电源集成一个功率因素校正电路,内置在 FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个 24V/6A 和12V/5A 的输出。这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。这种变换器能产生一个稳压的24V 输出。12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。

第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。这个电源工作在待机模式下,它的无负载功耗低於500mW。因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。 为了简洁,设计计算和电路图将在每个模组中单独给出。最终完成的示意图和布局,可在附录中查到。 3. 功率因素校正 本节回顾了功率因素校正电路的电源选择。用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。图1为电路示意图 图1∶PFC级示意图,元件编号和FAN4800应用说明[1]相对应 3.1 整流器 由於主电源用来提供一个200W的输出功率,即总输入功率。假设PFC的

电子工程师的设计经验笔记

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。 给一个电感线圈外加一个变化磁场,只要线圈有闭合的回路,线圈就会产生电流。如果没回路的话,就会在线圈两端产生一个电压。产生电压的目的就是要企图产生电流。当两个或多个丝圈共用一个磁芯(聚集磁力线的作用)或共用一个磁场时,线圈之间的电流和磁场就会互相影响,这就是电流的互感现象。 大家看得见,电感其实就是一根导线,电感对直流的电阻很小,甚至能够忽略不计。电感对交流电呈现出很大的电阻作用。 电感的串联、并联非常复杂,因为电感实际上就是一根导线在按一定的位置路线分布,所以,电感的串联、并联也跟电感的位置相关(主要是磁力场的互相作用相关),如果不考虑磁场作用及分布电容、导线电阻(Q值)等影响的话就相当于电阻的串联、并联效果。 交流电的频率越高,电感的阻碍作用越大。交流电的频率越低,电感的阻碍作用越小。 电感和充满电的电容并联在一起时,电容放电会给电感,电感产生磁场,磁场会维持电流,电流又会给电容反向充电,反向充电后又会放电,周而复始……如果没损耗,或能及时的补充这种损耗,就会产生稳定的振荡。 电子工程师必备基础知识(四)

半桥型开关稳压电源设计讲课讲稿

半桥型开关稳压电源 设计

电力电子技术课程设计(论文)题目:240W半桥型开关稳压电路设计

摘要 本次设计的是240W半桥型开关稳压电源,为负载供电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流24V恒定,最大电流10A。设计内容包括主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真与波形分析等方面。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源。

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章电路设计 (3) 2.1稳压电源总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1 主电路设计 (4) 2.2.2 控制电路设计 (5) 2.2.3驱动电路设计 (6) 2.2.4保护电路设计 (7) 2.2.5 整体电路设计 (8) 2.3元器件型号选择 (9) 第3章课程设计总结 (13) 参考文献 (14) 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章电路设计 (3) 2.1稳压电源总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1 主电路设计 (4) 2.2.2 控制电路设计 (5) 2.2.3驱动电路设计 (6)

开关电源试题(有答案)

开关整流器的基本原理 一、填空 1、功率变换器的作用是()。 将高压直流电压转换为频率大于20KHZ的高频脉冲电压 2、整流滤波器电路的作用是()。 将高频的脉冲电压转换为稳定的直流输出电压 3、开关电源控制器的作用是将输出()取样,来控制功率开关器件的驱动脉冲的(),从而调整()以使输出电压可调且稳定。 直流电压、宽度、开通时间。 4、开关整流器的特点有()、()、()、()、()、()及()。 重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构。 5、采用高频技术,去掉了(),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(),重量已接近()。 工频变压器、1/10、1/10。 6、相控整流器的功率随可控硅()的变化而变化,一般在全导通时,可接近()以上,而小负载时,仅为左右,经过校正的开关电源功率因数一般在(),以上,并且基本不受()变化的影响。 导通角、、。 7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(),而开关电源在无风扇的情况下,可闻噪声仅为()左右。 60db、45db。

8、开关电源采用的功率器件一般(比较)较小,带功率因数补偿的开关电源其整流器效率可达()以上,较好的可做到()以上。 88%、91%。 9、目前开关整流器的分类主要有两种,一类是采用()设计的整流器,一般称之为(),二是采用()设计的整流器,主要指()开关整流器。 硬开关技术、SMR、软开关技术、谐振型 10、谐振型技术主要是使各开关器件实现()或()导通或截止,从而减少开关损耗,提高开关频率。 零电压、零电流。 11、按有源开关的过零开关方式分类,将谐振型开关技术分为()—ZCS、()—ZVS两大类。 12、单端正激变换电路广泛应用于()变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。 13、单端反激变换电路一般用在()输出的场合。 14、全桥式功率变换电路主要应用于()变换电路中。 15、半桥式功率变换电路得到了较广泛的应用,特别是在()和()的场合,其应用越来越普遍。 16、开关电源模块的寿命是由模块内部工作()所决定,温升高低主要是由模块的()高低所决定,现在市场上大量使用的开关电源技术,主要采用的是()技术。 17、功率密度就是功率的(),比值越大说明单位体积的功率越大。 18、计算功率有两种方法,一种是(),另一种是模块允许的,在交流和直流变化的全电压范围内所能提供的()。

小功率直流开关电源的设计

小功率直流开关电源的设计 1.电路结构选择 图1.组成框图 输入电路 输入电路包括线性滤波电路、浪涌电流控制电路和整流电路。起作用是把输入电网的交流电转化为符合要求的开关电源直流输入电源。 变换电路 变换电路含开关电路、输出隔离电路等,是电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。这一级的开关功率管是其核心器件。 控制电路 控制电路的作用是向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。 开关稳压电源与传统的线性稳压电源相比具有体积小、重量轻、效率高等优点,已成为稳压电源的主流产品。为使电源结构简单、紧凑,工作可靠、减少成本,小功率开关稳压电源常采用单端反激型或单端正激型电路。与单端反激型相比,单端正激型开关电流小、输出纹波小、更容易适应高频化。用电流型PWM 控制芯片UC3843构成的单端正激型开关稳压电源的主电路如图2所示。

图2主电路的结构 实用的单端正激型开关稳压电源必须加磁通复位电路,以泄放励磁电路的能量。如图2所示,开关管Q导通时D1导通,副边线圈N2向负载供电,D4截止,自馈电线圈Nf电流为零;Q关断时D1截止,D4导通,Nf经电容C1滤波后向UC3843供电,同时原边线圈N1上产生的感应电动势使D3导通,并加在RC上。由于变压器中的磁场能量可通过Nf泄放,而不像一般的RCD磁通复位电路消耗在电阻上,这可减少发热,提高效率。 2.电源技术规格 输入电压:AC110/220V; 输入电压变动范围:90V~240V; 输入频率:50/60Hz; 输出电压:12V; 输出电流:2.5A; 工作频率的选择:UC3843的典型工作频率为20kHz~500kHz。开关频率的选择决定了变换器的许多特性。开关频率越高,变压器、电感器体积越小,电路的动态响应也越好。但随着频率的提高,诸如开关损耗,门极驱动损耗,输出整流管的损耗会越来越突出,而且频率越高,对磁性材料的选择和参数设计要求会越苛刻,另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性,运行特性以及系统的调试会比较困难。本电路中,选Rt=1.8kΩ,Ct=10nF。由 UC3843A定时电阻,电容与振荡器频率的关系曲线图,可得开关频率为f=85kHz,周期T=11.8μs; 占空比:设计无工频变压器的单端正激型开关电源时,一般占空比D最大不超过0.5,这里选择Dmax=0.5。则Tonmax=T·Dmax=5.9μs。 3.电源设计 3.1变压器和输出电感的设计

开关电源控制芯片M51995及其应用

开关电源控制芯片M51995及其应用 SMPS's Control Chip M51995 and Its Applications 摘要:M51995A是MITSUBISHI公司推出的专门为AC/DC变换而设计的离线式开关电源初级PWM控制芯片。本文详细描述它的工作原理并给出典型应用。 Abstract: M51995A is a off-line SMPS's primary PWM control chip of specific design for AC/DC Conversion by MITSUBISHI .This paper described in detail its work principle and showed typical applications. 关键词:振荡PWM比较锁存电流限制断续 Keywords: Oscillation,PWM comparison lock,Current limit,Discontinuity 1、引言 M51995A是一专门为AC/DC变换设计的离线式开关电源初级PWM控制芯片。该芯片内置大容量图腾柱电路,可以直接驱动MOSFET。M51995A不仅具有高频振荡和快速输出能力,而且具有快速响应的电流限制功能。它的另一大特点是过流时采用断续方式工作。芯片的主要特征如下 * 500kHz工作频率; * 输出电流达±2A,输出上升时间60μs,下降时间40μs; * 起动电流小,典型值为90μA; * 起动电压和关闭电压间压差大:起动电压为16V,关闭电压为10V; * 改进图腾柱输出方法,穿透电流小; * 过流保护采用断续方式工作;

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

dk106小功率开关电源控制芯片

功能描述 DK106芯片是专用小功率开关电源控制芯片,广泛用于电源适配器、LED电源、电磁炉、空调、DVD等小家电产品。 一、产品特点 ?采用双芯片设计,高压开关管采用双极型晶体管设计,以降低产品成本;控制电路采用大规模MOS数字电路设计,并采用E极驱动方式驱动双极型晶体芯片,以提高高压开关管的安全耐压值。内建自供电电路,不需要外部给芯片提供电源,有效的降低外部元件的数量及成本。 ?芯片内集成了高压恒流启动电路,无需外部加启动电阻。 ?内置过流保护电路,防过载保护电路,输出短路保护电路,温度保护电路及光藕失效保护电路。 ?内置斜坡补偿电路,保证在低电压及大功率输出时的电路稳定。 ?内置PWM振荡电路,并设有抖频功能,保证了良好的EMC特性。 ?内置变频功能,待机时自动降低工作频率,在满足欧洲绿色能源标准(<0.3W)同时,降低了输出电压的纹波。 ?内置高压保护,当输入母线电压高于保护电压时,芯片将自动关闭并进行延时重启。 ?内建斜坡电流驱动电路,降低了芯片的功耗并提高了电路的效率。 ?4KV防静电ESD测试。

二、功率范围 输入电压(85~264V ac ) (85~145V ac ) (180~264V ac ) 最大输出功率 6W 8W 8W 三、封装与引脚定义 引脚符号功能描述引 脚符号功能描述 1Gnd 接地引脚。1HV 2Gnd 接地引脚。2Nc 空脚或接地。3Fb 反馈控制端。3Fb 反馈控制端。4Vcc 供电引脚。 4Vcc 供电引脚。 5678 Collector 输出引脚,连接芯片内高压开关管Col-lector 端,与开关变压器相连。 7,8 Collector 输出引脚,连接芯片内高压开关管Col-lector 端,与开关变压器相连。 5,6GND 引脚接地。 四、内部电路框图

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

基于TOPSwitch-GX系列TOP247Y芯片的低功率开关电源设计

基于TOPSwitch-GX系列TOP247Y芯片的低功率开关电源设计发布: 2011-9-7 | 作者: —— | 来源:jiasonghu| 查看: 454次| 用户关注:本文介绍了一种基于TOP247Y的多路开关稳压电源,其结构简单、成本低廉、制作调试方便,基本上能达到所要求的条件。TOPSwitch-GX系列芯片工作原理图1给出了TOP247Y芯片内部结构图,共有6个引出端,它们分别是控制端C、线路检测端L、极限电流设定端X、源极S、开关频率选择端F和漏极D。利用线路检测端(L)可实现4种功能:过压(OV)保护;欠压(UV)保护;电压前馈(当电网电压过低时用来降低最大占空比);远程通/断(ON/OFF)和同步。而利用极限 本文介绍了一种基于TOP247Y的多路开关稳压电源,其结构简单、成本低廉、制作调试方便,基本上能达到所要求的条件。 TOPSwitch-GX系列芯片工作原理 图1给出了TOP247Y芯片内部结构图,共有6个引出端,它们分别是控制端C、线路检测端L、极限电流设定端X、源极S、开关频率选择端F和漏极D。利用线路检测端(L)可实现4种功能:过压(OV)保护;欠压(UV)保护;电压前馈(当电网电压过低时用来降低最大占空比);远程通/断(ON/OFF)和同步。而利用极限电流设定端,可从外部设定芯片的极限电流。在每个开关周期内都要检测功率MOSFET漏源极导通电阻Ros(on)上的漏极峰值电流ID(PK),当ID(PK)>ILIMIT时,过电流比较器就输出高电平,依次经过触发器、主控门和驱动级,将MOSFET关断,起到过电流保护作用。 电源启动时,连接在漏极和源极之间的内部高压电流源向控制极充电,在RE两端产生压降,经RC滤波后,输入到PWM比较器的同相端,与振荡器产生的锯齿波电压相比较,产生脉宽调制信号并驱动MOSFET管,因而可通过控制极外接的电容充电过程来实现电路的软启动。当控制极电压Uc达到5.8V时,内部高压电流源关闭,此时由反馈控制电流向Uc供电。在正常工作阶段,由外界电路构成电压负反馈控制环,调节输出级MOSFET的

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

大功率直流开关电源设计

大功率直流开关电源设计 前言 开关电源的发展及国外现状 随着通信用开关电源技术的广泛应用和不断深入,实际工作中人们对开关电源提出了更高的要求,提出了应用技术的高频化、硬件结构的模块化、软件控制的数字化、产品性能的绿色化、新一代电源的技术含量大大提高,使之更加可靠、稳定、高效、小型、安全。在高频化方面,为提高开关频率并克服一般的PWM和准谐振、多谐振变换器的缺点,又开发了相移脉宽调制零电压开关谐振变换器,这种电路克服了PWM方式硬开关造成的较大的开关损耗的缺点,又实现了恒频工作,克服了准谐振和多谐振变换器工作频率变化及电压、电流幅度大的缺点。采用这种工作原理,大大减小了开关管的损耗,不但提高了效率也提高了工作频率,减小了体积,更重要的是降低了变换电路对分布参数的敏感性,拓宽了开关器件的安全工作区,在一定程度上降低了对器件的要求,从而显著提高了开关电源的可靠性。 1. 开关电源主电路的设计 开关电源最重要的两部分就是主电路和控制电路。本章将根据大功率直流开关电源的要求对主电路各部分进行性能分析并计算各项参数,根据计算所得的数据结果选择各元器件,设计出各个独立模块,最后组装成开关电源的主电路。 1.1 开关电源的设计要求 在本课题研究的过程中,主要对大功率开关直流电源的工作原理、电路的拓扑结构和运行模式进行了深入研究,并结合系统的技术参数,确定系统主电路的拓扑,设计出主电路,即分别设计出滤波、整流、DC-DC变换器、软启动和保护控制等部分。下面就对电源主电路的设计进行详细说明。

1.2 主电路组成框图 根据需要设计大功率开关电源的技术要求,本文进行了方案的验证与比较,设计如图2-1所示的软开关直流开关电源的主电路框图。虚线以上是主电路,主电路主要分为输入整流滤波、逆变开关电路、逆变变压器和输出整流滤波;虚线以下为控制回路,控制回路主要包括信息检测电路、控制和保护单元、监控单元和辅助电源。 本电源采用ZVZCS- PWM 拓扑,原边加箝位二极管,三相交流输入整流后,加LC 滤波,以提高输入功率因数,主功率管选用IGBT ,控制电路采用UC3875移相控制专用集成芯片,电流电压双闭环控制。具体设计主电路如图2-2所示,包括三个部分:(1) 输入整流滤波电路;(2) 单相逆变桥;(3) 输出整流滤波电路. EMI 全桥整流滤波 高频逆变 整流滤波 辅助电源 控制和保护单元 反馈 监控单元 交流输入 集中监控单元 直流输出 图2-1 直流开关电源的主电路框图 1.2.1 输入整流滤波电路 三相交流电经电源内部EMI 滤波后,加到整流滤波模块。EMI 滤波器的作用是滤除功率管开关产生的电压电流尖峰和毛刺,减小电源内部对电网的干扰,同时又能减小其他用电设备通过电网传向电源的干扰。滤波电路采用LC 滤波,电感的作用是拓开电流导通时间,限制电流峰值,可以提高电源的输入功率因数。滤波电容采用四个电解电容,两个串联后并联使用,满足三相整流后的高压要求。电阻R1、R2是平衡串联电容上的电压,高频电容与电解电容并联使用,滤除高频谐波,弥补电解电容高频特性差的缺陷。

小功率开关电源的设计_综述

网络教育学院《电源技术》课程设计 题目:小功率开关电源的设计 学习中心:东港奥鹏 层次:高中起点专科 专业:电气工程及其自动化 年级:09 年春季 学号: 学生: 辅导教师:刘鹏 完成日期:2011年2月25日

1.电路结构选择 图1.组成框图 输入电路 输入电路包括线性滤波电路、浪涌电流控制电路和整流电路。起作用是把输入电网的交流电转化为符合要求的开关电源直流输入电源。 变换电路 变换电路含开关电路、输出隔离电路等,是电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。这一级的开关功率管是其核心器件。 控制电路 控制电路的作用是向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。 开关稳压电源与传统的线性稳压电源相比具有体积小、重量轻、效率高等优点,已成为稳压电源的主流产品。为使电源结构简单、紧凑,工作可靠、减少成本,小功率开关稳压电源常采用单端反激型或单端正激型电路。与单端反激型相比,单端正激型开关电流小、输出纹波小、更容易适应高频化。用电流型PWM 控制芯片UC3843构成的单端正激型开关稳压电源的主电路如图2所示。 图2主电路的结构

实用的单端正激型开关稳压电源必须加磁通复位电路,以泄放励磁电路的能量。如图2所示,开关管Q导通时D1导通,副边线圈N2向负载供电,D4截止,自馈电线圈Nf电流为零;Q关断时D1截止,D4导通,Nf经电容C1滤波后向UC3843供电,同时原边线圈N1上产生的感应电动势使D3导通,并加在RC上。由于变压器中的磁场能量可通过Nf泄放,而不像一般的RCD磁通复位电路消耗在电阻上,这可减少发热,提高效率。 2.电源技术规格 输入电压:AC110/220V; 输入电压变动范围:90V~240V; 输入频率:50/60Hz; 输出电压:12V; 输出电流:2.5A; 工作频率的选择:UC3843的典型工作频率为20kHz~500kHz。开关频率的选择决定了变换器的许多特性。开关频率越高,变压器、电感器体积越小,电路的动态响应也越好。但随着频率的提高,诸如开关损耗,门极驱动损耗,输出整流管的损耗会越来越突出,而且频率越高,对磁性材料的选择和参数设计要求会越苛刻,另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性,运行特性以及系统的调试会比较困难。本电路中,选Rt=1.8kΩ,Ct=10nF。由 UC3843A定时电阻,电容与振荡器频率的关系曲线图,可得开关频率为f=85kHz,周期T=11.8μs; 占空比:设计无工频变压器的单端正激型开关电源时,一般占空比D最大不超过0.5,这里选择Dmax=0.5。则Tonmax=T·Dmax=5.9μs。 3.电源设计 3.1变压器和输出电感的设计 根据电源规格、输出功率、开关频率,选择PQ26/25磁芯,磁芯截面积 Se=1.13cm2,磁路有效长度le=6.4cm,磁芯材料为MXO2000,饱和磁通密度 Bs=0.4T。取变压器最大工作磁感应强度Bmax=Bs/3=0.133T,则电感系数AL值为: AL=(0.4πμrSe/le)10-6=4.44(μH/N2) 变压器原边线圈匝数为: N1=UImin×Tonmax/Bmax×Se式中UImin为最小直流输入电压。考虑到交流输

相关文档
最新文档