用向量方法证明空间中的平行与垂直

用向量方法证明空间中的平行与垂直
用向量方法证明空间中的平行与垂直

用向量方法证明空间中的平行与垂

部门: xxx

时间: xxx

整理范文,仅供参考,可下载自行编辑

用向量方法证明空间中的平行与垂直

1.已知直线a的方向向量为a,平面α的法向量为n,下列结论成立的是( C >

A.若a∥n,则a∥α B.若a·n=0,则a⊥α

C.若a∥n,则a⊥α D.若a·n=0,则a∥α

解读:由方向向量和平面法向量的定义可知应选 C.对于选项D,直线a?平面α也满足a·n=0.

2.已知α,β是两个不重合的平面,其法向量分别为n1,n2,给出下列结论:

①若n1∥n2,则α∥β;②若n1∥n2,则α⊥β;

③若n1·n2=0,则α⊥β;④若n1·n2=0,则α∥β.

其中正确的是( A >

A.①③ B.①④

C.②③ D.②④

3.(原创>已知A(3,-2,1>,B(4,-5,3>,则与向量错误!平行的一个向量的坐标是( C >b5E2RGbCAP

A.(错误!,1,1> B. (-1,-3,2>

C.(-错误!,错误!,-1> D.(错误!,-3,-2错误!>p1EanqFDPw

解读:错误!=(1,-3,2>=-2(-错误!,错误!,-1>,DXDiTa9E3d

所以与向量错误!平行的一个向量的坐标是(-错误!,错误!,-1>,故选C.RTCrpUDGiT

4.设l1的方向向量为a=(1,2,-2>,l2的方向向量为b=(-2,3,m>,若l1⊥l2,则m等于 2 .5PCzVD7HxA

5.设平面α的法向量为(1,2,-2>,平面β的法向量为(-2,-4,k>,若α∥β,则k= 4 .

解读:因为α∥β,所以(-2,-4,k>=λ(1,2,- 2>,

所以-2=λ,k=-2λ,所以k=4.

6.已知错误!=(1,5,-2>,错误!=(3,1,z>.若错误!⊥错误!,错误!=(x-1,y,-3>,且BP⊥平面ABC,则实数x=错误!,y=-错误!,z= 4 .jLBHrnAILg

解读:由已知错误!,xHAQX74J0X

解得x=错误!,y=-错误!,z=4.

7.(原创>若a=(2,1,-错误!>,b=(-1,5,错误!>,则以a,b为邻边的平行四边形的面积为2错误!.LDAYtRyKfE 解读:因为a·b=(2,1,-错误!>·(-1,5,错误!>=0,

所以a⊥b,又|a|=2错误!,|b|=错误!,

所以以a,b为邻边的平行四边形的面积为

|a|·|b|=2错误!×错误!=2错误!.

8.如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC =10.设G是OC的中点,证明:FG∥平面BOE.Zzz6ZB2Ltk

证明:如图,连接OP,因为PA=PC,AB=BC,所以PO⊥AC,

BO⊥AC,又平面PAC⊥平面ABC,所以可以以点O为坐标原点,分别以OB,OC,OP所在直线为x轴,y轴,z轴建立空间直角坐标系

O-xyz.dvzfvkwMI1

则O(0,0,0>,A(0,-8,0>,B(8,0,0>,C(0,8,0>,

F(4, 0,3>.由题意,得

P(0,0,6>,E(0,-4,3>,

G(0,4,0>.rqyn14ZNXI 因为错误!=(8,0,0>,错误!=(0,-4,3>,EmxvxOtOco

设平面BOE的一个法向量为n=(x,y,z>,

则错误!,即错误!,SixE2yXPq5

取y=3,则z=4,所以n=(0,3,4>.由错误!=(-4,4,-3>,得n·错误!=0.6ewMyirQFL

又直线FG不在平面BOE内,所以FG∥平面BOE.

9.如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面

ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中

点.kavU42VRUs

(1>求证:PB∥平面EFH;

(2>求证:PD⊥平面AHF.

证明:建立如图所示的空间直角坐标系A-xyz,

所以A(0,0,0>,B(2,0,0>,C(2,2,0>,D(0,2,0>,P(0,0,2>,

E(0,0,1>,F(0,1,1>,H(1,0,0>.y6v3ALoS89

(1>因为错误!=(2,0,-2>,错误!=(1,0,-1>,

M2ub6vSTnP

所以错误!=2错误!,

因为PB?平面EFH,且EH?平面EFH,

所以PB∥平面EFH.

(2>因为错误!=(0,2,-2>,错误!=(1,0,0>,错误!=

(0,1,1>,0YujCfmUCw 所以错误!·错误!=0×0+2×1+(-2>×1=0,eUts8ZQVRd 错误!·错误!=0×1+2×0+(-2>×0=0,sQsAEJkW5T

所以PD⊥AF,PD⊥AH,

又因为AF∩AH=A,所以PD⊥平面AHF.

申明:

所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

空间向量与平行关系

《空间向量与平行关系》 教学目标: 知识与技能:掌握线线平行,线面平行,面面平行的传统,基底,坐标方法. 过程与方法:在简单例题中利用这三种方法,循序渐进,慢慢熟练掌握. 情感与价值:通过对线,面平行,两种方法的比较.发现其中的数学规律, 学会总结,慢慢理解加深对数学的认识. 教育目标:数学课到底教什么? 一教知识:传授人类在历史发展的过程中对各类事物观察、归纳、推演和论证过的共有的和特有的稳定属性,即事物在变化过程中保持的不变性。如三角形(类),其内角和 为180度(共有属性),而多边形的外角和为360度(更高层面的总结). 二教方法和思想:引导学生重演知识的发生发展的过程,感受人类先哲们探索的艰辛,体会数学先驱们天才的思想,从而学会观察事物,提出问题并加以解决,让数学知识 这“冰冷的美丽唤出火热的思考”。 三引导学生融会贯通:简化记忆,构建起自己的数学结构,即总结出自己解决问题的“中途点”,以期能站在前人的肩膀上思考和分析问题. 教学难点:线,面平行传统方法的回顾 处理办法:在学案进行复习巩固 教学重点:用向量解决线,面平行问题 处理办法:通过例题循序渐进 教学设计 一.(复习回顾)

2.方向向量:在空间中直线的方向上用一个与该直线平行的非零向量来表示,该向量称为这条直线 的一个方向向量. 法向量:垂直于平面的向量(非零向量) 向量垂直:0=??⊥→→→→b a b a (两非零向量)“思考为什么要强调两非零向量”? 二.新知引入:向量法 1. 设直线m l ,的方向向量分别为→→b a ,,平面βα,的法向量分别为→→v u ,,则: R b a b a m l ∈=??→→→→λλ,∥∥ 0=??⊥?→→→→u a u a l α∥ R v u v u ∈=??→→→→λλβα,∥∥ 1.线线平行 ① 设直线n m ,的方向向量分别为→→b a ,,根据下列条件判断直线n m ,的位置关系: ()2,1,2--=→a ()6,3,6--=→b , ()2,1,2--=→a ()2,1,2--=→ b , ②已知→1e ,→ 2 e 是空间任意两个非零向量,根据下列条件判断直线n m ,的位置关系: →→→-=2132e e a →→→+-=2132e e b →→→-=2132e e a →→→-=2164e e b 2.线面平行 ①设直线l 的方向向量为→a ,平面α的法向量为→u ,且直线l 不在平面α内.若0=?→→u a ,则( ) A .l α∥ B .l ?α C .l ⊥α D .l ?α或l α∥ ②设直线l 的方向向量为→a ,平面α的法向量为→u ,若0=?→→u a ,则( ) A .l α∥ B .l ?α C .l ⊥α D .l ?α或l α∥ ③设直线m 的方向向量为→a ,平面σ的法向量为,→u 直线m 不在平面α内. 根据下列条件判断直线 m 与平面σ的位置关系: ()5,2,2-=→a ()4,46-=→,u ()5,2,2-=→a ()2,23-=→ ,u 3.面面平行 ①设平面βα,的法向量分别为→→v u ,,根据下列条件判断直线β α,的位置关系 ()2,2,1-=→u ()4,4,2--=→v ()6,6,3-=→u ()4,4,2--=→v ②设平面σ的法向量为(1,2,-2),平面β的法向量为(-1,-2,k ),若βα∥,则k =( ) A .2 B .-4 C .4 D .-2

用法向量求二面角和证明两平面垂直

用法向量求二面角和证明两平面垂直 用法向量证明两平面垂直问题 要证两平面相互垂直,只需找出这两个平面的两个法向量,证明这两个法向量相互垂直。 例1.如右图,△ABC 是一个正三角形,EC ⊥平面ABC , BD ∥CE ,且CE=CA=2BD ,M 是EA 的中点。 求证:(1)DE=DA ; (2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA ; 分析(3):建立如图所示右手直角坐标系 ,不妨设CA=2, 则CE=2,BD=1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1),( ) 2,1,3-= EA ,()2,0,0=CE ,()1,2,0-=ED , 分 别假设面CEA 与面DEA 的法向量是()1111,,z y x n =、()3222,,z y x n =,所以得 11111113203200x y z y x z z ??+-==???? ?==????,22222 2222 3203202x y z x y y z z y ??+-==?????-==???? 不妨取() 0,3,11-=n 、()2,1,32=n ,从而计算得02 1 =?n n ,所以两个法向量相互 垂直,两个平就相互垂直。 用法向量求二面角 如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与 2n 所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。 例2、如下图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=a ,AD=3a ,sin ∠ADC= 5 5 ,且PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的平面角的余弦值。 分析:依题意,先过C 点CE ⊥AD ,计算得ED=2a ,BC=AE=a,建立如图右角直角坐标系,则P (0,0,a ),D(0,3a,0), C(a,a,0), () a a PD -=,3,0, () a a a PC -=,,, ()0,3,0a AD =,()0,,a a AC = 取平面ACD 的一个法向量()1,0,01=n ,设平面PCD 的法 z y x E A D B P C z y x M C B A E D

人教版数学高二A版选修2-1学业测评空间向量与平行关系

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1.l 1的方向向量为v 1=(1,2,3),l 2的方向向量v 2=(λ,4,6),若l 1∥l 2,则λ=( ) A .1 B .2 C .3 D .4 【解析】 ∵l 1∥l 2,∴v 1∥v 2,则1 λ=2 4,∴λ=2. 【答案】 B 2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行 C .在平面内 D .平行或在平面内 【解析】 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面,则AB 与平面CDE 的位置关系是平行或在平面内. 【答案】 D 3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( ) A .(1,-1,1) B.? ? ???1,3,32 C.? ? ? ??1,-3,32 D.? ? ? ??-1,3,-32

【解析】 对于B ,AP →=? ?? ??-1,4,-12, 则n ·AP →=(3,1,2)·? ?? ??-1,4,-12 =0, ∴n ⊥AP →,则点P ? ?? ??1,3,32在平面α内. 【答案】 B 4.已知直线l 的方向向量是a =(3,2,1),平面α的法向量是u =(-1,2,-1),则l 与α的位置关系是( ) A .l ⊥α B .l ∥α C .l 与α相交但不垂直 D .l ∥α或l ?α 【解析】 因为a ·u =-3+4-1=0,所以a ⊥u .所以l ∥α或l ?α. 【答案】 D 5.若u =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( ) A .(0,-3,1) B .(2,0,1) C .(-2,-3,1) D .(-2,3,-1) 【解析】 同一个平面的法向量平行,故选D. 【答案】 D 二、填空题 6.若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.

用空间向量证明线线垂直与线面垂直

第二节 用空间向量证明线线垂直与线面垂直 一、空间向量及其数量积 1、 在空间,既有大小又有方向的量称为空间向量。用或a 表示,其中向量的大小称为向量的长度或模, 或a 。正如平面向量可用坐标(x,y.)表示,空间向量也可用坐标(x,y,z)表示。若已知点A坐标为(x 1,y1,z1),点B 坐标为(x2,y 2,z 2) 则向量=(x 2 -x1,y 2- y 1,z 2 -z 1)即是终点坐标减起点坐标。 在空间,知道向量=(x,y ,z) 222z y x ++ 2、 空间向量数量积 ① 已知两个非零向量a 、b ,在空间任取一点O,作OA =a ,OB =b ,则角∠A OB 叫向量a 与b 的 夹角,记作<,>规定,若0≤<,>≤π,若<,>= 2 π ,称与垂直,记作⊥。 ② 已知空间两个向量、, 则 COS <,>叫向量、的数量积,记作a ? COS <,>若⊥?a ? =0 ③ 若已知空间向量=(x1,y 1,z 1), =(x 2,y2,z 2) 则a ?b =x 1x 2+y 1y2+z 1z 2 , COS<,> 2 2 2 22 22 12 12 12 12121z y x z y x z z y y x x ++?++++= 例1 如图,已知直三棱柱ABC -A 1B 1C 1中,∠B CA=900,D 1、E 1分别为A1B 1、A 1C 1中点,若BC=CA =C C1,求向量1BD 与1AE 所成角的余弦值。 C 1 B 1 A1 A C B D 1 E 1

E D A 1 F D 1 A B 1 C B C 1

1111D C B A 中,11E B =11F D = 4 1 1B A ,求向量1BE 与1DF 所成角的余弦值。 二 、利用向量证线线垂直与线面垂直 例2 在正方体AB CD —1111D C B A 中,求证A1C ⊥平面AB 1D 1 练习:在正方体ABCD —1111D C B A 中,O为底面ABCD 的中心,P为DD1的中点, 求证:B1O ⊥平面PAC 。 例3 如图,PA ⊥矩形ABCD 所在平面,M, N分别是AB ,P C中点 (1)求证:M N ⊥CD (2)若∠P DA=450 ,求证:MN ⊥平面P CD B A D C B A C D B 1 A 1 D C B A C 1 D 1 O P C D P N

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

【全程复习方略】2014-2015学年高中数学 3.2.1空间向量与平行关系课时作业 新人教A版选修2-1

空间向量与平行关系 (30分钟50分) 一、选择题(每小题3分,共18分) 1.若直线l的方向向量为a,平面α的法向量为n,有可能使l∥α的是( ) A.a=(1,0,0),n=(-2,0,0) B.a=(1,3,5),n=(1,0,1) C.a=(0,2,1),n=(-1,0,-1) D.a=(1,-1,3),n=(0,3,1) 【解析】选D.若l∥α,则a·n=0.而选项A中a·n=-2.选项B中a·n=1+5=6.选项C中a·n=-1,选项D 中a·n=-3+3=0. 【变式训练】已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行 B.xOz平行 C.yOz平行 D.yOz相交 【解析】选C.因为=(9,2,1)-(9,-3,4)=(0,5,-3),故∥平面yOz.又A(9,-3,4),B(9,2,1)不在平面yOz内,所以AB∥平面yOz. 2.(2014·郑州高二检测)如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是( ) A.相交 B.平行 C.垂直 D.不能确定 【解析】选B.分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系. 因为A1M=AN=a,

所以M, N. 所以=. 又C1(0,0,0),D1(0,a,0), 所以=(0,a,0). 所以·=0. 所以⊥. 因为是平面BB1C1C的一个法向量,且MN?平面BB1C1C, 所以MN∥平面BB1C1C. 【一题多解】选B.=++, ① =++. ② 因为A1M=AN=a, 所以=,=. ①×2+②得3=2+, 而=,所以=+. 故MN∥平面BB1C1C. 3.(2014·泰安高二检测)以下四组向量: ①a=(1,-2,1),b=(-1,2,-1); ②a=(8,4,0),b=(2,1,0); ③a=(1,0,-1),b=(-3,0,3); ④a=,b=(4,-3,3). 其中a,b分别为直线l1,l2的方向向量,则它们互相平行的是( ) A.②③ B.①④ C.①②④ D.①②③④ 【解析】选D.因为①a=(1,-2,1)=-b=-(-1,2,-1),

利用空间向量证明线线垂直

利用空间向量证明线线垂直 1.如图,在四棱锥S?ABCD中,SA⊥底面ABCD,四边形ABCD 是边长为1的正方形,且SA=1,点M是SD的中点. 求证:SC⊥AM 2.如图,在三棱柱ABC?A1B1C1中,CC1⊥平面ABC,AC⊥BC, AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上, 且AD=1,CE=2,M为棱A1B1的中点. 求证:C1M⊥B1D 3.如图,正三棱柱ABC?A1B1C1中,底面边长为√2.设侧棱长为1, 求证:AB1⊥BC1

4.如图,在四棱锥中,底面,,, ,,点E为棱PC的中点.证明: 5.如图,在三棱柱ABC?A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3, 点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点. 求证:C1M⊥B1D 6.如图所示,直三棱柱ABC?A′B′C′的侧棱长为4,AB⊥BC,且AB=BC=4,点D, E分别是棱AB,BC上的动点,且AD=BE. 求证:无论D在何处,总有B′C⊥C′D

答案和解析 1.解:证明:以A 为原点,AB 为x 轴,AD 为y 轴,AS 为z 轴,建立如图所示的空间直角坐标系, 则S(0,0,1),C(1,1,0),A(0,0,0),M(0,12,12),∴SC ????? =(1,1,?1),AM ?????? =(0,12,1 2 ), ∴SC ????? ?AM ?????? =12?12=0,∴SC ⊥AM . 2.解:根据题意,以C 为原点,CA ????? ,CB ????? ,CC 1??????? 的方向为x 轴,y 轴,z 轴的正方向建立 空间直角坐标系,如图所示, 则C(0,0,0),A(2,0,0),B(0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D(2,0,1), E(0,0,2),M(1,1,3),证明:依题意,C 1M ???????? =(1,1,0),B 1D ???????? =(2,?2,?2), ∴C 1M ???????? ·B 1D ???????? =2?2+0=0,∴C 1M ???????? ⊥B 1D ???????? ,即C 1M ⊥B 1D ; 3.证明:(1)AB 1??????? =AB ????? +BB 1??????? ,BC 1??????? =BB 1??????? +BC ????? .因为BB 1⊥平面ABC , 所以BB 1??????? ?AB ????? =0,BB 1??????? ?BC ????? =0.又△ABC 为正三角形, 所以=π?=π?π3=2π3.因为AB 1??????? ?BC 1??????? =(AB ????? +BB 1??????? )?(BB 1??????? + BC ????? )=AB ????? ?BB 1??????? +AB ????? ?BC ????? +BB 1??????? 2 +BB 1??????? ?BC ????? =|AB ????? |?|BC ????? |?cos +BB 1??????? 2=?1+1=0,所以AB 1⊥BC 1. 4.证明:(1)依题意,以点A 为原点建立空间直角坐 标系(如图), 可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 由E 为棱PC 的中点,得E(1,1,1) 向量BE ????? =(0,1,1),DC ????? =(2,0,0),

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

空间向量与平行关系

临清实验高中高二年级数学学科新授课导学案 编写人:国辉 , 审核人:周静, 使用日期:12,27 编号:046 3.2.1 空间向量与平行关系 一、学习目标 1.理解直线的方向向量和平面的法向量, 2.能用向量语言表述和证明空间平行问题。 二、自主学习,合作探究 (一)知识导学 1.直线的方向向量 直线的方向向量是指和这条直线 或 的向量,一条直线的方向向量有 个. 2.平面的法向量 直线l α⊥,取直线l 的方向向量a ,则a 叫做平面α的 . 3.空间中平行关系的向量表示 1)线线平行 设直线l 、m 的方向向量分别为111222(,,),(,,)a a b c b a b c ==则l ∥m ? ? = . 2)线面平行 设直线l 的方向向量为111(,,)a a b c =,平面α的法向量为222(,,)u a b c =,则l ∥α? ? =0? . 3)面面平行 设平面α、β的法向量分别为111(,,)u a b c =,222(,,)v a b c =,则α∥β? ? ? . 4)平面法向量的求法 ①当已知平面的垂线时,在垂线上取一非零向量即可作为平面的法向量. ②当已知平面α内两不共线向量123123(,,),(,,)a a a a b b b b ==时,常用待定系数法求法向量: 设法向量(,,)n x y z =,由0 a n b n ??=???=??,得12312300a x a y a z b x b y b z ++=??++=?, 在上述方程中,对x 、y 、z 中的任一个赋值,求出另两个,所得n 即为平面的法向量. ★ 特别提醒 平面的法向量一定是非零向量,赋值时,要保证(0,0,0).n ≠ (二)例题解析 题型一:利用方向向量和法向量判定线面位置关系 例1、(1)设a ,b 分别是1l ,2l 的方向向量,判断1l ,2l 的位置关系 ①(2,3,1)a =-,(6,9,3)b =-- ②(5,0,2)a =,(0,4,0)b = (2)设,μυ分别是平面,αβ的法向量,判断,αβ的位置关系。 ①(1,1,2)μ=-,1(3,2,)2 υ=- ②(0,3,0)μ=,(0,5,0)υ=- (3)设μ是平面α的法向量,a 是直线l 的方向向量,判断直线l 与α的位置关系。 ①(2,2,1)μ=-,(3,4,2)a =- ②(0,2,3)μ=-,(0,8,12)a =- (变式训练)根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系。 (1)直线1l ,2l 的方向向量分别是(1,3,1)a =--,(8,2,2)b = (2)平面,αβ的法向量分别是(1,3,0)μ=,(3,9,0)υ=-- (3)直线l 的方向向量,平面α的法向量分别是(1,4,3)a =--,(2,0,3)μ=

用向量方法证明直线垂直,求两直线夹角

3.2.2用向量运算证明两条直线垂直或求两条直线所成的角 学习目标: 1、进一步理解向量的坐标表示和坐标运算 2、能建立适应的空间直角坐标系并利用坐标方法求空间两个向量的夹角 3、利用向量的数量积解决与立体几何有关的问题 复习回顾 1、 向量数量积的运算及其性质? 2、 向量夹角与线线夹角的联系与区别? 3、 如何求向量的夹角? 一、课前达标: 1、异面直线所成的角: 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角(如图1所示), 则 .||||| |cos b a b a ??=θ 2、预习检测 (1)如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,求证EF ⊥DA 1 . (2)如图,在正方体ABCDA ′B ′C ′D ′中,E `1 、F 1分别是A 1B `1、C 1D 1的四等分点,求BE 1与DF 1所成的角.

二、典例分析: 1、建立坐标系证明线线垂直,求夹角 例3 在棱长为1的正方体中ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、BD 的中点,G 在CD 上,且CG =CD/4,H 为C 1G 的中点,⑴求证:EF ⊥B 1C ;⑵求EF 与C 1G 所成角的余弦值;⑶求FH 的长。 注意思考: (1) 如何建立坐标系、把已知条件转化为向量表示? (2) 如何对已经表示出来的向量进行运算才可获得所需结论? 巩固练习:练习A 1 练习B 1 2、选取基向量求解线线夹角:例4、(见课本100页) O -A B C ,O A =4,O B =5,O C =3; A O B =B O C = C O A =90,M ,N O A ,B C M N ,B C ∠∠∠三棱锥分别是中点,求直线所成角 注意:基向量的选取;如何用基向量来表示未知向量。 巩固练习:练习B 3 三:作业:如下图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.

苏教版数学高二- 选修2-1素材 3.2利用空间向量解决形形色色的平行问题

3.2 例析利用空间向量解决形形色色的平行问题 一.证明线线平行 证明两直线平行可用112233//,,()a b a b a b a b R λλλλ?===∈或 3 12123 //a a a a b b b b ? ==. 例1:已知正方体''''ABCD A B C D -,E 、F 分别为'AA 和'CC 的中点.求证://'BF ED . 证明:不妨设正方体的边长为1,建立空间直角坐标系D xyz -,则相关各点坐标为(1,1,0)B ,1 (0,1,)2 F ,1 (1,0,)2 E ,'(0,0,1)D . 11 (0,1,)(1,1,0)(1,0,)22 BF =-=-, 11 '(0,0,1)(1,0,)(1,0,)22 ED =-=-. ∵'1ED BF =?, ∴'//ED BF 即//'BF ED . 例2:如果两条直线同垂直于一个平面,那么这两条直线平行. 已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足,求证://OA BD . 证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O xyz -,i ,j , k 为沿x 轴,y 轴,z 轴的坐标向量,且设(,,)BD x y z =. ∵BD α⊥,∴BD i ⊥,BD j ⊥. ∴(,,)(1,0,0)0BD i x y z x ?=?==, (,,)(0,1,0)0BD j x y z y ?=?==, ∴(0,0,)BD z zk == ∴//BD k . ∵O 、B 为不同两点, ∴//BD OA . 二.证明线面平行 例3:如图已知四边形ABCD 和ABEF 是两个正方形,MN 分别在其对角线FB 、AC 上,且FM AN =.求证://MN 平面EBC . D B O A α

利用空间向量证明面面平行垂直

利用空间向量证明面面平行垂直 1.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证 明:平面ADE⊥平面A1D1F. 2.如图,在直三棱柱ABC?A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1 上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:平面EGF//平面ABD 3.如图,在四棱锥P?ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD, PA=1,M为侧棱PD的中点.证明:平面MAC⊥平面PCD

4.如图,四边形是矩形,平面,,为中点. 证明:平面平面 5.如图,在底面是矩形的四棱锥P?ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4, E是PD的中点.求证:平面PDC⊥平面PAD 6.如图,在正方体ABCD?A1B1C1D1中,E为棱DD1的中点. 求证:平面EAC⊥平面AB1C

7.如图,正三棱柱ABC?A1B1C1的所有棱长都为2,D为CC1中点. 求证:平面ABB1A1⊥平面A1BD PD。 8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD//QA,QA=AB=1 2证明:平面PQC⊥平面DCQ

答案和解析 1.解:以D 为原点,向量DA ????? ,DC ????? ,DD 1???????? 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图, 设正方体的棱长为1. 则D(0,0,0),A(1,0,0),E (1,1,1 2),C 1(0,1,1),M (1,0,1 2), DA ????? =(1,0,0),DE ?????? =(1,1,12),C 1M ???????? =(1,?1,?1 2 ). 设平面ADE 的法向量为m ??? =(a,b ,c), 则{DA ????? ·m ??? =0 DE ?????? ·m ??? =0?{a =0,a +b +12 c =0.令c =2,得m ??? =(0,?1,2), 由D 1(0,0,1),A 1(1,0,1),F (0,12,0),得D 1A 1?????????? =(1,0,0),D 1F ??????? =(0,1 2 ,?1), 设平面A 1D 1F 的法向量为n ? =(x,y ,z),则{D 1A 1?????????? ·n ? =0D 1F ??????? ·n ? =0?{x =0,12y ?z =0. 令y =2,则n ? =(0,2,1).∵m ??? ·n ? =(0,?1,2)·(0,2,1)=0?2+2=0, ∴m ??? ⊥n ? .∴平面ADE ⊥平面A 1D 1F . 2.证明:如图所示建立空间直角坐标系, 设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1), A(a,0,4),B(0,0,4),D(0,2,2),G(a 2,1,0). 所以B 1D ???????? =(0,2,2),AB ????? =(?a,0,0),BD ?????? =(0,2,?2). AB ????? =(?a,0,0),BD ?????? =(0,2,?2),GF ????? =(?a 2,0,0),EF ????? =(0,1,?1),所以AB ????? =2GF ????? ,BD ?????? =2EF ????? ,所以GF ????? //AB ????? ,EF ????? //BD ?????? ?所以GF // AB ,EF // BD . 又GF ∩EF =F ,AB ∩BD =B ,所以平面EGF //平面ABD .

高中数学 错误解题分析 3-2第1课时 空间向量与平行关系

3.2 立体几何中的向量方法 第1课时 空间向量与平行关系 双基达标 限时20分钟 1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为 ( ). A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1) 答案 A 2.若u =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( ). A .(0,-3,1) B .(2,0,1) C .(-2,-3,1) D .(-2,3,-1) 答案 D 3.若平面α与β的法向量分别是a =(1,0,-2),b =(-1,0,2),则平面α与β的位置 关 系 是 ( ). A .平行 B .垂直 C .相交不垂直 D .无法判断 解析 ∵a =(1,0,-2)=-(-1,0,2)=-b ,∴a∥b ,∴α∥β. 答案 A 4.已知l ∥α,且l 的方向向量为(2,-8,1),平面α的法向量为(1,y ,2),则y =________. 解析 ∵l ∥α,∴l 的方向向量(2,-8,1)与平面α的法向量(1,y ,2)垂直,∴2×1-8×y +2=0,∴y =12. 答案 12 5.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则 k =______. 解析 由α∥β得1-2=2-4=-2 k ,解得k =4.

答案 4 6.如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且SB 1=2BS ,点Q 、R 分别是O 1B 1、AE 的中点,求证:PQ ∥RS . 证明 如图所示,建立空间直角坐标系,则A (3,0, 0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4, 2),E (3,4,0) ∵AP =2PA 1, ∴AP →=2PA 1→=23AA 1→,即AP →=2 3(0,0,2)=(0,0,43), ∴P 点坐标为(3,0,4 3 ). 同理可得Q (0,2,2),R (3,2,0),S (0,4,2 3). ∴PQ →=(-3,2,23)=RS →,∴PQ →∥RS → , 又∵R ?PQ ,∴PQ ∥RS . 综合提高(限时25分钟) 7.已知线段AB 的两端点坐标为A (9,-3,4),B (9,2,1),则线段AB 与坐标平面 ( ). A .xOy 平行 B .xOz 平行 C .yOz 平行 D .yOz 相交 解析 因为AB → =(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz . 答案 C 8.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中在 平 面 α 内 的 是 ( ). A .(1,-1,1) B .(1,3,3 2) C .(1,-3,32) D .(-1,3,-3 2 ) 解析 要判断点P 是否在平面α内,只需判断向量PA → 与平面α的法向量n 是否垂直,即 PA →·n 是否为0,因此,要对各个选项进行检验.对于选项A ,PA →=(1,0,1),则PA → ·n

向量法证明线面平行及垂直问题教案

龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法证明线面平行及垂直 掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离. 二、授课内容及过程: 考点1.利用空间向量证明空间垂直问题 例1:已知三棱锥P -ABC 中,PA ⊥面ABC ,AB ⊥AC ,PA=AC=12 AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.证明:CM ⊥SN ; 证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空 间直角坐标系如图,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0, 12),N (12,0,0),S (1,12,0)111(1,1,),(,,0)222 CM SN =-=--, 因为110022 CM SN ?=-++=, 所以CM ⊥SN . 【点评】对坐标系易建立的空间线线垂直判定(证明)问题,常用向量法,即通 过证明所证直线的方向向量的数量积为0证明两直线垂直. 例2:在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,CF =AB =2CE , 1::AB AD AA = 1:2:4.证明AF ⊥平面1A ED 解析:如图所示,建立空间直角坐标系,点A 为坐标原点,设1AB =,依题意得 (0,2,0)D ,(1,2,1)F , 1(0,0,4)A ,31,,02E ?? ??? 已知(1,2,1)AF =,131,,42EA ? ?=-- ???,11,,02ED ??=- ?? ?于是AF ·1EA =0,AF ·ED =0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ?= 所以AF ⊥平面1A ED 【点评】对坐标系易建立的空间线面垂直问题,通常用向量法,先求出平面的法 向量和直线的方向向量,证明平面法向量与直线的方向向量平行或者直接用向量 法证明直线与平面内两条相交直线垂直,再用线面垂直判定定理即可. 例3:在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD , //PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. 求证:平面EFG ⊥平面PDC . 解析:以A 为原点,向量DA ,AB ,AM 分别为x 轴、y 轴、z 轴的正方向,如

空间向量巧解平行,垂直关系

高中数学空间向量巧解平行、垂直关系 编稿老师刘咏霞一校黄楠二校杨雪审核郑建彬 一、考点突破 知识点课标要求题型说明 空间向量巧解 平行、垂直关系 1. 能够运用向量的坐标判断两个 向量的平行或垂直。 2. 理解直线的方向向量与平面的 法向量。 3. 能用向量方法解决线面、面面的 垂直与平行问题,体会向量方法在 立体几何中的作用。 选择题 填空题 解答题 注意用向量方 法解决平行和垂直 问题中坐标系的建 立以及法向量的求 法。 二、重难点提示 重点:用向量方法判断有关直线和平面的平行和垂直关系问题。 难点:用向量语言证明立体几何中有关平行和垂直关系的问题。 考点一:直线的方向向量与平面的法向量 1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。 2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。 【核心归纳】

① 一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。 ② 在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的。 【随堂练习】 已知A (1,1,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量的单位向量是( ) A. (1,1,1) B. C. 111 (,,) 333 D. (333 - 思路分析:设出法向量坐标,列方程组求解。 答案:设平面ABC 的一个法向量为n =(x ,y ,z ),AB u u u r =(0,-1,1),BC uuu r =(- 1,1,0),AC u u u r =(-1,0,1),则·0 ·0· 0AB y z BC x y AC x z ?=-+=?? =-+=??=-+=??n n n u u u r u u u r u u u r ,∴x =y =z , 又∵单位向量的模为1,故只有B 正确。 技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下: (1)设出平面的法向量为n =(x ,y ,z )。 (2)找出(求出)平面内的两个不共线的向量a =(a 1,b 1,c 1),b =(a 2,b 2,c 2)。 (3)根据法向量的定义建立关于x ,y ,z 的方程组· 0· 0.=??=?n a n b (4)解方程组,取其中的一个解,即得法向量。 考点二:用向量法证明空间中的平行关系、垂直关系

证明直线与直线垂直(空间向量)

证明线线垂直 在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E . 【证明】 以O 为坐标原点建立如图所示的空间直角坐标系, 则A 1(a,0,a ),C 1(0,a ,a ).设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0). ∴A 1F →=(-x ,a ,-a ),C 1E → =(a ,x -a ,-a ). ∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0, ∴A 1F →⊥C 1E → ,即A 1F ⊥C 1E . 例1:已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN = 1 4 CC 1. 求证:AB 1⊥MN . 解答:法一 设AB →=a ,AC →=b ,AA 1→ =c ,则由已知条件和正三棱柱的性质,得 |a |=|b |=|c |=1,a ·c =b ·c =0,AB 1→=a +c ,AM →=1 2(a +b ), AN →=b +14c ,MN →=AN →-AM → =-12a +12b +14 c , ∴AB 1→·MN → =(a +c )·(-12a +12b +14c )=-12+12cos 60°+0-0+0+14=0. ∴AB 1→⊥MN → ,∴AB 1⊥MN . 法二 设AB 中点为O ,作OO 1∥AA 1. 以O 为坐标原点,建立如图所示的空间直角坐标系.由已知得 A (-12,0,0),B (12,0,0),C (0,32,0),N (0,32,14),B 1(1 2 ,0,1),

相关文档
最新文档