建筑石灰试验方法化学分析方法

建筑石灰试验方法化学分析方法
建筑石灰试验方法化学分析方法

建筑石灰试验方法化学分析方法

时间: 2004-01-18 11:57:13 | [<<][>>]

1 主题内容与适用范围

本标准规定了建筑石灰化学分析的仪器设备、试样制备、试验方法和结果计算以及化学分析允许误

差。

本标准适用于建筑生石灰、生石灰粉和消石灰粉化学分析方法,其他品种石灰可参照使用。

2 总则

2.1送检试样应具有代表性,数量不少于100g,装在磨口玻璃瓶中,瓶口密封。检验时,将试样混均以

四分法缩取25g,在玛钵内研细全部通过80um方孔筛用磁铁除铁后,装人磨口瓶内供分析用。

2.2分析天平不应低于四级,最大称量200g,天平和砝码应定期进行检定。

2.3称取试样应准确至0.0002g,试剂用量与分析步骤严格按照本标准规定进行。

2.4化学分析用水应是蒸馏水或去离子水,试剂为分析纯和优级纯。所用酸和氨水,未注明浓度均为浓

酸和浓氨水。

2.5滴定管、容量瓶、移液管应进行校正。

2.6做试样分析时,必须同时做烧失量的测定,容量分析应同时进行空白试验。

2.7分析前,试样应于100-105℃烘箱中干燥2h。

2.8各项分析结果百分含量的数值,应保留小数点后二位。

3 分析方法

3.1二氧化硅的测定

3.1.1氟硅酸钾容量法

3.1.1.1方法提要

在有过量的氟,钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(KaSiF 6)沉淀,经过滤、洗涤、中

和滤纸上的残余酸后,加沸水使氟硅酸钾沉淀水解生成等当量的氢氟酸,然后以酚酞为指示剂,用氢氧化钠

标准溶液进行滴定。

3.1.1.2试剂

a.硝酸(浓);

b.氯化钾(固体)

c.氟化钾溶液(150s/L):将15g氟化钾放在塑料杯中,加50mL水溶解后,再加20mI硝酸,用

水稀释至100mL,加固体氯化钾至饱和,放置过夜,倾出上层清液,贮存于塑料瓶中备用;

d.氯化钾-乙醇溶液(50g/L):将5g氯化钾溶于50mL水中,用95%乙醇,稀至100mL混匀;

e.酚酞指示剂乙醇溶液(10g/L):将1g酚酞溶于95%乙醇,并用95%乙醇稀释至100mL;

f.氢氧化钠标准溶液(0.05mol/L):将10g氢氧化钠溶于5L水中,充分摇匀,贮于塑料桶中;

标定方法:准确称取0.3000g苯二甲酸氢钾置于400mL烧杯中,加入约15 0mL新煮沸的冷水

(用氢氧化钠熔液中和至酚酞呈微红色),使其溶解,然后加入7 ̄ 8滴酚酞指示剂乙醇溶液(10g/L),

以氢氧化钠标准溶液滴定至微红色为终点,记录V。

氢氧化钠溶液对二氧化硅的滴定度按式(1)计算:

m×15.02×1000

Tsio2=──────── (1)

V×204.2

式中:Tsio2──每毫升氢氧化钠标准溶液相当于二氧化硅的毫克数;

m──苯二甲酸氢钾质量,g;

V──氢氧化钠标准溶液的体积,mL;

204.2──笨二甲酸氢钾的摩尔质量,8;

15.02──二氧化硅的摩尔质量,g。

3.1.1.3分析步骤

准确称取试样约0.3000g,置于银坩埚中,加入4g氢氧化钠盖上盖,井留有缝隙,于高温炉内升

温至600-650℃熔融20min取出冷却,用热水将熔融物浸出,倒人塑料杯中,并洗净银坩涡,也倒入塑

料杯中然后依次加15mL硝酸及10mL氟化钾溶液(150g/L),冷却后加固体氯化钾,仔细搅拌至饱和

并有少量氯化钾析出。于冷水中静置15-20min,用中速滤纸过滤,塑料杯及沉淀用氯化钾溶波(50g/

L)洗3次,将滤纸连同沉淀取下,置于原塑料杯中,沿杯壁加入10mL氯化钾─乙醇溶液(50g/L)及

1mL酚酞指示剂乙醇溶液(10g/L)。用(0.05mol/L)氢氧化钠标准溶液中和未洗净的酸,至熔液呈微

红色,然后加入200mL沸水(煮沸用氢氧化钠熔液中和至酚酞呈微红色),用(0.0 5mo1/L)氢氧化钠标

准溶液滴定至微红色,计录V。

3.1.1.4结果计果

二氧化硅的百分含量(x1)按式(2)计算:

Tsio2×V

X1=──────×100 (2)

m×1000

式中:Tsio2──每套升氢氧化钠标准溶液相当于二氧化硅的毫克数;

V──滴定时消耗氢氧化钠标准溶双的体积,mL;

m──试样质量,g。

3.1.2氯化铵重量法

3.1.2.1方法提要

试样加少量无水碳酸钠于银坩埚内,放在高温下烧结。用盐酸分解。加固体氯化铵后,在怫水浴上

加热蒸发使硅酸凝聚,过滤沉淀,经高温的烧桓重,用氢氟酸处理后,再经高温的烧恒重,求得二氧化?

的百分含量。

3.1.2.2试剂

a.氯化铵(固体);

b.盐酸;·

c.盐酸(l+l);

d.盐酸(3+97):

e.硝酸;

f.氢氟酸.

g.硫酸(l+4);

h.焦硫酸钾(固体)。

3.1.2.3分析步骤

准确称取试样约0.5000g,置于铂金坩埚中,加入0.3g研细的无水碳酸钠,混匀,将铂坩埚放入

950 ̄lO00℃高温炉内熔融10min,取出冷却。

将熔融块倒入150mL瓷蒸发皿中,加数滴水润湿,盖上表面皿从皿口滴加5 mL盐酸(1+l)及2

~3滴硝酸,待反应停止后,取下表面皿用平头玻璃棒压碎块状物,使试样充分分解,然后用胶头扫棒以

盐酸(3+97)擦洗坩埚内壁数次,溶液合并于蒸发皿中(总体积不超过20mL 为宜)。将蒸发皿置于沸水

浴上,皿上放一玻璃三角架。再盖上表面皿。蒸发至糊状后,加1g氯化铵,充分搅拌,然后继续在沸水浴

上蒸发至近干(约15min)。取下蒸发皿,加20mL热盐酸(3+97),搅拌,使

可溶性盐类溶解。以中速定

量滤纸过滤,用胶头扫棒以热盐酸(3+97)擦洗玻璃棒及蒸发皿,井洗涤沉淀10-l2次,滤液及洗液保

存在250mL容量瓶内。

在沉淀上加数滴硫酸(1+4),然后将沉淀及滤纸一并移人已恒重的铂金坩埚中,先在电炉上低温烤

干,再升高温度使滤纸充分灰化,再于950-1000℃的高温炉内的烧40min,取出坩埚,置于干燥器内

冷却10-l5min,称量,如此反复的烧直至恒重,向坩埚内加数滴水润湿沉淀,再加3滴硫酸(l+4)和5

-7mL氢氟酸,置于水浴上缓慢加热挥发,至开始逸出三氧化硫白烟时取下坩埚、稍冷。再加2~3滴硫

酸(1+4)和3 ̄5mL氢氟酸,继续加热挥发,至三氧化硫白烟完全逸尽。取下坩埚,放人950~1000℃

高温炉内的烧30min,取出稍冷,放在干燥器内冷却至室温、称量。如此反复的烧直至恒重。

坩埚内残渣加入0.5g焦硫酸钾,在电炉上从低温逐渐加热至完全熔融,用热水和数滴盐酸(1+1)

溶出,并入分离二氧化硅后的滤液中,然后加水稀至标线摇均,此液供测铁、铝、

钙、镁用。

3.1.2.4结果计算

二氧化硅的百分含量(x2)按式(3)计算:

m1-m2

X2=─────×100 (3)

m

式中:m1──未经氢氟酸处理的沉淀和坩埚的质量,g;

m2──经氢氧酸处理后的残渣和坩埚的质量,g;

m──试样质量,g。

3.2铁、铝、钙、镁的测定

除用3.l.2.3试样溶液外,可按下列方法制试样溶液。

3.2.1试样溶液制备

3.2.1.1方法提要

试样于银坩埚中,用氢氧化钠经高温熔融,用热水浸出熔块,放在300mL

烧杯中,加盐酸分解,银

离子与氯离子在高浓度盐酸溶波中,生成络银离子[AgC13][-3],防止了氯化银析出,得到澄清溶液。于同

一份试样溶液中,经分取试样溶液,测铁、铝、钙、镁。

3.2.1.2试剂

a.盐酸;

h.盐酸(l+5);

c.氢氧化钠(固体)。

3.2.1.3制备步骤

准确称取石灰样0.6000g,置于银坩埚中,加入4~5g氢氧化钠,盖上盖,并留有缝隙,放入高温

炉中在600-650℃的温度下熔融20min,取出冷却,将坩埚放入已盛有100mL

热水的烧杯中,盖上表

面皿,待熔块完全浸出后,取出银坩埚。先用水洗盖和坩埚。在搅拌同时,一次加入25mL盐酸,再加

lmL硝酸,用热盐酸(1+5)洗净坩埚和盖。将溶液加热至沸,冷却后移入250 mL容量瓶中用水稀释至

标线,摇匀,供铁、铝、钙、镁测定。

3.2.2三氧化二铁的测定

3.2.2.1方法提要、

在pH1.8 ̄2.0,及60-70℃的溶液中,以磺基水场酸钠为指示剂,用ED TA标准溶液滴定至亮黄

色或无色。

3.2.2.2试剂

a.氨水(l+l);

b.盐酸(1+l);

c.乙二胺四乙酸二钠〔EDTA)标准溶液(0.015mol/L):将5.6g乙二胺四乙酸二钠(简称

EDTA置于烧杯中,加约200mL水,加热溶解,过滤。用水稀释至1L;

d.碳酸钙标准溶液:准确称取约0.6g已在100-105C烘过2h的碳酸钙(高纯试剂),置于

400mL烧杯中,加入约100mL水。盖上表面皿,沿杯口滴加盐酸(1+1)至碳酸

钙全部溶解后,加热煮沸

数分钟将溶液冷至室温,移人250mL容量瓶中,用水稀至标线,摇匀;

e.磺基水场酸钠指示剂(100g/L):将10g磺基水扬酸钠溶于100mL水中;

f.精密pH试纸(pH0.5 ̄5.0);

g.CMP混合指示剂:将1g钙黄绿素(简称C),1g甲基百里香酚蓝(简称M),0.28酚酞(简称

P)与50g已在100-105C烘干2h的硝酸钾混合研细,保存在磨口瓶中备用。

标定方法:吸取25mL碳酸钙标准溶液放人400mL烧杯中,用水稀释至约20 0mL。加入适量·

CMP混合指示剂,在搅拌下滴加(200g/L)氢氧化钾熔液至出现绿色荧光后,再过量1 ̄2mL以

〔0.015 mol/L) EDTA标准熔液滴定至绿色荧光消失,并呈现红色,记录V 1。

EDTA标准溶液对三氧化二铁、三氧化二铝、氧化钙和氧化镁的滴定度按下式计算:

C×V MFe2O3 C×V

TFe2O3=───×────=────×0.7977 (4)

V 2MCaCO3 V

C×V1 MAl2O3 C×V1

TAl2O3=───×────=────×0.5094 (5)

V 2MCaCO3 V

C×V1 MCaO C×V1

TCaO=───×───=────×0.5603 (6)

V MCaCO3 V

C×V1 MMgo C×V1

TMgO=───×───=───×0.4028 (7)

V MCaCO3 V

式中:TFe2O3──每毫升EDTA标准溶液相当于三氧化二铁的毫克数;

TAl2O3──每毫升EDTA标准烙液相当于三氧化二铝的毫克数;

TCaO──每毫升EDTA标准溶液相当于氧化钙的毫克散;

TMgO──每毫升EDTA标准溶液相当于氧化镁的毫克数;

C──每毫升碳酸钙标准溶液含碳酸钙的毫克数;

V1──碳酸钙标准溶液的体积,mL:

V──标定时消耗EDTA标准溶液的体积,mL:

MFe2O3──三氧化二铁的分子量;

MAl2O3──三氧化二铝的分子量;

MCaO──氧化钙的分子量;

MMgO──氧化镁的分子量;

MCaCO3──碳酸钙的分子量。

3.2.2.3分析步骤

吸取50mI,按3.1.2.3或3.2.1.3制备的试样溶液,放入300mI烧杯中,加水稀释至约100ml,?

用氨水(1+1)和盐酸(l+1)调解溶液的pH值至1.8 ̄2.0(用精密pH试纸检验)。将溶液加热至70℃

左右,加10滴磺基水杨酸钠指示剂(l00g/L),以(0.0l5mol/L)标准溶掖缓慢地滴走至亮黄色或无色

(终点时溶液温度在60℃左右)。

3.2.24结果计算

三氧化二铁的百分含量(x3)按式(8)计算;

TFe2O3×V×5

X3=─────────×100 (8)

m×1000

式中:TFe2O3──每毫升EDTA标准溶液相当于三氧化二铁的毫克数;

V──滴定时消耗EDTA标准溶液的体积,mL;

5──全部试样熔液与所取试样溶液的体积比;

m──试样质量,g。

3.2.3三氧化二铝(含钛)的测定

3.2.3.1方法提要

在滴定铁后的熔液中,加入(对铝、钛)过量的EDTA标准溶液(一般过量10mL左右)。于70~

80℃时调解溶液pH值至4.0 ̄4.2,以pAN为指示剂,用硫酸铜标准溶液回滴过量EDTA溶液。

3.2.3.2试剂

a.乙酸-乙酸钠缓冲溶液(PH4.3):称取42.3g无水乙酸钠溶于水中,加80mL冰乙酸,然后加

水稀择至1L,摇匀;

b.EDTA标准熔液(0.015mol/L):(见3.2.2.2):

c.硫酸铜标准溶液(0.015mol/l,):将3.7g硫酸铜(CuSo4·5HzO)溶于水中,加4~5滴硫酸

(l+1),用水稀释至1L,摇匀;

d.PAN指示剂溶液(0.2%):将0.2gl(2-吡啶偶氮)-2-苯酚(PAN)溶于100ml。乙醇中。

EDTA标准溶液与硫酸铜标准溶液体积比的标定:

以滴定管缓慢放出10 ̄15ml,(0.015mol/L)EDTA标准溶液于400mL烧杯中,用水稀释至约

200mL,加15mL乙酸-乙酸钠缓冲溶液pH4.3,然后加热至沸,取下稍冷,加5~6滴PAN指示剂,以

硫酸铜标准溶液滴定至亮紫色。

EDTA标准溶液与硫酸铜标准溶液的体积比K按式(9)计算:

V1

K=── (9)

V2

式中:K──每毫升硫酸铜标准溶液相当于EDTA标准溶液的毫升数;

Vt──EDTA标准溶液体积,mI,

v2──滴定时消耗硫酸铜标准溶液体积,mL。

3.2.3.3分析步骤

在滴定铁后的溶液中,加入10 ̄15mL(0.015mol/L)EDTA标准溶液。然后用水稀释至约

200mL,将溶液加热至70-80℃后,加15mL乙酸-乙酸钠缓冲溶液(pH4.3),煮沸1 ̄2min,取下稍

冷,加4~5滴PAN指示剂,以硫酸铜标准溶液滴定至亮紫色为终点。

3.2.3.4结果计算

三氧化二铝的百分含量(x4)按式(10)计算:

TAL2O3×(V1-V2·K)×5

X4=────────────×100 ………………………(10))

m×1000

式中:TAl2O3──每毫升EDTA标准溶液相当于三氧化二铝的毫克数;

V1──加入EDTA标准溶液的体积,mL;

V2──滴定时消耗硫酸铜标准溶液的体积,mL:

K──每毫升硫酸铜标准溶液相当于EDTA标准溶液的毫升数;

5──全部试样溶液与所取试样溶液的体积比;

m──试样质量,g。

3.2.4氧化钙的测定·

3.2.4.1方法提要

在PHl3以上的强碱性溶液中,以三乙醇胺掩蔽铁、铝,用CMP混合指示剂,以EDTA标准熔液直

接滴定钙。

在不分离硅的条件下进行钙的滴定需预先在酸性溶液中加适量氟化钾,以抑制硅酸的干扰。

3.2.4.2试剂

a.氟化钾溶液〔20g/L):将2g氟化钾(KF·2H2O)溶于100mL水中,贮存在塑料瓶中;

b.三乙醇胺(1+2);

c.氢氧化钾溶液(200g/L):将20g氢氧化钾溶于100mL水中,摇匀;

d.EDTA标准溶液(0.0l5mol/L):(见3.2.2.2):

e.CMP混合指示剂:(见3.2.2.2);

3.2.4.3分析步骤

吸取10mL按3.1.2.3或3.2.1.3制备的试样溶液,放入400mL烧杯中,加入4mL氟化钾溶液

(20g/L),搅拌并放置2min,用水稀释至约250mL,加3mL三乙醇胺(l+2)及适量的CMP混合指示

剂,在搅拌下加入氢氧化钾溶液(200g/L),至出现绿色荧光后再过量5 ̄8mL (此时溶液的pH在13

以上)。用(0.0l5mol/L)EDTA标准溶液滴定至绿色荧光消失,并呈现粉红色为终点。

3.2.4.4结果计算

氧化钙的百分含量(Xs)按式(11)计算:

TCaO×V×25

X5=────────×100 ················(1 1)

m×1000

20.化学药物质量控制分析方法验证技术指导原则 2005年颁布

指导原则编号: 【H】G P H 5-1 化学药物质量控制分析方法验证 技术指导原则 二○○五年三月

目 录 一、概述 (1) 二、方法验证的一般原则 (2) 三、方法验证涉及到的三个主要方面 (2) (一)需要验证的检测项目 (2) (二)分析方法 (3) (三)验证内容 (3) 四、方法验证的具体内容 (3) (一)专属性 (3) 1、鉴别反应 (4) 2、杂质检查 (4) 3、含量测定 (4) (二)线性 (5) (三)范围 (5) 1、含量测定 (6) 2、制剂含量均匀度 (6) 3、溶出度或释放度 (6) 4、杂质 (6) (四)准确度 (6) 1、含量测定 (7) 2、杂质定量试验 (7) (五)精密度 (7) 1、重复性 (8) 2、中间精密度 (8) 3、重现性 (8)

(六)检测限 (8) 1、直观法 (8) 2、信噪比法 (9) (七)定量限 (9) 1、直观法 (9) 2、信噪比法 (9) (八)耐用性 (10) (九)系统适用性试验 (10) 五、方法再验证 (11) 六、方法验证的评价 (12) (一)有关方法验证评价的一般考虑 (12) (二)方法验证的整体性和系统性 (12) 七、参考文献 (13) 八、著者 (13)

化学药物质量控制分析方法验证技术指导原则 一、概述 保证药品安全、有效、质量可控是药品研发和评价应遵循的基本原则,其中,对药品进行质量控制是保证药品安全有效的基础和前提。为达到控制质量的目的,需要多角度、多层面来控制药品质量,也就是说要对药物进行多个项目测试,来全面考察药品质量。一般地,每一测试项目可选用不同的分析方法,为使测试结果准确、可靠,必须对所采用的分析方法的科学性、准确性和可行性进行验证,以充分表明分析方法符合测试项目的目的和要求,这就是通常所说的对方法进行验证。 方法验证的目的是判断采用的分析方法是否科学、合理,是否能有效控制药品的内在质量。从本质上讲,方法验证就是根据检测项目的要求,预先设置一定的验证内容,并通过设计合理的试验来验证所采用的分析方法能否符合检测项目的要求。 方法验证在分析方法建立过程中具有重要的作用,并成为质量研究和质量控制的组成部分。只有经过验证的分析方法才能用于控制药品质量,因此方法验证是制订质量标准的基础。方法验证是药物研究过程中的重要内容。 本指导原则重点探讨方法验证的本质,将分析方法验证的要求与所要达到的目的结合起来进行系统和规律性的阐述,重点阐述如何科学合理地进行论证方案的设计。 本指导原则主要包括方法验证的一般原则、方法验证涉及的三个主要方

石灰石化学分析方法

石灰石化学分析方法 分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。滤液及洗液保存于250mL容量瓶中。将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。向坩埚内加数滴水润

湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。 3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。 4. 氧化镁的测定吸取25mL于400mL烧杯中,加水稀释约200mL,依次加入1mL 酒石酸钾钠(100 g/L)和5mL三乙醇胺(1+2),搅拌,然后加入25mL、pH10缓冲溶液(67.5g氯化氨、570mL氨水)及适量的酸性铬蓝K—萘酚绿B混合指示剂(1.000g酸性铬蓝K、0.200g萘酚绿B、50g硝酸钾),以EDTA(0.015mol/L)滴定,近终点时应缓慢滴定至纯蓝色。5. 浆液pH值的测量电极每天使用前用缓冲溶液进行检查和校核pH值测量必须在现场流动的浆液中进行,并同时观测温度,通过pH计所显示的数字,对浆液在线pH计的读数进行对比。测量完毕

分析方法验证指导程序

目的:建立分析方法学验证的指导程序,用以证明所采用的分析方法适合于相应的检测要求,保证验证工作能够有计划、按步骤的进行,同时使与质量检验有关的活动符合GMP的要求。 范围:适用于本公司所有的分析方法的验证的活动。 职责:QC:负责起草分析方法验证的验证方案、报告;负责按批准的验证方案执行验证;负责检验仪器运行和保养。 QA:负责确定分析方法的验证条件、标准、限度及检验方法;负责验证方案、报告的审核;QA负责人负责方案、报告的批准。 1 相关定义 1.1 分析方法:法是为完成检验项目而设定和建立的测试方法,它详细描述了完成分析检验的每一步骤。一般包括分析方法原理、仪器及仪器参数、试剂、供试品溶液与对照品溶液的制备,测定,计算公式及检测限度等。 1.2 方法验证:方法验证就是根据检验项目的要求,预先设置一定的验证内容,并通过设计合理的实验来验证所采用的分析方法是否符合检验项目的要求。在建立产品质量标准时,分析方法需经验证。 1.3 方法确认:在应用已验证的药典方法和其他法定方法前,应在当前的实验室条件下进行方法确认来证明方法在该实验室的适用性。 2 验证的适用范围 2.1 产品的物料、中间产品、中间过程控制和产品的理化分析方法的验证和确认; 2.2 清洁验证方法的验证。 3 需要验证的分析项目 根据检验项目的设定目的和验证内容的不同要求,将需验证的检验项目分为四类:3.1 鉴别试验;鉴别的目的在于判定被分析物是目标化合物,而非其它物质。用于鉴别的分析方法要求具有较强的专属性和耐用性。 3.2 杂质的限度检查与定量测定;杂质检查主要用于控制主成分以外的杂质,如无机杂质,有机杂质等。杂质检查分为限度检查和定量测定两部分。用于限度检查的分

检验方法验证标准操作规程

标准操作规程 STANDARD OPERATING PROCEDURE 目的:建立检验方法验证标准操作规程,规范验证操作。 适用范围:所有检验方法的验证。 责任者:质量保证部、质量控制部 程序: 1、检验方法验证的基本内容 检验方法验证的基本内容包括方案的起草及审批,检测仪器的确认.适用性验证(包括准确度试验、精密度测定.线性范围试验、专属性试验等)和结果评价及批准四个欠的方面。它的基本内容可以用下图表示。 2、检验方法验证的基本步骤 首先是制定验证方案,然后对大型精密仪器进行确认,最关键的一步是检验方法的适用性试验,最后是检验方法评价及批准。 2.1验证方案的制定 检验方法的验证方案通常由质量验证小组提出。根据产品的工艺条件、原辅料化学结构、中间体、分解产物查阅有关资料,提出规格标准,确定检查项目,规定杂质限度,即为质量标准草案。根据质量标准草案确定检查和试验范围,对检验方法拟定具体操作步骤,最后经有关人员审批方可实施。 2.2大型精密仪器的确认 分析测试中所用的检测仪器一般可分为三类 (1)普通仪器:崩解仪,折光仪、分析天平、酸度计、溶点测定仪、电导仪等: (2)较精密仪器:旋光仪、永停滴定仪、费休氏水分测定仪、自动滴定仪、药物溶出度仪、可

见分光光度计、电泳仪等; (3)大型精密仪器:紫外分光光度计、红外分光光度计、气相色谱仪、高效液相色谱仪、薄层扫描仪等。 为了保证分析测试数据准确可靠,每台检测仪器在投入正式使用之前都应进行确认。检测仪器的确认是检验方法验证的基础,应在其它验证试验开始之前首先完成。检测仪器确认工作内容应根据仪器类型。技术性能而定,通常包括:安装确认、校正、适用性预试验和再确认。2.2.1安装确认 同工艺验证中机械设备一样,仪器安装确认的土要内容包括如下各点: (1)要登记仪器名称.型号。生产厂商的编号、生产日期.生产厂商名称,企业内部的固定资产设备登记号及安装地点; (2)收集汇编和翻译仪器使用说明书和维修保养手册; (3)检查并记录所验收的仪器是否符合厂方规定的规格标准: (4)检查并确保有该仪器的使用说明书。维修保养手册和备件清单: (5)检查安装是否恰当,气、电及管路连接是否符合要求; (6)制定仪器标准操作规程(SOP)和维修保养制度,建立使用记录和维修记录; (7)制定清洗规程;. (8)明确仪器设备技术资抖(图纸,手册,备件清单、各种指南及该机器设备有关的其它文件)的专管人员及存放地点。 除上面提到的内容外,在安装确认方案中对仪器的性能用途应有一概述并记录维修服务单位名称。联系人、电话号码、传真号、银行帐号等,以利于日后的维修保养活动,这对大型精密仪器尤为重要。对于仪器来说,安装确认中的一项重要内容是功能试验。这项工作在安装结束,检查合格后即可着手进行。仪器功能试验足在不使用样品的前提下,确认仪器达到设计要求,也可认为是空载试验。例如气相色谱仪的程序升温设定后能否按设定程序执行,溶出仪转速能否达到规定的性能要求。紫外分光光度计的吸收度与透光率的转换是否符合要求。高效液相色谱仪高压泵过压保护是否起作用等,这是检查仪器安装后能达到规定的性能指标。对普通仪器进行的功能试验比较简单,有的除仪器校正外,没有其它特殊的功能试验要做,如酸度计,电导仪,折光仪等。不同的仪器有不同的技术标准,应根据仪器使用说明书的要求进行试验。 2.2.2校正 校正是仪器确认及检验方法验证中的一个重要环节,应当在验证试验以前进行校正。紫外分光光度计校正包括波长校正、吸收度测试、准确度测试、杂散光检查。 气相色谱仪与高效液相色谱仪均要求做系统适用性试验。在规定的色谱条件下测定色谱柱的最小理论塔板数。分离度和拖尾因子,并规定变异系数应不大于2%。 对于化学检验中使用的计量仪器包括容量瓶、移液管、滴定管、分析天平亦均应校正。

建筑石灰试验方法化学分析方法

建筑石灰试验方法化学分析方法 时间: 2004-01-18 11:57:13 | [<<][>>] 1 主题内容与适用范围 本标准规定了建筑石灰化学分析的仪器设备、试样制备、试验方法和结果计算以及化学分析允许误 差。 本标准适用于建筑生石灰、生石灰粉和消石灰粉化学分析方法,其他品种石灰可参照使用。 2 总则 2.1送检试样应具有代表性,数量不少于100g,装在磨口玻璃瓶中,瓶口密封。检验时,将试样混均以 四分法缩取25g,在玛钵内研细全部通过80um方孔筛用磁铁除铁后,装人磨口瓶内供分析用。 2.2分析天平不应低于四级,最大称量200g,天平和砝码应定期进行检定。 2.3称取试样应准确至0.0002g,试剂用量与分析步骤严格按照本标准规定进行。 2.4化学分析用水应是蒸馏水或去离子水,试剂为分析纯和优级纯。所用酸和氨水,未注明浓度均为浓

酸和浓氨水。 2.5滴定管、容量瓶、移液管应进行校正。 2.6做试样分析时,必须同时做烧失量的测定,容量分析应同时进行空白试验。 2.7分析前,试样应于100-105℃烘箱中干燥2h。 2.8各项分析结果百分含量的数值,应保留小数点后二位。 3 分析方法 3.1二氧化硅的测定 3.1.1氟硅酸钾容量法 3.1.1.1方法提要 在有过量的氟,钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(KaSiF 6)沉淀,经过滤、洗涤、中 和滤纸上的残余酸后,加沸水使氟硅酸钾沉淀水解生成等当量的氢氟酸,然后以酚酞为指示剂,用氢氧化钠 标准溶液进行滴定。 3.1.1.2试剂

a.硝酸(浓); b.氯化钾(固体) c.氟化钾溶液(150s/L):将15g氟化钾放在塑料杯中,加50mL水溶解后,再加20mI硝酸,用 水稀释至100mL,加固体氯化钾至饱和,放置过夜,倾出上层清液,贮存于塑料瓶中备用; d.氯化钾-乙醇溶液(50g/L):将5g氯化钾溶于50mL水中,用95%乙醇,稀至100mL混匀; e.酚酞指示剂乙醇溶液(10g/L):将1g酚酞溶于95%乙醇,并用95%乙醇稀释至100mL; f.氢氧化钠标准溶液(0.05mol/L):将10g氢氧化钠溶于5L水中,充分摇匀,贮于塑料桶中; 标定方法:准确称取0.3000g苯二甲酸氢钾置于400mL烧杯中,加入约15 0mL新煮沸的冷水 (用氢氧化钠熔液中和至酚酞呈微红色),使其溶解,然后加入7 ̄ 8滴酚酞指示剂乙醇溶液(10g/L), 以氢氧化钠标准溶液滴定至微红色为终点,记录V。 氢氧化钠溶液对二氧化硅的滴定度按式(1)计算:

铟化学分析方法 第1部分:砷量的测定

ICS .77.99 YS Array铟化学分析方法 第1部分:砷量的测定 氢化物发生—原子荧光光谱法 Methods for chemical analysis of Indium Part 1:Determination of arsenic content- Hydride generation-atomic fluorescence spectrometry (送审稿) ××××-××-××发布××××-××-××实施中华人民共和国工业和信息化部发布

前言 YS/T 276《铟化学分析方法》共包括11个部分: ——第一部分砷量的测定氢化物发生──原子荧光光谱法 ——第二部分锡量的测定苯芴酮-溴代十六烷基三甲胺分光光度法 ——第三部分铊量的测定甲基绿分光光度法 ——第四部分铝量的测定铬天青S分光光度法 ——第五部分锌、铁量的测定方法一:电热原子吸收光谱法 方法二:火焰原子吸收光谱法 ——第六部分铜、镉量的测定火焰原子吸收光谱法 ——第七部分铅量的测定火焰原子吸收光谱法 ——第八部分铋量的测定方法一:氢化物发生-原子荧光光谱法 方法二:火焰原子吸收光谱法 ——第九部分铟量的测定EDTA容量法 ——第十部分铋、铝、铅、铁、铜、镉、锡、铊量的测定电感耦合等离子体原子发射光谱法——第十一部分砷、铝、铅、铁、铜、镉、锡、铊、锌、铋量的测定电感耦合等离子体质谱法本部分为第一部分。 本部分代替YS/T 276.1-1994《铟化学分析方法水相钼蓝分光光度测定砷量》,与YS/T 276.1-1994相比,主要有如下变动: ──改变了测定方法,采用氢化物发生──原子荧光光谱法; ──扩展了测定范围由0.0003%~0.0010%至0.0002%~0.0020%; ──补充了精密度、质量保证和控制条款; ──补充了“试验报告”要求。 本部分由全国有色金属标准化技术委员会提出并归口; 本部分负责起草单位:株洲冶炼集团股份有限公司、北京矿冶研究总院; 本部分起草单位:北京矿冶研究总院; 本部分参加起草单位:广西华锡集团股份有限公司、株洲冶炼集团股份有限公司、中冶葫芦岛有色金属集团公司。 本部分起草人:姜求韬、冯先进、阮桂色、高颖剑、杨观新、覃祚明、潘世山、严伟强、鲁青庆池凤华、李遵义 本部分所代替标准的历次版本发布情况为: ──GB8221.1-1987; ──YS/T 276.1-1994。 2

化学分析方法验证程序

化学分析方法验证程序 编制说明 一、任务来源 经国家标准化管理委员会同意,设立认证认可行业标准,由国家认监委归口管理。本标准是由国家认监委下达的2013年认证认可行业标准制修订计划项目《化学分析方法验证程序》(立项编号为2012RB010),由上海出入境检验检疫局和广东出入境检验检疫局负责起草。 二、立项背景 对分析方法进行验证的主要目的是确证该方法达到某一分析目标。在验证过程中往往能够发现方法的不足之处,或发现方法中存在的非预期的问题,例如出现干扰物、试剂和设备不再可用、设备需要改造等,这些问题的出现要求对方法进行的改进。此外,通过实验室间的验证还常常会发现这样的情况,一个新建方法在某一实验室内获得的分析结果令人满意,但在同样的操作条件下应用于另一实验室则不能获得满意结果,这也同样说明方法存在问题和需要改进。对方法进行验证和改进两个步骤需要反复进行,直到方法的各方面参数均能满足预期的分析目标。 目前我国针对方法的验证尚无统一的验证程序,以往国家标准及检验检疫行业标准制定过程中对方法的验证均是按照约定俗成的做法(以下称为“原验证模式”),即仅进行实验室内验证及协同试验验证两个步骤。近年来在标准的审定过程中发现,原验证模式在实施中存在以下几个主要问题: (1)原验证模式对验证参数的选择这一关键性验证步骤未作规范,导致方法起草人在实施验证过程中做法不一致,影响验证的有效性。 原验证程序中未规定如何选择验证参数(即方法的特性参数),一般由方法起草人自行选择,则可能出现所选验证参数不全面或不具代表性的问题。此外,即使是对同一参数的验证,起草人的做法也不统一和不规范。新验证程序中规范了验证参数的选择及具体验证过程的实施等技术要点,统一验证做法。 (2)原验证模式中对验证实验室的选择、验证物料的获取等直接影响到验证结果有效性的步骤未设定具体要求。

化学药物质量控制分析方法验证技术指导原则

化学药物质量控制分析方法验证技术指导原则【】HGPH 5-1指导原则编号: 化学药物质量控制分析方法验证 技术指导原则 二??四年十一月 目录 一、概 述 ..................................................................... ............................................ 1 二、方法验证的一般原 则 ..................................................................... ................ 2 三、方法验证涉及到的三个主要方 面 (2) ,一,需要验证的检测项 目 ..................................................................... . (2) ,二,分析方 法 ..................................................................... .. (3) ,三,验证内 容 ..................................................................... .......................... 3 四、方法验证的具体内 容 ..................................................................... . (3)

,一,专属 性 ..................................................................... (3) 1、鉴别反 应 ..................................................................... (3) 2、杂质检 查 ..................................................................... (4) 3、含量测 定 ..................................................................... (4) ,二,线 性 ..................................................................... . (5) ,三,范 围 ..................................................................... . (5) 1、含量测 定 ..................................................................... (5) 2、制剂含量均匀度...................................................................... (5)

白云石、石灰石、方解石化学分析

白云石、石灰石、方解石化学分析 1.主要内容与适用范围 本标准规定了玻璃工业用白云石、石灰石、方解石化学成分分析的原理,使用的试剂、仪器,分析步 骤和结果处理。 本标准适用于玻璃工业用白云石、石灰石、方解石的化学成分分析。 2.试样的制备 试样必须具有代表性和均匀性,没有外来杂质混入,经过缩分,最后得到约20g试 样,在玛瑙钵中研磨至全部通过孔径150μm(100目)筛,然后装于称量瓶中备用。 3.分析方法 3.1一般规定 3.1.1 标准中同一成分所列不同分析方法,可根据具体情况选用,如发生争议。以第一种方法为准。 3.1.2 所用分析天平感量应为0.0001g,天平与砝码应定期进行校验。“恒重”系指 连续两次称重之差不大于0.0002g。 5.1.3 所用仪器和量器应经过校正。 3.1.4 分析试样应于烘箱中在105-110℃烘干1h以上,冷却至室温,进行称量。

3.1.5 分析用水应为蒸馏水或去离子水;所用试剂应为分析纯或优级纯;用于标定溶 液的试剂应为基准试剂。对水和试剂应做空白试验。 3.1.6 标准中试剂的浓度采用下列表示法: 3.1.6.1当直接用名称表示下列试剂时,系指符合下列百分浓度的浓试剂: 试剂名称试剂浓度(%) 盐酸 36-38 氢氟酸 40以上 硝酸 65-68 高氯酸 70-72 硫酸 95-98 氨水 25-28 3.1.6.2 被稀释的试剂浓度以下列的形式表示: 盐酸(5+95),系指5份体积的盐酸加95份体积的水配成之溶液。3.1.6.3 固体试剂配制的溶液浓度用重量/体积的百分浓度表示(作标准溶液时除外 ),例如:20%氢氧化钾是指每20g氢氧化钾溶于100mL水而制成之溶液。在没有特别指 明时,均指水溶液。 3.1.7 吸光度测量所用之“试剂空白溶液”指不含待测组分之溶液。3.2 烧失量的测定

分析方法验证方案

异烟肼含量测定分析方法验证方案验证原因:验证类型: 新项目验证再验证 其它 预验证 回顾性验证转移验证 方法描述: 本分析方法为中国药典2010版二部方法。为确保其检测结果准确,对该分析方法的专属性、精密度(系统精密度、方法精密度、中间精密度)、线性和范围、准确度、耐用性进行评价。 验证依据: 中国药典2010年版分析方法(295页) 验证时间: 2010年07月09日~2010年07月10日 验证项目组成员及职责:

验证内容:-

a)人员培训: b)仪器设备、标准品和试剂: 仪器设备 标准品和试剂 c)样品

色谱条件 色谱条件 色谱柱:agilent ODS-2 长度:250cm ,内径:4.6mm ,填料 C18 ,填料粒度:5μm 检测波长:262nm,带宽30 柱温:25℃ 进样量:20μl 流速:1.0ml/min 流动相A:0.02mol/l磷酸氢二钠溶液(用磷酸调pH至6.0),流动相B:甲醇 A:B=85:15 停止时间:12min 1.系统精密度 1.1.溶液配制 系统精密度溶液:取异烟肼10mg,置100ml容量瓶中,精密称量,用水溶解并稀释至刻度。 1.2验证过程及结果 系统精密度溶液连续进样6次,记录其异烟肼峰面积、保留时间。 可接受标准:异烟肼峰面积RSD≤2.0%,保留时间RSD≤2.0%。 结论:

2.重现性试验(方法精密度) 2.1.溶液配制 2.1.1.对照溶液:取异烟肼工作标准品10mg,精密称量,置100ml容量瓶中,用水溶解 并稀释至刻度。 2.1.2.方法精密度溶液:取异烟肼样品10mg置100ml容量瓶中,精密称定,用水溶解并 稀释至刻度。用此方法配置同一批号的样品溶液6份。 2.2.验证程序及结果 工作标准品溶液进2针,样品溶液各进2针。记录异烟肼峰面积,计算样品含量。 可接受标准:异烟肼含量的RSD≤2.0%。 结论:

金矿石化学分析方法 第3部分:砷量的测定(标准状态:现行)

I C S73.060.99 D46 中华人民共和国国家标准 G B/T20899.3 2019 代替G B/T20899.3 2007 金矿石化学分析方法 第3部分:砷量的测定 M e t h o d s f o r c h e m i c a l a n a l y s i s o f g o l do r e s P a r t3:D e t e r m i n a t i o no f a r s e n i c c o n t e n t 2019-12-10发布2020-11-01实施 国家市场监督管理总局

前言 G B/T20899‘金矿石化学分析方法“分为以下部分: 第1部分:金量的测定; 第2部分:银量的测定火焰原子吸收光谱法; 第3部分:砷量的测定; 第4部分:铜量的测定; 第5部分:铅量的测定; 第6部分:锌量的测定; 第7部分:铁量的测定; 第8部分:硫量的测定; 第9部分:碳量的测定; 第10部分:锑量的测定; 第12部分:砷二汞二镉二铅和铋量的测定原子荧光光谱法; 第13部分:铅二锌二铋二镉二铬二砷和汞量的测定电感耦合等离子体原子发射光谱法; 第14部分:铊量的测定电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法三本部分为G B/T20899的第3部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替G B/T20899.3 2007‘金矿石化学分析方法第3部分:砷量的测定“三 本部分与G B/T20899.3 2007相比,除编辑性修改外主要技术变化如下: 增加了 重复性 和 再现性 要求(见2.7和3.6); 删除了 允许差 要求(见2007年版的2.7和3.6); 方法1中,硫酸铁铵溶液替代硫酸铜,试验步骤进行调整(见2.5.3.3,2007年版的2.5.3.3); 方法2中,重铬酸钾标准溶液替代碘,硫酸亚铁铵标准溶液替代亚砷酸钠,硫酸代替碳酸氢钠 (见3.4.3.4,2007年版的3.4.3.4)三 本部分由全国黄金标准化技术委员会(S A C/T C379)提出并归口三 本部分起草单位:长春黄金研究院有限公司二山东恒邦冶炼股份有限公司二北矿检测技术有限公司二紫金矿业集团股份有限公司二灵宝黄金集团股份有限公司二潼关中金冶炼有限责任公司二江西三和金业有限公司三 本部分主要起草人:陈永红二苏广东二芦新根二孟宪伟二刘正红二洪博二张艳峰二宋健伟二栾绍玉二王飞虎二芦倩二张月二蒯丽君二陈殿耿二夏珍珠二卢小龙二胡站锋二朱延胜二郭雅琴二柳鸿飞二张广盛三本部分所代替标准的历次版本发布情况为: G B/T20899.3 2007三

水泥厂原料的化学分析方法

水泥厂原料的化学分析方法 D1石灰石的化学分析方法 D⒈1试样的制备 试样必须具有代表性和均匀性。由大样缩分后的试样不得少于100g,试样通过0.08mm 方孔筛时的筛余不应超过15%。再以四分法或缩分器减至约25g,然后研磨至全部通过孔径为0.008mm方孔筛。充分混匀后,装入试样瓶中,供分析用。其余作为原样保存备用。 D⒈2烧失量的测定 D⒈⒉1方法提要 试样中所含水分、碳酸盐极其他易挥发性物质,经高温灼烧即分解逸出,灼烧所失去的质量即为烧失量。 D⒈⒉2分析步骤 称取约1g试样(m),精确至0.0001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩锅上,放入马弗炉内,从低温开始逐渐升温,在950~1000℃下灼烧1h,取出坩锅置于干燥器中,

冷却至室温,称量。反复灼烧,直至恒量。 D⒈⒉3结果表示 烧失量的质量百分数X LOI 按式(D1.1)计算: m-m 1 X LOI =————×100 ......................(D1.1) m 式中: X LOI—烧失量的质量百分数,%; m 灼烧后试料的质量,g; 1— m—试料的质量,g。 D⒈⒉4允许差 同一实验室的允许差为:0.25%; 不同实验室的允许差为:0.40%。 D⒈3二氧化硅的测定(基准法) D⒈⒊1方法提要

试样以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴中加热蒸发,使硅酸凝聚,灼烧称量。用氢氟酸处理后,失去的质量即为二氧化硅含量。 D⒈⒊2分析步骤 称取约0.6g试样(m2 ),精确至0.0001g,置于铂坩锅中,将盖斜置于坩锅上,在950~1000℃下灼烧5min,取出铂坩锅冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g研细无水碳酸钠混匀。再将坩锅置于950~1000℃下灼烧10min,取出冷却至室温。 将烧结物移入瓷蒸发皿中,加少量水润湿,盖上表面皿。从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解完全,用热盐酸(1+1)清洗坩锅数次,洗液合并于蒸发皿中。将蒸发皿置于沸水浴上,皿上放一玻璃三角驾,再盖上表面皿,蒸发至糊状后,加入氯化铵充分搅匀,放入沸水浴中蒸发至干后继续蒸发10~20min。 取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶

分析方法验证指南(中文)

分析方法验证指南 1、目的 本文件的目的是为分析方法验证的数据收集提供基本指南。该指南参考了USP,EEC(BP/EP)和ICH 中的分析方法验证指南,能够满足公司的产品的分析方法验证工作。 2、范围本文件中提供的定义和程序是为了促使公司质量方针的基本原则符合所有关于方法验证 的法 规要求。本指南适用于API、原料、中间体的检测和放行的分析方法,并为新药物的应用收集支持性的数据。本指南是为了规范验证为公司的产品提供一个通用和分析方法验证方案。现有的方法中的小变化不需要全面验证,如:对柱子的固定相的生产厂家变化,样品准备的变化(搅拌和超声,震摇和超声)。在实际分析中,方法验证需要提供更多的信息或细节,需要制定的特殊的方案。这个指南不包括微生物分析方法的验证。 3、参考文件 USP<1225>,法定方法的验证 ICH 指南Q2A&Q2B,分析方法验证程序。 公司关于有效数字修约原则 4、定义降解物:降解物是由于一个物质经一段时间的化学变化(经过诸如光照、温度、pH、水分,经与容器发生反应)产生,也叫降解产物或分解产物。大剂量原料药:原料药在产品中的最大剂量大于2g/天。定量限(LOQ):指试样中的被分析物能够被定量测定的最低值,其测定结果应具有一定的准确度和精密度。线性:在设计的测定范围内,检测结果与供试品中被分析物的浓度直接呈线性关系的程度。通常相关系数(R)在回归线上有一定的斜率(m)。小剂量原料药:原料药的在产品中的最大剂量小于或等于2g/天。 测量精密度(ICH-重复性):多次测定同一样品时的重现性(%RSD)。在HPLC 或GC 中也叫进样精密度。方法精密度:同一样品或标准品(若有时)准备多份供试品在测定含量时的重现性(%RSD)。回收精密度:测定同一标准时对准确度和线性的评估。也叫水平精密度。报告限度(RL):低于某一数值的时候报告中就不体现。报告限度一般大于或等于定量限。再现性 (ICH-中间精密度):在不同检测条件下对样品检测结果的重现性。(不同的实验室、分析人员、仪器、试剂、分析时间、日期等) 5、指南A、总则因为在对产品的物理性质的评估时,分析方法会因测定的准确性和精密性而有所不同,故验证的可接受标准也不同于一般的检测方法。一个可接受的标准可能需要根据方法的特性和检测的指标

食品化妆品专业化学分析方法验证程序(可编辑)

食品化妆品专业化学分析方法验证程序 食品化妆品专业化学分析方法验证程序第一章总则 1.1 目的分析方法验证是指通过检验确证,并提供有效证据以证明符合具体方法应用 的特定要求。为规范分析方法的验证流程,提高本专业检测类方法的科学性、严 谨性和适用性,特制定本程序。1.2 范围本程序适用于化学检测类标准建立过程中方法的验证,无论该标准是新制定 标准、由现有分析方法转化的标准或由原标准更新后的标准。此外,实验室采用 非标准方法及自主研究开发新方法时,也可参照本程序用以判断这些方法的适用 性。1.3 组织机构食品化妆品专业标准化技术委员会(以下简称“委员会”)负责本专业化学检 测方法验证的组织、审核等管理工作。委员会通过秘书处执行具体职责,包括审 核验证实验室资质,建立并定期更新维护验证实验室数据库,指定并组织验证实 验室开展验证,组织专家进行验证材料的审核及验证数据的统计等。1.4 术

语与定义1.4.1 本实验室内验证(In-house validation)是指在方法制定方实验室中,于合理的时间间隔内,在不同条件下,通过对 相同或不同测试原料进行分析检验,对同一方法的性能指标进行确证的过程。用 于初步判断方法的适用性。1.4.2 独立实验室验证Independent laboratory validation独立于方法制定方的实验室内验证。用于复核方法的性能指标是否能够满足 预期的分析目的。1.4.3 协同实验验证 Collaborative study validation 是组织、执行和评价两个或更多实验室依照预定条件对相同样品的测定,以确定方法的性能指标。1.5 验证流程开展验证工作的具体步骤如下,验证流程图参见附录 A。 PDF created with pdfFactory Pro trial version //0>.1.5.1 本实验室内验证(1)方法制定方完成方法草案、选择合适的验证参数(即方法的性能指标)、并 设计实验室内验证方案。 (2)方法制定方根据所选验证参数完成本实验室内验证,并向秘书处提交验证 材料。验证材料应包括方法草案、验证方案、本实验室内验证报告。(3)秘书处组织专家审核本实验室内验证材料的完整性与符合性。1.5.2 独立实验室验证(4)本实验室内验证材料审核通过后,秘书处组织 1 家独立于制定方的验证实验室,通过重复测试验证参数(即方法的性能指标)进行独立实验室验证。(5)验证实验室完成独立实验室验证后,提交结果至秘书处。(6)秘书处组织专家审核

第一章石灰石化学分析

第一章石灰石化学分析 一.石灰石中水分的测定:称取200g试样于105℃的烘箱内烘2小时,取出干燥器内冷却至室温后称量。 结果计算:水分=(称样重-烘后的石灰石重量)÷称样重×100% 二.细度的测定:准确称取25g的试样于筛子里用水冲流,烘干。 结果计算:筛余物的重量÷所称的样品重×100%即为细度的百分数。 三、试样溶液的制备 1. 石灰石试样溶液制备 称取1g石灰石试样,精确至0. 0001g,置于250毫升的烧杯中。加入少量除盐水,再加入25毫升盐酸溶液(1+1),稍加摇动,待剧烈反应停止后,置于电热板上加热,微沸10min后使溶液冷却。将溶液用慢速定量滤纸过滤,500mL 干净烧杯承接,并用除盐水冲洗残余物及杯壁,所得滤液移入250mL容量瓶中,用水稀释至刻度,摇匀,用来测定Ca2+、Mg2+等分析项目(所得固体进行干燥、冷却后称重即为可测得酸不溶物的含量)。 2.CaO的测定 (1)方法提要 以三乙醇胺掩蔽试样中铁、铝等干扰元素,在pH大于12.5的溶液中,以钙羧酸作指示剂,用EDTA标准滴定溶液滴定钙。 (2)试剂和溶液(包括MgO的测定试剂) 2.1 三乙醇胺:1+1溶液。 2.2 氢氧化钾:200g/L溶液。 2.3 糊精:40g/L溶液。称取4g糊精,用水调成糊状,加入100mL沸水(使用前配制)。 2.4 氯化铵-氨水缓冲溶液(PH≈10):称取67. 5g氯化铵溶于300mL水中,加570mL氨水,移入1000mL容量瓶中,用水稀释至刻度,摇匀。 2.5 盐酸羟胺:50g/L溶液。 2.6 乙二胺四乙酸二钠(EDTA):c(EDTA)约为0.02mol/L标准滴定溶液,配制与标定按GB 601执行。 2.7 钙羧酸指示剂:称取1g钙羧酸与100g氯化钠研磨,混匀,保存于磨口瓶中。 2.8 酸性铬蓝K指示剂:5g/L溶液。称取0.5g酸性铬蓝K溶解于100mL水中(使用期为一周)。 2.9 萘酚绿B指示剂:5g/L溶液。称取0. 5g萘酚绿B溶解于100mL水中(使用期为一周)。 2.10 铬黑T指示剂:5g/L溶液。称取0.5g铬黑T溶解于100mL三乙醇胺(1+1)溶

FDA最新版-药物分析程序及方法验证指导原则-中文翻译版

药品及生物制品的分析方法和方法验证指导原则 目录 1.介绍 (1) 2.背景 (2) 3.分析方法开发 (3) 4.分析程序内容 (3) A.原则/范围 (4) B.仪器/设备 (4) C.操作参数 (4) D.试剂/标准 (4) E.样品制备 (4) F. .................................................................................................................... 标准对照 品溶液的制备 (5) G.步骤 (5) H.系统适应性 (5) I.计算 (5) J.数据报告 (5) 5.参考标准和教材 (6) 6 分析方法验证用于新药,仿制药,生物制品和DMF (6) A.非药典分析方法 (6) B.验证特征 (7) C.药典分析方法 (8) 7.统计分析和模型 (8) A.统计 (8) B.模型 (8) 8.生命周期管理分析程序 (9) A.重新验证 (9) B.分析方法的可比性研究 (10) 1.另一种分析方法 (10) 2.分析方法转移的研究 (11) C.报告上市后变更已批准的新药,仿制药,或生物制品 (11) 9.美国FDA 方法验证 (12) 10.参考文献

前言 本指导原则草案,定稿后,将代表美国食品和药物管理局(FDA)目前关于这个话题目前的想法。它不会创造或赋予或任何人的任何权利,不约束FDA 或公众。您可以使用另一种方法,如果该方法符合适用的法律和法规的要求。如果你想讨论一个替代方法,请与FDA 工作人员负责实施本指南。如果你不能确定适当的FDA 工作人员,请拨打本指南的标题页上所列的电话号码。 介绍: 该修订指南草案将取代行业2000 年的指导分析方法和方法验证草案,并最终确定后,也将取代1987 年美国FDA 行业指南《提交的样品和分析数据的方法验证》。该草案提供了有关申请人如何提交分析程序和方法验证数据来支持说明原料药和制剂具有强度、质量、纯度和效用的文件。它会帮你收集信息和现有数据来支持你的分析方法。该指导原则适用于原料药和制剂产品涵盖新药申请(NDA),简化新药申请(仿制药),生物制品许可申请(BLA),以及这些申请的补充申请。在这个修订草案指导原则也适用于原料药和制剂产品涵盖二类药物主文件(DMFs)。 该修订指南草案补充了国际协调会议(ICH)Q2(R1)指导原则《分析程序的验证:开发和验证的分析方法Q2(R1)和方法的文本。 该修订指南草案不涉及研究性新药申请(IND)方法验证,但研究者在准备研究性新药申请时应考虑该指导原则中的建议。研究性新药申请需要在研究的每个阶段有足够的信息,以确保正确鉴别性,质量,纯度,强度和/或效力。对分析方法和方法验证的信息量将随研究中不同阶段而变化。有关分析程序和需提交的阶段方法验证资料方面的指导意见的研究中,申请者可以参考FDA 的指导原则《Ⅰ期研究药物的IND 的内容和格式,包括性状、疗效和生物技术衍生产品》。一般考虑在第三阶段的研究进行之前,分析方法和分析方法验证(例如,生物测定)是在FDA 行业指导原则《人类药物和生物制剂、化学、制造、控制信息会议》。 该修订指南草案不涉及生物和免疫化学检测的表征和许多原料药和制剂产品质量控制的具体方法验证的建议。例如,一些基于动物模型的生物测定,并且免疫原性评估或其它免疫测定具有独特的特征,应开发和验证过程中予以考虑。 此外,需要对现有的分析方法再验证时可能需要在制造过程中产品的生命周期的变化予以考虑。有关适当的验证方法的分析程序或者提交本指南中未提及的信息的问题,您应该向用FDA 产品质量评审人员咨询。 如果您选择了与本指导草案中不同的方式,我们建议您在提交申请前与相应的FDA 产品质量评审人员讨论。 FDA 的指南文件,包括本指导原则,不具有法律强制性的责任。相反,指南描述的是FDA 对某个主题目前的想法,并应仅作为建议,除非有明确的法律或法规要求的引用。使用“应该”这个词在FDA 指南意味着什么建议或推荐,但不是必需的。 II.BACKGROUND 背景 每个NDA 和ANDA 都必需包括必要的分析程序,以确保原料药和制剂的鉴别,强度,质量,纯度和效果.每个BLA 必须包括完整的制造方法描述,包括能够确保产品身份、质量、安全、纯度和有效的分析程序。数据必须能够用于建立满足精度和可靠性标准的分析方法并适合与拟定目的.对于BLAs 及补充补充,分析方法和方法验证是许可证申请或补充申请必须提交的一部分,并通过美国FDA

矿石成分分析矿物检测矿物检验

矿石成分分析矿物检测矿物检验 矿石是指可从中提取有用组分或其本身具有某种可被利用的性能的矿物集合体。可分为金属矿物、非金属矿物。矿石中有用成分(元素或矿物)的单位含量称为矿石品位,金、铂等贵金属矿石用克/吨表示,其他矿石常用百分数表示。常用矿石品位来衡量矿石的价值,但同样有效成分矿石中脉石(矿石中的无用矿物或有用成分含量甚微而不能利用的矿物)的成分和有害杂质的多少也影响矿石价值。 矿石组成 矿石一般由矿石矿物和脉石矿物组成。矿石矿物是指矿石中可被利用的金属或非金属矿物,也称有用矿物。如铬矿石中的铬铁矿,铜矿石中的黄铜矿、斑铜矿、辉铜矿和孔雀石,石棉矿石中的石棉等。脉石矿物是指那些与矿石矿物相伴生的、暂不能利用的矿物,也称无用矿物。如铬矿石中的橄榄石、辉石,铜矿石中的石英、绢云母、绿泥石,石棉矿石中的白云石和方解石等。脉石矿物主要是非金属矿物,但也包括一些金属矿物,如铜矿石中含极少量方铅矿、闪锌矿,因无综合利用价值,也称脉石矿物。矿石中所含矿石矿物和脉石矿物的份量比,随不同金属矿石而异。科标能源实验室可根据客户的不同要求,采用不同的仪器,对各类矿石进行全方位的分析服务。具体项目包括:物相定量分析(成分分析)、元素分析、化学分析、岩矿鉴定、矿石品位鉴定(单元素定量分析)、物理性能测试等。在同一种矿石中亦随矿石贫富品级不同而有差别。在许多金属矿石中,脉石矿物的份量往往远远超过矿石矿物的份量。因此,矿石在冶炼之前,须经选矿,弃去大部分无用物质后才能冶炼。 矿石矿物按矿物含量的多寡可分为: ①主要矿物,指在矿石中含量较多、且在某一矿种中起主要作用的矿物。 ②次要矿物,指矿石中含量较少、对矿石品位不起决定作用的矿物。 ③微量矿物,指矿石中一般含量很少,对矿石不起大作用的矿物。 如镍矿石中微量铂族元素矿物,虽其含量甚微,但有较高的综合利用价值,这类微量矿物仍有较大的经济意义。 在研究矿石的矿物组成时,还应区分矿物的成因(原生的、次生的、变质的)和矿物的工艺特征(易选冶的、难选冶的)等。 矿石中除主要组分外,还伴生有益组分和有害组分。有益组分是可回收的伴生组分或能改善产品性能的组分。科标检测提供专业的如铁矿石中伴生有锰、钒、钴、铌和稀土金属元素等。有害组分对矿石质量有很大影响,如铁矿石中含硫高,会降低金属抗张强度,使钢在

相关文档
最新文档