调味品发酵工艺学复习资料

调味品发酵工艺学复习资料
调味品发酵工艺学复习资料

第一章味精

1.谷氨酸发酵机制:

谷氨酸的生物合成途径大致是:葡萄糖经EMP途径或HMP途经生成丙酮酸,再氧化成乙酰辅酶A,然后进入TCA,再通过乙醛酸循环、CO2固定作用,生成a-酮戊二酸,a-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下生成谷氨酸。

在微生物的代谢中,谷氨酸比天冬氨酸优先合成。谷氨酸合成过量时,谷氨酸抑制谷氨酸脱氢酶的合成,使代谢转向合成天冬氨酸;天冬氨酸合成过量后,反馈抑制磷酸烯醇丙酮酸羧化酶的活力,停止草酰乙酸的合成。所以,在正常情况下,谷氨酸并不积累。

2.谷氨酸的大量积累:

代谢调节控制;细胞膜通透性的特异调节;发酵条件的适合

3.GA生物合成的内在因素

①产生菌必须具备以下条件:α—KGA脱氢酶酶活性微弱或丧失(为什么α—KGA是谷氨酸发酵的限制性关键酶?这是菌体生成并积累α—KGA的关键,从上图可以看出,α—KGA是菌体进行TCA循环的中间性产物,很快在α—KGA脱氢酶的作用下氧化脱羧生成琥珀酸辅酶A,在正常的微生物体内他的浓度很低,也就是说,由α—KGA进行还原氨基化生成GA的可能性很少。只有当体内α—KGA脱氢酶活性很低时,TCA循环才能够停止,α—KGA才得以积累。);

②GA产生菌体内的NADPH的再氧化能力欠缺或丧失(1、NADPH是α—KGA还原氨基化生成GA必须物质,而且该还原氨基化所需要的NADPH是与柠檬酸氧化脱羧相偶联的。2、由于NADPH的再氧化能力欠缺或丧失,使得体内的NADPH有一定的积累,NADPH对于抑制α—KGA的脱羧氧化有一定的意义。);

③产生菌体内必须有乙醛酸循环(DCA)的关键酶——异柠檬酸裂解酶(该酶是一种调节酶,或称为别构酶,其活性可以通过某种方式进行调节,通过该酶酶活性的调节来实现DCA循环的封闭,DCA 循环的封闭是实现GA 发酵的首要条件)

④菌体有强烈的L—谷氨酸脱氢酶活性(L—谷氨酸脱氢酶,实质上GA产生菌体内该酶的酶活性都很强,该反应的关键是与异柠檬酸脱羧氧化相偶联)

4.GA发酵的外在因素

5.谷氨酸如何积累:

谷氨酸产生菌大多为生物素缺陷型,谷氨酸发酵时通过控制生物素亚适量,使最后一代细菌细胞变形、拉长,改变了细胞膜的通透性,引起代谢失调,使谷氨酸得以积累。谷氨酸高产菌株丧失或仅有微弱的a-酮戊二酸脱氢酶活力,使a-酮戊二酸不能继续氧化;CO2固定反应的能力强,使四碳二羧酸全部是由CO2固定反应提供,而不走乙醛酸循环,以提高对糖的利用率;谷氨酸脱氢酶的活力很强,并丧失谷氨酸对谷氨酸脱氢酶的反馈抑制和反馈阻遏.同时NADPH2再氧化能力弱,这样就使a-酮戊二酸到琥珀酸的过程受阻,在有过量铵离子存在的条件下,a-酮戊二酸经氧化还原共遏氨基化反应而生成谷氨酸,生成的谷氨酸不形成蛋白质,而分泌泄漏于菌体外,谷氨酸产生菌不利用体外的谷氨酸,谷氨酸成为最终产物。

6.生物素亚适量的原因(2ug/L~5ug/L):当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。

7.谷氨酸生物合成调节机制(P15-16)

8.谷氨酸发酵流程:

9.发酵过程和控制:接种龄和接种量;温度;发酵前期pH值;发酵后期pH 值;供氧对谷氨酸发酵的影响与控制;防止噬菌体和杂菌的污染

10.Glu发酵的四个阶:段适应期;对数生长期;转化期;产酸期。

11.谷氨酸的提取方式:常用方法:等电点法、离子交换法、锌盐法等。为了提高提取收率,有的工厂还采用等电点—钾盐法,等电点—离子交换提取工艺。新技术:电渗析和反渗透法、浓缩等电点法、离子硅藻土过滤等电点法等。

12.噬菌体污染的防治P54

13.谷氨酸制味精工艺流程

14.中和液除铁:硫化钠法;树脂除铁(铁离子的来源:原辅材料、设备腐蚀等

铁的存在形式;Fe2+、Fe3+)

15.谷氨酸中和液的脱色:色素的来源:淀粉制糖、培养基灭菌、发酵液浓

缩等。

用透光率的高低衡量。脱色方法:活性炭脱色、树脂脱色

16.谷氨酸中和液的浓缩与结晶:

中和液的浓缩:溶液到晶体生成过程1形成过饱和溶液2晶核形成3晶体成长浓缩方法:常压蒸发、减压蒸发。

起晶方法:1自然起晶2刺激起晶3晶种起晶

影响结晶速度的因素1过饱和系数2液膜的厚度3温度与真空度4夹层压力

5稠度6料液质量7晶种质量

味精的结晶工艺技术条件:操作过程1.浓缩2.起晶3.整晶4.育晶5.养晶

17.味精的分离和干燥方法

分离:三足式离心机

干燥:箱式烘房、真空箱式干燥、气流干燥、传送带式干燥、震动床式干燥18.粉末味精为什么加盐:P86(99%的味精,不加食盐。95%、90%、80%等规格的均添加一定量的食盐。)

19.味精生产中异常现象及其处理

1)味粉混沌:味粉溶解后出现混沌现象,透光率下降。

(1)产生原因①硫化钠过量②消泡剂过量③含有DL-谷氨酸钠④原材料质

量差

(2)解决措施①中和、结晶操作规范②控制硫化钠质量和用量③控制消泡剂用量④控制原材料质量

2)味精中含有白片

(1)产生原因

结晶味精生产过程中,底料液面低于隔层加热面,由于液体的剧烈沸腾,溅到加热面,在锅壁上积起一圈味精,随时间增加,焦化变质,跌落结晶液,带入味精。

(2)解决措施控制结晶液面高度

3) 味精中含有焦谷氨酸钠

(1)产生原因味精在高温下长时间受热失水生成。

(2)解决措施控制好各个环节的温度和pH。

4).味精光泽度差

(1)产生原因

①结晶过程温度、浓度过高;②贮晶槽内浓度偏高,分离时母液未甩干;③干燥温度高、时间长,晶面失水松化;④振动式干燥或筛选时频率过高或停留时间长(2)解决措施

①控制好结晶的温度和浓度;②调整好分离浓度,分离液要甩净;③控制好干燥温度和时间;④调整好震动频率,缩短物料停留时间。

5).味精带有颜色

(1)产生原因

味精发黄(料液脱色不彻底,带有色素;味精分离不干,母液带入味精,是色素增加;味精干燥温度过高或过长,引起焦化变质;洗活性炭中残留谷氨酸钠时,将被吸附的色素解析出来;烘盘布清洗不干净,出现底层发黄)

味精发红(母液除铁不干净;母液接触铁器或味精将诶出铁器;活性炭再生不完全,铁离子没清除彻底)

味精发灰发青(发灰:活性炭带入味精中发青:硫化钠过量)

味精久放变黄(料液除铁不彻底,带入成品谷氨酸含残糖高,带入成品) (2)解决措施

加强脱色操作;加强结晶操作,合理控制参数;加强分离操作;采用振动式干燥器;采用树脂除铁;提高谷氨酸质量;控制好硫化钠用量.

6).味精发臭

(1)产生原因

室内卫生差,母液染菌变质,带入味精;活性炭渣子和洗水没及时处理,导致杂菌繁殖;

母液存放时间长或存放母液的容器长时间没用清洗,杂菌繁殖;全中和操作时泡沫溢出,回收时带入杂菌;湿谷氨酸堆放时间长,长菌霉变.

(2)解决措施

搞好环境卫生;母液和湿谷氨酸及时处理;设备及时清洗

7).味精大小头或细长

(1)产生原因

结晶过程处理伪晶时加水量过大,分布不均;分离过程洗水温度过高,水量过大,分布不均; 晶种质量差,本身带有大小头

(2)解决措施

处理伪晶用水适当,用水分布均匀;分离时注意水量和水温,分布均匀;提高晶种质量

8).并晶

(1)产生原因

放罐浓度过高,黏度过大而结块;料液在贮晶槽内停留时间过长或温度下降;晶粒间有母液粘连或晶体表面水分大造成粘连

(2)解决措施

放罐浓度29.5~30.5;及时分离,不停搅拌,防治表面遇冷干皮;加强分离脱水,分离时间要尽量保证水分甩干

9) 结晶味精发脆

(1)产生原因

结晶操作过程中长时间温度太低或结晶液黏度过高;结晶液pH太低,结晶液质量差、杂质多;干燥温度过高,时间长,晶体失水松化; 含有β-谷氨酸和DL-谷氨酸;母液循环次数过多,含杂质多;结晶操作过程,锅内温度忽高忽低

(2)解决措施

结晶温度65~70℃,浓度控制在亚稳区的养晶区;提高料液纯度,调pH6.6~6.8;采用震动干燥机,控制好干燥温度和时间; 提高谷氨酸质量;控制母液循环次数20.强力味精:添加了5′-鸟苷酸、5′-肌苷酸,鲜味倍增。

呈味核苷酸:只有5′-核苷酸才具有特有的鲜味;只有5′-核苷酸中嘌呤核苷酸6′-羟基取代物才具有特有的强力调味能力。

21.对味精作为添加剂的看法:

一、谷氨酸虽是一种氨基酸,但它并非人体必需氨基酸,在体内的物质代谢过程中,生化反应倾向于向生成谷氨酸的方向进行,所以人体内一般是不会缺乏谷氨酸的。

二、谷氨酸和其它氨基酸相比有其特殊之处,它是一种兴奋性神经递质。如果脑神经元受到谷氨酸的过度刺激会出现损伤效应。

三、摄入味精使钠的摄入量过高。中国人对食盐的用量本来就超过正常所需,使用味精则使钠的摄入量进一步增加,况且很多其他调味品如酱油、辣椒酱、豆瓣酱等中也都含有食盐和味精,这些都使得中国人目前的钠摄入量远远大于所需,成为诱发高血压的一个重要因素。

四、摄入味精会影响人体对多种元素尤其是锌的吸收,影响生长发育;味精加温过度会形成有一定毒性的焦谷氨酸钠;过多食用味精会引起视网膜的损害,这些在大众媒体上不难查到,在此不再赘述。另外,有实验表明,过多使用味精还会引发非酒精性脂肪肝、肥胖、II型糖尿病等。

第二章食醋的生产

1、食醋酿造原理认识和了解p162

糖化作用:糊化后的淀粉在酶的作用下转变成可发酵性糖。

酒精发酵:酵母菌在厌氧条件下经过菌体内一系列酶的作用,把可发酵性糖转化成酒精和二氧化碳,然后通过细胞膜把产物排出菌体外的过程。在酒精发酵的同时会形成一系列的副产物如甘油、高级醇、有机酸等。

醋酸发酵:醋酸发酵是继酒精发酵之后,酒精在醋酸菌氧化酶的作用下生成醋酸的过程。

醋酸与乙醇的质量比为1.304∶1。但由于发酵过程中醋酸的挥发、再氧化以及形成酯等原因,实际得到的醋酸与酒精的质量比仅为1∶1。

2、食醋,果醋,与酱油发酵的相似与差别

果醋发酵:果醋生产最好采用液态发酵工艺,以保留水果的固有果香。若采用固态发酵,拌入谷糠及麸皮即可。醋酸发酵时,最好采用人工纯培养的醋酸菌种子,其纯度高,发酵速度快。

酱油发酵p136

食醋发酵:糊化后的淀粉在酶的作用下转变成可发酵性糖,可发酵性糖在厌氧条件下经过菌体内一系列酶的作用转化成酒精和二氧化碳,酒精在醋酸菌氧化酶的作用下生成醋酸

3、食醋酿造工艺:

(1)固体发酵工艺与液体发酵工艺的异同

固体发酵工艺:淀粉质原料的糖化、酒精发酵、醋酸发酵都是在固态状态下进行,发酵速度慢,在醋酸发酵需大量氧气,通过多次倒醅实现,劳动强度大,这种方法是最传统的方法。

液体发酵工艺:液体深层发酵法制醋是利用发酵罐通过液体深层发酵生产食醋的方法,通常是将淀粉质原料经液化、糖化后先制成酒醪或酒液,然后在发酵罐里完成醋酸发酵。液体深层发酵法制醋具有机械化程度高,操作卫生条件好,原料利用率较高(可达65%~70%),生产周期缩短为7d,产品质量稳定等优点,缺点是醋的风味较差。

(2)生料发酵与前两种发酵的异同

生料酿醋:原料不经蒸煮,经粉碎浸泡后,直接进行糖化发酵,降低能耗,简化生产步骤,但糖化困难,易污染杂菌,有待于进一步完善

4、不同传统工艺醋的共同点及差异

一、山西老陈醋

山西老陈醋是我国北方最著名的食醋,始创于清顺治年间,至今已有300多年的生产历史。酿造方法有以下特点:

①以优质高粱为酿醋主料。②以大曲为糖化剂、发酵剂,大曲用量达到高粱原料质量的62.5%。酒精发酵阶段采用低温发酵,醋酸发酵阶段醅温高达43~45℃,新醋露天陈酿

二、镇江香醋的酿造特点是:①以优质糯米为酿醋原料。②以酒药和麦曲为糖化、发酵剂。③采用固态分层发酵酿醋工艺。

三、福建红曲老醋的酿造特点是:

以糯米为原料。以红曲为糖化、发酵剂。采用分次添加液体发酵工艺。

加入芝麻调香,白糖调味;经多年陈酿而成。福建红曲老醋是香气独特,口味醇厚,酸中带甜,色泽棕黑的调味佳品,产品畅销国内外。

第六章酱腌菜

1、酱腌菜的分类

酱腌菜是酱菜和咸菜的统称,是蔬菜经渍制加工后的产品。一般按照工艺分为盐渍菜(咸菜,腌菜)、酱渍菜(酱菜)和盐水渍菜(泡菜

P241-243:分类

2、酱制,清水,发酵生产工艺的不同,区分、差异。

酱渍菜:p249以新鲜蔬菜为原料,经盐渍成咸坯后,再经酱渍而成的蔬菜制品。黄色或棕褐色,具酱香味,咸、甜适口,有鲜味,无异味,口脆,无杂质。

清水渍菜:p254

以新鲜蔬菜为原料,经漂腌在不同浓度盐水中,进行乳酸发酵而成的蔬菜制品。色泽接近本色,酸味正,清香脆嫩,无异味。

3、生物安全性:酱腌菜风味形成过程中对工艺的了解、成分变化

p246-248

第一章·酱油

1·酱油酿造的原料包括:

蛋白质原料,淀粉质原料,食盐,水,其他辅助原料。

蛋白质原料:

大豆:黄豆、青豆及黑豆。

豆粕:用有机溶剂提取油脂后的产物。

豆饼:用压榨法提取油脂后的产物。

豌豆、蚕豆

其他蛋白质原料:花生饼、菜籽饼等。

淀粉质原料:

小麦、麸皮、面粉、碎米、玉米、薯干等,主要提供碳水化合物,同时提供酱油中1/4氮素,特别是Asp含量高,是酱油鲜味的主要来源。

(重点)食盐作用:

酱油咸味的来源;

与氨基酸共同呈鲜味,增加酱油的风味;

减少杂菌的污染。

酱油酿造用水:

水是酿造酱油的原料,一般生产一吨酱油需用水6-7吨。凡是符合卫生标准能供饮用的水如自来水、深井水、清洁的江水河水湖水等均可使用。

2·原料选择的依据

蛋白质含量较高,碳水化合物适量,有利于制曲和发酵。

无毒无异味,酿制出的酱油质量好。

资源丰富,价格低廉。

容易收集,便于运输和保管。

因地制宜,就地取材,争取综合利用。

3·种曲制备菌种选择

酱油酿造主要由两个过程组成,第一个阶段是制曲,主要微生物是霉菌;第二个阶段是发酵,主要微生物是酵母菌和乳酸菌。

用于酱油酿造的霉菌应满足的基本条件:

不生产真菌毒素;有较高的产蛋白酶和淀粉酶的能力;生长快、培养条件粗放、抗杂菌能力强;不产生异味。

(1)米曲霉,是生产酱油的主发酵菌。(2)、酱油曲霉,酱油曲霉分生孢子表面有突起,多聚半乳羧酸酶活性较高。(3)、黑曲霉,含有较高的酸性蛋白酶。

4、酱油的发酵原理p136,设备p143,酶类参与及作用p136。

5、酱油的酿造原理(哪些酶类参与及其作用P137)

(1)蛋白质的水解

原料中的蛋白质经过米曲霉所分泌的蛋白酶作用,分解成多肽、氨基酸。

——谷氨酸和天冬氨酸使酱油呈鲜味。

——甘氨酸、丙氨酸、色氨酸使酱油呈甜味。

——酪氨酸使酱油呈苦味。

(2)淀粉的水解

原料中的淀粉质经米曲霉分泌的淀粉酶的糖化作用,水解成糊精和葡萄糖。

——为微生物提供碳源。

——是发酵的基础物质。

——与氨基酸化合成有色物质,赋予酱油甜味。

(3)有机酸生成

酱油中含有多种有机酸,其中以乳酸、琥珀酸、醋酸居多。

适量的有机酸生成,对酱油呈香、增香均有重要作用。乳酸具鲜、香味;琥珀酸适量较爽口;丁酸具特殊香气。

有机酸过多会严重影响酱油的风味。

(4)酒精发酵

酵母菌分解糖生成酒精和CO2,酒精的去向:

——氧化成有机酸;

——挥发散失;

——与氨基酸及有机酸等化合生成酯;

——微量残存在酱醅中,与酱油香气形成有极大关系。

6、工艺流程

原料处理制曲发酵滤油酱油后处理技术

7、制曲

种曲是制酱油曲的种子,在适当的条件下由试管斜面菌种经逐级扩大培养而成。制曲是种曲在酱油曲料上的扩大培养过程

豆腐乳

一、豆腐乳是一类以霉菌为主要菌种的大豆发酵食品,是我国著名的具民族特色的发酵调味品。

二、类型

腌制型:使豆腐坯不经发霉阶段而直接进入后期发酵。

发霉型:天然发霉与人工发霉。

细菌型:利用纯细菌接种在腐乳坯上,让其生长繁殖并产生大量的酶。

㈠腌制型

产品特点:绍兴腐乳中的棋方和山西省太原市腐乳厂生产的腐乳均为腌制型腐乳。

它主要是依赖于添㈠腌制型加的辅料,如面糕曲、红曲米、米酒或黄酒等进行生化变化。该工艺所需厂房设备少,操作简单。其缺点是:因蛋白酶源不足,发酵期长,产品不够细腻,氨基酸含量低。

(二)发霉型

1、天然发霉型

2、人工发霉型

1天然发霉型:使豆腐坯利用空气中、木盘容器上遗留的毛霉菌种,在15℃温度下生长和繁殖,经7~15d培养,在豆腐坯表面长满灰白色的菌丝体,同时分泌大量酶特别是蛋白酶,使豆腐坯经腌制和后期发酵,形成产品细腻、氨基酸含量高的腐乳。天然发霉型生产周期较长,受季节限制,不能常年生产

2.人工发霉型

毛霉型:是前期培菌过程中,将纯毛霉或根霉菌制成菌悬液,喷洒在豆腐坯上,经48~72h培养,长满白毛,菌丝成网状,形成坚韧的膜,赋予腐乳一个体。毛霉还分泌蛋白酶和少量脂肪酶,分解腐乳坯蛋白和脂肪,达到良好风味。

根霉型:在南方因夏季气温高不适合毛霉菌生长,为了全年均能生产腐乳,则选育耐高温的根霉菌。其特点是耐37℃高温,同样可在腐乳坯上形成菌丝与菌膜,

并分泌蛋白酶、淀粉酶、肽酶等。

㈢细菌型

细菌型生产腐乳的特点是利用纯细菌接种在腐乳坯上,让其生长繁殖并产生大量的酶。操作方法是:将豆腐经48h腌制,使盐分达6.8%,再接入嗜盐小球菌发酵。不能赋予腐乳坯一个好的形体,所以在装坛前须加热烘干至含水量45%左右,方可进入下道工序。该产品成型性较差,但口味鲜美,为其它产品所不及。

三、腌制型工艺流程

食盐

豆腐坯→煮沸→腌坯→装坛→成品

各种辅料

四、豆腐乳生产原理,工艺流程p223

第七章haccp

Haccp体系:表示危害分析的临界控制点。HACCP体系是国际上共同认可和接受的食品安全保证体系,主要是对食品中微生物、化学和物理危害进行安全控制。

Haccp在豆腐乳生产过程中的作用p269

Iso.gmp haccp三大体系联系与糖代谢共同特点p265

调味品发酵工艺学复习资料

第一章味精 1.谷氨酸发酵机制: 谷氨酸的生物合成途径大致是:葡萄糖经EMP途径或HMP途经生成丙酮酸,再氧化成乙酰辅酶A,然后进入TCA,再通过乙醛酸循环、CO2固定作用,生成a-酮戊二酸,a-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下生成谷氨酸。 在微生物的代谢中,谷氨酸比天冬氨酸优先合成。谷氨酸合成过量时,谷氨酸抑制谷氨酸脱氢酶的合成,使代谢转向合成天冬氨酸;天冬氨酸合成过量后,反馈抑制磷酸烯醇丙酮酸羧化酶的活力,停止草酰乙酸的合成。所以,在正常情况下,谷氨酸并不积累。 2.谷氨酸的大量积累: 代谢调节控制;细胞膜通透性的特异调节;发酵条件的适合 3.GA生物合成的内在因素 ①产生菌必须具备以下条件:α—KGA脱氢酶酶活性微弱或丧失(为什么α—KGA是谷氨酸发酵的限制性关键酶?这是菌体生成并积累α—KGA的关键,从上图可以看出,α—KGA是菌体进行TCA循环的中间性产物,很快在α—KGA脱氢酶的作用下氧化脱羧生成琥珀酸辅酶A,在正常的微生物体内他的浓度很低,也就是说,由α—KGA进行还原氨基化生成GA的可能性很少。只有当体内α—KGA脱氢酶活性很低时,TCA循环才能够停止,α—KGA才得以积累。); ②GA产生菌体内的NADPH的再氧化能力欠缺或丧失(1、NADPH是α—KGA还原氨基化生成GA必须物质,而且该还原氨基化所需要的NADPH是与柠檬酸氧化脱羧相偶联的。2、由于NADPH的再氧化能力欠缺或丧失,使得体内的NADPH有一定的积累,NADPH对于抑制α—KGA的脱羧氧化有一定的意义。); ③产生菌体内必须有乙醛酸循环(DCA)的关键酶——异柠檬酸裂解酶(该酶是一种调节酶,或称为别构酶,其活性可以通过某种方式进行调节,通过该酶酶活性的调节来实现DCA循环的封闭,DCA 循环的封闭是实现GA 发酵的首要条件) ④菌体有强烈的L—谷氨酸脱氢酶活性(L—谷氨酸脱氢酶,实质上GA产生菌体内该酶的酶活性都很强,该反应的关键是与异柠檬酸脱羧氧化相偶联) 4.GA发酵的外在因素

华南理工发酵工艺学试题

华南理工大学20XX年攻读硕士学位研究生入学考试试题科目名称:发酵工艺学 适用专业:发酵工程 一、选择题(每小题1分,21题共21分)daaba,abbbb,caaac,aaadb,c 1、细菌对革兰氏染色的不同反应主要是由于革兰氏阳性和阴性细菌在()的结构和化学组成上的差别所引起的。 A细胞核B细胞质C细胞膜D细胞壁E鞭毛 2、霉菌的有性孢子是() A.孢囊孢子 B.卵孢子C节孢子D厚垣孢子 E.分生孢子 3、干热法常用于()灭菌。 A.盐溶液 B.细菌培养基 C.油料物质 D.医院的毛毯 4、与细菌耐药性有关的遗传物质是()。 A鞭毛B质粒C细菌染色体D毒性噬菌体E异染颗粒 5、要制备原生质体,可采用()来破壁。 A溶菌酶 B.纤维素酶 C.蜗牛酶 D.甘露聚糖酶 E.果胶酶 6、BOD有助于确定()。 A.废水的污染程度 B.土壤的过滤能力 C. 100ml水样中的细菌数 D.生态系统中的生物群类型 7、下列脂肪酸中,属必需脂肪酸的是: A、油酸 B、亚油酸 C、软脂酸 D、棕榈酸 8、醛缩酶作用的底物是下列哪种物质? A、6-磷酸葡萄糖 B、6-磷酸果糖 C、1,6-二磷酸果糖 D、1,3-二磷酸甘油酸 9、一分子葡萄糖经EMP途径与TCA循环进行彻底氧化可产生几分子ATP? A、18分子ATP B、38分子ATP C、35分子ATP D、15分子A TP 10、果糖激酶所催化的反应生成下列哪种中间产物? A、1-磷酸果糖 B、6-磷酸果糖 C、1,6-二磷酸果糖 D、3-磷酸甘油醛和磷酸二羟丙酮 11、下列哪个酶是调控柠檬酸循环运转速度的变构酶? A、顺乌头酸梅 B、异柠檬酸脱氢酶 C、苹果酸脱氢酶 D、柠檬酸脱氢酶 12、利用PRPP作为合成前体的氨基酸有: A、Phe和Try B、Try和His C、Try和Tyr D、Tyr和His 13、tRNA分子具有下列何种功能: A、识别密码子 B、识别反密码子 C、识别氨基酸 D、将mRNA接到核糖体上 14、脂肪酸全合成过程中,延伸的二碳单位的直接供体是: A、乙酰CoA B、丙二酰CoA C、丙二酰ACP D、胆碱-CDP 15、酵解途径中各步反应是以下列哪种条件进行? A、需要氧气 B、需要二氧化碳 C、不需要氧气 D、需要氮气 16、甘油生物合成主要是下列哪种物质引起的? A、氢氧化钠 B、硫酸铵 C、酶 D、亚硫酸盐 17、强酸型阳离子交换树脂中含有以下哪种成分? A、磺酸基 B、磷酸基 C、羧基 D、酚羟基 18、使用化学消泡剂时应选用以下哪种类型?

酒精工艺学复习题(材料详实)

酒精发酵工艺学复习题 一、填空题(请把答案填写到空格处) 1.酒精生产常用的淀粉质原料有玉米、甘薯、木薯等。 2. 酒精生产常用的谷物原料有玉米、高粱、大麦等。 3. 酒精生产常用的薯类原料有甘薯、木薯、马铃薯等。 4.木质纤维素的主要组成成分是纤维素、半纤维素、木质素。 5.常用的原料粉碎方法有湿式粉碎、干式粉碎两种。 6.常用的原料除杂方法有筛选、风选、磁力除铁三种。 7.常用的原料输送方式有机械输送、气流输送、混合输送三种。 8. 酒精厂常用的粉碎设备是滚筒式粉碎机、锤式粉碎机。 9.酒精厂常用的输送机械有皮带输送机、螺旋输送器、斗式提升机三种。 10.玉米淀粉和甘薯淀粉的糊化温度分别是(65~75)℃、(53~64)℃。 11.双酶法糖化工艺中使用的两种酶制剂是耐高温α-淀粉酶、葡萄糖淀粉酶。 12.淀粉质原料连续糖化工艺分成混合前冷却糖化工艺、真空冷却糖化工艺、二级真空冷却糖化工艺三种。 13. 酒精发酵过程中产生的副产物主要有甘油、杂醇油、琥珀酸等。 14.酒精发酵常污染的细菌有醋酸菌、乳酸菌、丁酸菌。 15.酒精蒸馏塔按作用原理可分为鼓泡塔、膜式塔。 16.从精馏塔提取杂醇油的方式可以是液相取油,也可以是气相取油。 17.酒精蒸馏塔按其塔板结构可分为泡罩塔、浮阀塔、筛板塔。 18.酒精的化学处理是提高酒精质量的一种辅助措施,常用的化学试剂是高锰酸钾、氢氧化钠。19.无水酒精的制备方法有氧化钙吸水法、离子交换树脂法、共沸法、分子筛法等。 20. 共沸法制备无水酒精常用的共沸剂是苯、环己烷。 21. 连续发酵可分为_全混(均相)连续发酵、梯级连续发酵两大类。 二、判断题(正确打√,错误打×) 1.酒母培养罐和酒精发酵罐的构造是一样的。× 2. 酒化酶是参与淀粉水解和酒精发酵的各种酶和辅酶的总称。(×) 3. 薯干的果胶质含量较多,使发酵醪中甲醇含量较高。(√) 4. 减少发酵过程中二氧化碳的产生量就能提高酒精生成量。(×) 5.采用高细胞密度酒精发酵时,必须定期向发酵罐中供应氧气。(√) 6.异戊醇在酒精中的挥发系数随着酒精浓度的增大而减小,但始终大于1。(×) 7.只要酒精发酵正常,发酵醪中就不会有甘油生成。(×) 8. 玉米中蛋白质含量较多,使发酵醪中杂醇油含量较高。(×) 9. 甲醇不是由酵母菌代谢活动产生的,而是由原料中的果胶质分解而来。(√) 10. 甲醇是由酵母菌代谢活动产生的。(×)

发酵工艺学总结

1.根据所掌握的知识和信息,分析中国啤酒工业发展的趋势。 ①企业集团化规模化加大②从价格大战到品牌大战③降低整体运作成本④产品竞争层次结构分明:普通酒打市场,中档酒创利润,高档酒树形象⑤新行业标准认证与实施⑥现代科技的应用⑦人才资格认证的规范化⑧包装生产技术装备发展⑨加强新产品开发:无糖、无醇和功能性保健啤酒2.啤酒生产的四大工序是什么?并简要说明作用。 ①粉碎(制麦):原料清选分级、浸麦、发芽、干燥、除根②糖化:利用麦芽中含有的及辅助添加的各种水解酶类,在水和热力的作用下,将麦芽和辅料中的高分子物质及其分解产物(淀粉、蛋白质、半纤维素、植酸盐等及其中间分解产物),逐步分解并溶解于水的过程③发酵④灌装 3.啤酒的分类 ①根据生产工艺(杀菌方法)分类: 鲜啤酒、纯生啤酒、熟啤酒②根据原麦汁浓度分类:低浓度啤酒、中浓度啤酒、高浓度啤酒③根据啤酒色泽分类:淡色啤酒、浓色啤酒、黑色啤酒④根据啤酒酵母性质分类:上面发酵啤酒、下面发酵啤酒4.啤酒: 以优质大麦为主要原料,大米、啤酒花为辅料,经过制麦芽、糖化、啤酒酵母发酵等工序制成的富含营养物质和二氧化碳的低度酒精饮料。5.啤酒生产为什么要选用大麦为原料,其他原料可行吗? ①大麦便于发芽,且发芽后可产生大量的水解酶类;②大麦种植遍及全球,原料易得;③大麦的化学成分适合酿造啤酒;④大麦不是人类食用的主粮,故啤酒酿造者一直沿席使用大麦酿造啤酒。 6.二棱大麦与六棱大麦的特点差异 ①六棱大麦的原始形态麦穗断面呈六角形,六行麦粒围绕一根麦轴而生,其中只有中间对称两行麦粒发育正常,因此六行大麦的籽粒不够整齐。麦粒基座弯曲。多用以制麦曲。其麦皮比二棱大麦厚。淀粉含量相对较低,蛋白质含量相对较高。②二棱大麦是六棱大麦的变种,麦穗扁形,沿穗轴只有成对的两行麦粒。其籽粒均匀整齐,比较大,籽粒饱满,内容物较多,表皮较少。淀粉含量较高,蛋白质含量较低。多酚物质和苦味物质较少,大麦浸出物含量较高。③二棱大麦的麦穗上只有两行籽粒,籽粒皮薄、大小均匀、饱满整齐,淀粉含量较高,蛋白质含量适当,是啤酒生产的最好原料。7.大麦蛋白质的种类、含量及与啤酒酿造关系:①种类:麦白蛋白、球蛋白、醇溶蛋白、谷蛋白②蛋白质含量高与啤酒的酿造关系:▲淀粉含量相对低,浸出率也低。大麦中蛋白质含量每增加1.0%,麦芽浸出物含量约减少0.6%。▲制得麦芽的溶解度较差,啤酒易混浊。▲形成的类黑素(Melanoidins)多,适合生产浓色啤酒,不宜做淡色啤酒(蛋白质含量<11.5-12%。▲可制造低浓度啤酒,以增强泡沫性能和酒体。▲制麦损失增高,生产费用如通风、冷却相应增加。麦胶物质含量高,制麦条件如浸麦、发芽、干燥要加强。蛋白质含量每高1%,制麦损失提高0.3%。▲制得啤酒口味粗重,风味稳定性较差。③蛋白质含量低与啤酒的酿造关系:蛋白质含量<9%,会影响啤酒的泡沫和适口性及酵母的营养等。8.大麦半纤维素和麦胶物质对啤酒影响:①含量:占麦粒干物质的10%~11%,是胚乳细胞壁的构成物,也存在于谷皮中。②半纤维素不溶于水而溶于稀碱溶液。谷皮中的半纤维素主要是戊聚糖及少量的β-葡聚糖和糖醛酸;胚乳中的半纤维素主要含β-葡聚糖及少量戊聚糖。③麦胶物质(Barley gum)在成分组成上与胚乳中的半纤维素无甚差别,只是相对分子质量较半纤维低,多糖混合物,易溶于热水。④半纤维素和麦胶物质中的β-葡聚糖的水溶液粘度极高。发芽过程中,溶解良好的麦芽,β-葡聚糖已大部分分解;溶解不良的麦芽,β-葡聚糖分解不完全,由此制出的麦汁粘度高,不利于麦汁过滤,还会造成啤酒口味不爽的感觉。β-葡聚糖也是引起啤酒混浊的成分之一。9.发芽率、发芽力及指标糖化辅料的作用:大米、玉米①发芽力:发芽力是指3天内发芽的百分数,要求不低于90%②发芽率:发芽率是指5天内发芽的百分数,要求不低于96%③指标糖化辅料的作用:▲大米:①优点:色泽浅、口味清爽、泡沫细腻、酒花香味突出、非生物性好。大米淀粉含量高,蛋白质、多酚类物质、脂肪含量较麦芽低。②缺点:大米用量过大时,会造成麦汁α-氨基氮含量过低,影响酵母的繁殖和发酵。▲玉米:玉米脂肪含量高,脂肪主要集中在胚中,所以一般先去胚,再用于啤酒生产。脂肪进入啤酒会影响啤酒的泡沫性能,同时脂肪容易氧化,会引起啤酒风味变坏。所以生产中要使用新鲜的玉米。 10.啤酒花化学成份及啤酒花的作用:①酒花在啤酒中的作用:▲赋予啤酒香味和爽口苦味▲提高啤酒泡沫的持久性▲促进蛋白质沉淀,有利啤酒澄清▲酒花有抑菌作用,加入麦芽汁中能增强麦芽汁和啤酒的防腐能力②酒花的主要有效成分:▲酒花油:10%~20 %▲酒花树脂(或酒花苦味物质):0.5%~2 %▲多酚类物质:2%~5 %▲其他:单糖、蛋白质、果胶、脂和蜡等11.酿造用水的卫生指标及处理方法—简单了解(重金属离子、硝酸根、亚硝酸根离子、游离氯) 卫生指标:①应无色透明,无异味、异臭。②碳酸盐含量,即碳酸根含量低一些好。③pH应为6.8~7.2,但pH在6.5~7.5之间一般尚可使用。④几种主要离子的含量:▲不允许存在有毒离子,如砷、汞、镉、铝和氰化物等,或以不超过生活饮用水的卫生标准为限。▲重金属离子以只含痕量为好,如铜、铁、锌、锡等,其中铁离子含量应低于0.3mg/L。▲硝酸根、亚硝酸根离子最好都不要超过0.1mg/g⑤游离氯的含量也

发酵工艺学复习资料

1、菌种扩大培养: 种子扩大培养是指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程,称为种子扩大培养。这些纯种培养物称为种子。 2、双酶法糖化工艺: 包括淀粉的液化和糖化两个步骤,液化是利用液化酶使淀粉糊化。粘度降低,并水解到糊精和低聚糖的程度,然后利用糖化酶将液化产物进一步水解成葡萄糖的过程。 3、淀粉老化: 分子间氢键已断裂的糊化淀粉又重新排列形成新的氢键的过程,也就是复结晶 4、淀粉水解糖: 在工业生产上将淀粉水解为葡萄糖的过得称为淀粉的“糖化”,所制得的糖液你为淀粉水解糖。 5、双边发酵工艺: 边糖化边发酵,其持点是采用较低温度使淀粉糖化和酒精发酵同时进行。 发酵周期较长,淀粉利用率低,但产品香气足、风味好,当前一部分厂仍在采用。, 6、二高三低现象: pH高、残糖高、OD值低、温度低、谷氨酸低。 7、发酵转换: 培养条件不适宜,几乎不产生谷氨酸,而得到大量菌体或者谷氨酸发酵转换为累积乳酸,琥珀酸,缬氨酸,谷氨酰胺等。 8、过度氧化作用: 过度氧化作用是指发酵过程中当乙醇即将耗尽而有氧存在时,代谢途径发生改变,醋酸进一步氧化成CO2和水的作用。 9、淀粉糊化: 淀粉乳受热,淀粉颗粒膨胀,当温度上升到一定程度时,淀粉颗粒的偏光十字消失,颗粒急骤膨胀,体积增大几百倍,粘度迅速增高,变成粘稠的糊状物(淀粉糊) 10、双边发酵: 在酿造过程中,在糖化的同时,酒精发酵也同时进行。 11、DE值:

糖化液中的还原糖含量(以葡萄糖计算)占干物质的百分率 %100?=干物质含量 还原糖含量值DE 12、谷氨酸的生物合成途径包括哪些途径? 以葡萄糖为原料的代谢途径,以醋酸和正石蜡为原料的代谢途径 13、在食醋酿造过程中,工厂最常用的醋酸杆菌是什么? 醋酸杆菌(AS1.41 沪酿1.01) 14、现有的谷氨酸生产菌主要是有哪些种属? 短杆菌属 棒杆菌属 小杆菌属 节杆菌属 15、在味精工业谷氨酸发酵中常用的碳源和氮源有什么? 在谷氨酸发酵中,国内常用的碳源为淀粉水解糖,国外常用的为糖蜜。 氮源为尿素,液氨和氨水。 16、谷氨酸发酵的代谢控制育种有哪些? 1.日常菌种工作:定期分纯 小剂量诱变刺激 高产菌制作安瓿管 2.选育耐高渗压菌株:耐高糖,耐高谷氨酸,耐高糖、高谷氨酸 17、谷氨酸发酵过程中污染的原因分析。

(完整版)氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 1味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 2淀粉生产的流程 原料→清理→浸泡→粗碎→胚的分离→磨碎→分离纤维→分离蛋白质→清洗→离心分离→干燥→淀粉3淀粉的液化及糖化定义。 在工业生产上,将淀粉水解为葡萄糖的过程称为淀粉的“糖化”所制的的糖液称为淀粉水解糖 液化是利用液化酶使淀粉糊化,黏度降低,并水解到糊精和低聚糖的程度 4淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 5液化结束后,为何要进行灭酶处理,如何操作? 液化结束后反应快速升温灭酶,高温处理时,通过喷射器快速升温至120~145°,快速升温比逐步升温产生的“不溶性淀粉颗粒”少,所得的液化液既透明又易过滤。淀粉出糖率高,同时由于采取快速升温法,缩短了生产周期 6葡萄糖的复合反应。 7淀粉的糊化、老化定义及影响老化的因素。 (1)糊化 若将淀粉乳加热到一定温度,淀粉颗粒开始膨胀,偏光十字消失。温度继续上升,淀粉颗粒继续膨胀,可达原体积几倍到几十倍。由于颗粒的膨胀,晶体结构消失,体积膨胀大,互相接触,变成糊状液体,虽然停止搅拌淀粉也不会再沉淀,这种现象称为糊化。 (2)老化 分子间氢键已断裂的糊化淀粉又重新排列成为新氢键的过程。 (3)影响老化的因素①淀粉的成分(直链易老化,支链淀粉难老化)②液化程度③酸碱度④温度⑤淀粉糊浓度 8 DE值与DX值的概念. DE值表示淀粉水解程度或糖化程度。也称葡萄糖值 DE=还原糖浓度/(干物质浓度*糖液相对密度)*100% DX值指糖液中葡萄糖含量占干物质的百分率。 DX=葡萄糖浓度/(干物质浓度*糖液相对密度)*100% 9淀粉水解糖的质量要求有哪些? 1糖液透光率>90%(420nm)。2不含糊精、蛋白质(起泡物质)。3转化率>90%。DE值(Dextrose equivalent,葡萄糖当量值)4还原糖浓度:18%左右。5糖液不能变质。6pH4.6-4.8 10 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 酸水解法是利用无机酸为催化剂,在高温高压下,将淀粉转化为葡萄糖的方法。该法具有工艺简单,水解时间短,生产效率高,设备周转快的优点。该水解法要求耐腐蚀,耐高温,耐压的设备。 酸酶法是先将淀粉用酸水解成糊精或低聚糖,然后再用糖化酶将其水解为葡糖糖的工艺。采用酸酶法水解淀粉制糖,酸用量少,产品颜色浅,糖液质量高 酶水解法主要是将淀粉乳先用α-淀粉酶液化,过滤除去杂质后,然后用酸水解成葡萄糖的工艺。该工艺适用于大米或粗淀粉原料 11 固定化酶的定义及制备方法有哪几种? 固定化酶(immobilized enzyme):由于水溶性酶的缺点,所以将它与固相载体相连,由固相状态催化反应,称酶的固定化. ①吸附法②偶联法③交联法④包埋法 12生物素对谷氨酸生物合成途径影响。 1.生物素对糖代谢的速率的影响(主要影响糖降解速率)

葡萄品种学 练习题

葡萄品种学 第二、三章 一、填空题 1.结果枝率是结果枝占总数的百分率。 2.法国兰的果实出汁率属于中,则其出汁率在。 3.对成熟叶片的调查,应在时期进行。 4.叶片长度以长度为准。 5.与人类利用效果有关的全部生物学性状称为性状。 6.葡萄果实成熟期是从到果实完全成熟所需的天数。 7.单穗重量为80g的葡萄其果穗重量属于 8.一般认为葡萄果实颜色的遗传受对基因控制。 9.葡萄最主要的用途是。 10.葡萄在生长发育过程中,由环境条件引起的变异称为。 11.卵细胞不经过受精发育为果实的现象称为。 12.葡萄果汁的颜色属于性状的遗传。 13.一般认为,欧洲葡萄与抗病的野生种杂交,葡萄对白粉病的抗性为 性状的遗传。 14.在葡萄的芽变中层组织原细胞变异可以通过有性过程传递给 后代。 15.白色葡萄品种自交或互交,后代果实全部或绝大多数为。 16.一般情况下,发生芽变时只是个别细胞发生突变,因此,芽变开始发生时 总是以的形式出现的。 17.无核白果实的结实特性属于结实。 18.一般情况下,发生芽变时只是个别细胞发生突变,因此,芽变开始时总是 以的形式出现的。 19.葡萄杂交后代果实成熟期的遗传具有趋变异共同特点。 20.同一品种相同类型的芽变,可以在不同时期、不同地点、不同单株上重复 发生,这就是芽变的。 21.果实成熟期的遗传属于性状的遗传。

二、多项选择题 1.由葡萄中皮原细胞产生的突变,可引起葡萄○○○○○性状的变异。 ①胚珠②果皮③花粉④果实的表皮毛⑤果肉 2.葡萄晚熟品种间的杂交表现为○○○○○ ①多数晚熟②少数晚熟③多数中熟④少数中熟⑤全部晚熟 3.葡萄中熟品种间的杂交表现为○○○○○ ①多数中熟②少数中熟③多数晚熟④少数晚熟⑤一定数量 为早熟 4.植物性状的变异表现为○○○○○的变异 ①形态特征②组织结构③生理生化特征④生态特征⑤抗性 5.葡萄发生的变异中,○○○○○属于可遗传的变异 ①芽变②基因的重组和互作③饰变④细胞质突变⑤染色体变异 6.在葡萄抗病遗传中,研究较多的有○○○○○ ①霜霉病遗传②炭疽病遗传③白粉病遗传④毛毡病遗传⑤黑痘病遗传 7.芽变嵌合体的类型有○○○○○ ①周缘嵌合体②扇形嵌合体③周缘扇形嵌合体④嫁接嵌合体⑤异源嵌合体 8.果树杂种的遗传变异与一二年生的有性繁殖大田作物的区别主要表现在 ○○○○○ ①品种间杂种性状复杂分离②变异稳定③经济性状普遍退化 ④杂种群体若干经济性状趋中变异⑤基因重组率低 9.芽变具有○○○○○ ①多样性②重演性③稳定性④局限性⑤不可识别性 三、判断题 1.对枝条性状的观察可以在休眠期进行。

发酵工艺学论文1

传统大豆发酵食品的研究进展 学生姓名:钟宇航 学号:20090412310035 学院:材料与化工学院 年级专业:09生物与工程 2012年 6 月 10 日

传统大豆发酵食品的研究进展 摘要:豆豉、豆酱、酱油和腐乳并列为我国四大传统大豆发酵食品,生产历史悠久,分布广泛,具有丰富的营养价值和强大的保健功能。但是在其生产工艺、微生物分布、营养生理功能等方面存在着安隐患及需要解决的实际问题。 关键词:传统发酵食品、营养价值、保健功能、安全隐患 中国是大豆的故乡,几千年来,大豆为中华民族的繁衍生息做出了不可磨灭的贡献,而大豆发酵食品也成为中国传统食品中的一朵奇葩。大豆发酵食品不仅含有大豆中原有的丰富营养素,而且通过微生物发酵作用又产生很多种对人体有极高保健作用的功能性物质,因此,在许多国家都掀起了对大豆发酵食品的研究热潮。 豆豉、豆酱、酱油和腐乳并列为我国四大传统大豆发酵食品,它们均具有营养丰富、易于消化吸收等优点,在我国有悠久的生产历史,已成为我国饮食文化的重要组成部分,具有较好的消费基础。过去我国生产大豆发酵食品是以家庭作坊式为主,全靠自然发酵。这样不仅发酵周期长,而且存在食品安全隐患。因此,为了满足广大消费者的需求,必须寻求工业化的道路。而要想实现发酵豆制品生产的工业化,首先就要先了解自然发酵产品中的主要发酵微生物,然后才能从中筛选出适合工业发酵的菌株进行纯种发酵。 一、传统大豆发酵食品及其中微生物的分布 1、豆豉中微生物的分布 豆豉的起源可以追溯到汉朝以前,自古以来深受人民喜爱。现代研究表明豆豉中含有大量能溶解血栓的尿激酶,还富含一些能产生大量B 族维生素和抗菌素的人体益生菌[1]。根据发酵微生物不同豆豉可分为四大类:细菌型( 如四川水豆豉、日本纳豆) 、毛霉型( 如四川永川豆豉、潼川豆豉)、根霉型(如印尼天培)和曲霉型(如广东阳江豆豉、湖南浏阳豆豉) 。 自然发酵的豆豉中主要的微生物菌群为细菌和霉菌,而酵母菌较少,为非主要作用微生物,这与未经过酸浸工序的天培相似。其中芽孢菌的数量仅为4.5~4.6 ×105CFU/g,说明豆豉制曲过程是一个混合发酵过程。但由于细菌中除了芽孢菌外,其余菌株产蛋白酶和淀粉酶能力不高,所以制曲过程中的主要菌系应为霉菌而非细菌[2]。 曲霉型豆豉中的曲霉菌可以占霉菌总数的9 0 % 以上。天培和纳豆是由我国豆豉传到国外后,为适应当地气候和文化而改造的产品。自然发酵的天培中主要发酵微生物为米根霉、少孢根霉[3]等。而纳豆生产则主要是的纳豆杆菌[4]。

氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 淀粉生产的流程。 淀粉的液化及糖化定义。 淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 液化结束后,为何要进行灭酶处理,如何操作? 葡萄糖的复合反应。 淀粉的糊化、老化定义及影响老化的因素。 DE值与DX值的概念 淀粉水解糖的质量要求有哪些? 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 固定化酶的定义及制备方法有哪几种? 生物素对谷氨酸生物合成途径影响。 在谷氨酸发酵中如何控制细胞膜渗透性。 诱变育种概念。 谷氨酸生产菌的育种思路 现有谷氨酸生产菌主要有哪四个菌属。 谷氨酸发酵生产菌的主要生化特点。 日常菌种工作。 菌种扩大培养的概念和任务 谷氨酸发酵一级种子和二级种子的质量要求 影响种子质量的主要因素 氨基酸生产菌菌种的来源有哪些。 工业微生物菌种保藏技术是哪几种? 冷冻保藏的分类 菌种衰退和复壮的概念 代谢控制发酵的定义 谷氨酸发酵培养基包括哪些主要营养成分。 生长因子的概念 影响发酵产率的因素有哪些。 谷氨酸发酵过程调节pH值的方法 谷氨酸发酵不同阶段对PH的要求:前期pH7.3、中期pH7.2 、后期pH7.0 放罐pH6.8 谷氨酸发酵时,出现泡沫过多,一般是什么原因,该怎样处理? 谷氨酸发酵过程,菌体生长缓慢或不长的原因及解决方法? 谷氨酸发酵过程,耗糖快,pH偏低, 产酸低原因及解决方法 谷氨酸生产菌最适生长温度为?,发酵谷氨酸最适发酵温度?,最适合生长pH为?。 发酵过程中CO 2迅速下降,说明污染噬菌体, CO 2 连续上升,说明污染杂菌 消泡方法有哪几种?一次高糖发酵工艺 噬菌体侵染的异常现象染菌的分析

发酵工艺学名词解释

名词解释:1.发酵:通过微生物的生长和代谢活动,产生和积累人们所需代谢产物的一切微生物培养过程。 2.发酵工艺:指工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺。 3.前体:在微生物代谢产物的生物合成过程中,有些化合物能直接被微生物利用构成产物分子结构的一部分,而化合物本身的结构没有大的变化,这些物质称为前体。 4.热阻:指微生物在某一特定条件下的致死时间。 5.对数残留定律:指在一定温度下,微生物受热后,活菌数不断减少,其减少速度随残留活菌数的减少而降低,且在任何瞬间,菌的死亡速率与残存的活菌数成正比。 6.实消:将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所有设备一起进行加热灭菌的操作过程称为实罐灭菌。 7.连消:培养基在发酵罐外经过一套灭菌设备连续加热灭菌,冷却后送入已灭菌的发酵罐内,这种工艺过程称为连消灭菌。 8.空消:无论是种子罐、发酵罐还是液氨罐、消泡罐,当培养基尚未进罐前对罐进行预先灭菌,为空罐灭菌。 9.液化:用ɑ-淀粉酶将淀粉转化为糊精和低聚糖。 10.糖化:用糖化酶将糊精和低聚糖转化葡萄糖。 11.种子制备:将固体培养基上培养出的孢子或菌体转入到液体培养基中培养,使其繁殖成大量菌丝或菌体的过程。 12.菌种保藏:根据菌种的生理、生化特性,人工创造条件使菌体的代谢活动处于休眠状态。 13.呼吸临界氧浓度:在溶解浓度低时,呼吸强度随溶氧浓度的增加而增加,当溶氧浓度达到某一值后,呼吸强度不再随溶解氧浓度的增加而变化,把此时的溶解氧浓度称为呼吸临界氧浓度。 14.溶解氧饱和度:在一定温度和压力下,空气中的氧在水中的溶解度。 15.氧传递系数:比表面积与以浓度差为推动力的氧传质系数的乘积。 16.分批发酵:指一次性投入料液,发酵过程中不补料,一直到放罐。 17.补料分批发酵:指在发酵过程中一次或多次补入含有一种或多种营养成分的新鲜料液,以达到延长发酵周期,提高产量的目的。 18.连续发酵:指在特定的发酵设备中进行的,一边连续不断地输入新鲜无菌料液,同时一边连续不断地放出发酵料液。 简答题:1发酵过程有哪些特征谈谈你对发酵工程技术应用前景的想法 特征:1.原料广 2.反应条件温和,易控制 3.产物单一,纯度高 4.投资少,效益好想法:随着生物技术的发展,发酵工程的应用领域也在不断扩大,基因工程及细胞杂交技术在微生物育种上的应用,将使发酵用菌种量达到前所未有的水平;生物反应器技术及分离技术的相应进步将发酵工业的某些神秘特征;由于物理微生物数据库、发酵动力学、发酵传递学的发展,将使人们能够清楚的描述与使用微生物。(个人的,你也可以自已) 2.发酵工业对菌种的要求 答:1.菌种不能是病源菌 2.发酵周期短,生产能力强 3.发酵过程中不产生或少产生与目标产物性质相似的副产物 4.原料来源广泛价格低廉,菌种能高效地将原料转化为产品5.对需添加剂的前体有耐受能力,且不能将前体作为一般碳源利用 6.遗传性状稳定,菌种不易变异退化 7培养条件易于控制 3.菌种选育有哪些方法 答:1.自然选育 2、诱变选育 3.原生质体技术育种 4.基因工程技术育种 4.自然选育、诱变选育的概念,一般步骤,影响诱变的主要因素。

氨基酸生产工艺

氨基酸生产工艺 主讲人:韩北忠 刘萍 氨基酸是构成蛋白成分 目前世界上可用发酵法生产氨基酸有20多种。 氨基酸 α 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。 氨基酸的用途 1. 食品工业: 强化食品(赖氨酸,苏氨酸,色氨酸于小麦中) 增鲜剂:谷氨酸单钠和天冬氨酸 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(α-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。 2. 饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3. 医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 4. 化学工业:谷氨基钠作洗涤剂,丙氨酸制造丙氨酸纤维。 氨基酸的生产方法 发酵法: 直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。 添加前体法 酶法:利用微生物细胞或微生物产生的酶来制造氨基酸。 提取法:蛋白质水解,从水解液中提取。胱氨酸、半胱氨酸和酪氨酸 合成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙氨酸。 传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。 生产氨基酸的大国为日本和德国。 日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能生产高品质的氨基酸,可直接用于输液制剂的生产。 日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。 国内生产氨基酸的厂家主要是天津氨基酸公司,湖北八峰氨基酸公司,但目前无论生产规模及产品质量还难于与国外抗衡。 在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术和仿造产品, 1991年销售量为二千万瓶,1996年达六千万瓶,主要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原

发酵工艺学

1.大麦的组成 大麦的组织结构及生理作用:大麦主要由胚、胚乳和谷皮三部分组成。 大麦的化学组成: 1.水分:11~20%,储存大麦的水分应在13%以下。 2.碳水化合物 ①淀粉含量:58~65%.直链淀粉:占大麦淀粉的17~24%,支链淀粉:占大麦淀粉 的76~83%. ②纤维素:占大麦干物质重量的3.5~7.0%③半纤维素与麦胶物质:占麦粒干物 质的 10~11%,④低分子碳水化合物:大麦含2%的糖类,主要是蔗糖少量棉子糖、麦 芽糖、葡萄糖和果糖。 3.蛋白质:包括ⅰ麦白蛋白,ⅱ球蛋白,ⅲ醇溶蛋白,ⅳ谷蛋白 4.脂肪:约占大麦干物质的2~3%,95%以上属于甘油三酸脂, 5.磷酸盐:大部分为植酸钙镁,占干重的0.9% 6.无机盐:其含量为干物质的2.5~3.5%,主要成分是钾、磷、硅,其次是钠、 钙、镁、铁、硫等。 7.酚类物质:大麦中的酚类物质只占干物质的0.1~0.3%,如花色苷、儿茶酸等, 2.什么是浸出率

每100公斤原料糖化后的麦汁中,获得浸出物的百分数,即为糖化浸出物收得率,表示为: (麦汁中浸出物数量/投料量)*100% 3.酒花的主要成分有哪些?各部分在啤酒酿造中的作用是什么? ①酒花树脂:成分非常复杂,已经定性的有α-酸、β-酸。α-酸具有苦味力和防腐力,极易异构化成异α-酸,异α-酸具有极强烈的苦味力,啤酒的苦味主要来自于异α-酸。β-酸的氧化物则具有细致而强烈的苦味力,这一部分苦味可以补偿α-酸因氧化而失去的苦味度。②酒花油:是啤酒酒花香味的主要来源.③多酚物质:它是引起啤酒浑浊的主要成分,酒花中的单宁物质易氧化,单宁及其氧化物均易与蛋白质缩合,形成不溶性的复合物而沉淀,因此对麦汁澄清起一定的作用,这是它有利的一面。单宁能减低就得泡持性,增加啤酒色泽,并有苦涩味,这是对啤酒质量不利的一面。 6.麦芽粉碎的目的与要求? 麦芽的粉碎分为干粉碎和湿粉碎二种方式.谷皮主要由纤维素组成,它不溶于水,糖化时酶对它不起作用。谷皮有弹性,是构成麦汁过滤的自然过滤层。麦芽粉碎有利于麦汁过滤,又可增加麦芽浸出率。 对麦芽粉碎度的要求应该是:谷皮破而不碎;胚乳部分则愈细愈好,对溶解不好的麦芽更应如此 9.糖化温度控制分为几个阶段?如何规定的? ⑴35~40 ℃浸渍阶段:有利于酶的浸出和酸的形成,并有利于β-葡聚糖的分解。 ⑵45~55 ℃蛋白分解阶段:此时的温度称为蛋白分解温度,其控制方法如下

发酵工艺学整理资料全

发酵工艺学整理资料 1.发酵工程的概念:指利用微生物的生长繁殖和代活动来大量生产人们所需产品过程的 理论和工程体系。 2.发酵工程的容:微生物菌种选育和保藏,培养基和发酵设备的灭菌技术,空气 净化技术,菌种的扩大培养,代产物发酵生产,发酵过程中参数检测、分析和控 制技术,发酵过程中补料技术,产品分离纯化技术 3.巴斯德证明了酒精是由活的酵母发酵引起的 4.发酵产品的类型: A微生物菌体发酵目的:获得微生物菌体细胞例如酵母和藻类、担子菌、 云金芽杆菌、疫苗等特点:细胞的生长与产物积累成平行关系,生长稳定期产 量最高。 B微生物酶发酵目的:获得酶制剂和酶调节剂例如青霉素酰化酶、糖苷酶 抑制剂特点:需要诱导作用,或遭受阻遏、抑制等调控作用的影响,在菌种 选育、培养基配制以及发酵条件等方面需给予注意 C微生物代产物发酵: 包括初级代产物(无种属特异性)和次级代产物(微量、 有种属特异性、特殊活性) D微生物转化发酵 生物转化:是利用生物细胞对一些化合物某一特定部位(基团)的作用,使它转变 成结构相类似但具有更在经济价值的化合物 实质:利用微生物代过程中的某一酶或酶系将一种化合物转化成含有特殊功能集 团产物的生物化学反应。 E基因工程发酵 F 动、植物细胞产物的发酵 5.发酵的方法: A表面发酵培养 固体表面发酵培养:投资小、设备少、简单易行、适于小型化生产 B液体深层发酵培养 微生物细胞在液体深层中进行纯种培养的过程 6.液体深层发酵流程 保藏菌种斜面活化扩大培养种子罐主发酵产物分离纯化 成品7.微生物转化与发酵的区别 发酵是通过微生物的生长繁殖和代活动,产生人们所需产品的过程。其核心是 微生物 8.菌种选育的目的: 提高发酵产量;改进菌种性能;去除多余组分;产生新的发酵产物 9.菌种选育基本理论:遗传与变异;遗传与变异的物质基础;基因突变的本质 10.菌种选育技术: A自然选育用途:分离、纯化、复壮菌种 B诱变育种用途:发酵工业广泛应用 C 原生质体融合用途:有两个合适亲本时的菌种选育 D基因工程育种用途:清楚微生物的遗传背景时的菌种选育 11.菌种退化和变异的原因 A遗传基因型的分离要点:遗传物质的多样化,群体繁殖 B 自发突变的结果可能原因:1)沙土管长期保藏 2)连续传代 3)新代产生的

抗生素发酵工艺学知识要点

《抗生素发酵工艺学》知识要点 (1)发酵工业的生产水平取决于三个要素,即生产菌种、生产工艺、生产设备。 (2)目前无菌检测的方法主要四种,即镜检法、肉汤培养法、平板划线培养和发酵过程异常现象观察法。 (3)发酵醪中菌体分离一般采用离心分离和过滤分离两种方法。(4)在微生物培养过程中,引起培养基pH值改变的原因主要有营养成份的消耗和代谢物的累积等。 (5)发酵过程控制的目的就是得到最大的比生产率和最大的得率。 (6)发酵工业中常用灭菌方法:化学灭菌、射线灭菌、干热灭菌、湿热灭菌。 (7)常用工业微生物可分为细菌、酵母菌、霉菌、放线菌四大类。(8)常用菌种保藏方法有斜面保藏法、沙土管保藏法、液体石蜡保藏法和真空冷冻保藏法等 (9)发酵高产菌种选育方法包括自然选育、杂交育种、诱变育种、基因工程育种、原生质体融合 (10)发酵产物整个分离提取路线可分为预处理、固液分离、初步纯化、精细纯化和成品加工等五个主要过程。 (11)工业微生物菌种可以来自自然分离,也可以来自从微生物菌种保藏机构单位获取。 (12)环境无菌的检测方法有显微镜检查法、肉汤培养法、平板培养法、发酵过程的异常观察法等。 (13)发酵罐发酵过程中的物理检测参数有温度、转速、压力、搅拌转速和空气流量)。 (14)前体:是指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大提高的化合物。

(15)发酵生长因子:从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子。 (16)生理性酸性物质:经微生物代谢等作用后能形成酸性物质使培养基pH值下降的营养物质。 (17)限制性基质:微生物生长速率与底物浓度有一定的依赖关系,当底物浓度很小,微生物生长速率与底物浓度成正比,此时基质叫限制性基质。 (18)发酵热:所谓发酵热就是发酵过程中释放出来的净热量。什么叫净热量呢? 在发酵过程中产生菌分解基质产生热量,机械搅拌产生热量,而罐壁散热、水 分蒸发、空气排气带走热量。这各种产生的热量和各种散失的热量的代数和就 叫做净热量。发酵热引起发酵液的温度上升。发酵热大,温度上升快,发酵热 小,温度上升。 (19)染菌率:总染菌率指一年发酵染菌的批(次)数与总投料批(次)数之比的百分率。染菌批次数应包括染菌后培养基经重新灭菌,又再次染菌的批次数在 内。 (20)连消:连消也叫连续灭菌,就是将将配制好的并经预热(60~75℃)的培养基用泵连续输入由直接蒸汽加热的加热塔,使其在短时间内达到灭菌温度 (126~132℃),然后进入维持罐(或维持管),使在灭菌温度下维持5~7分钟 后再进入冷却管,使其冷却至接种温度并直接进入已事先灭菌(空罐灭菌)的 发酵罐内的培养基灭菌方法。其过程均包括加热、维持和冷却等灭菌操作过程。(21)DE值(葡萄糖值):表示淀粉水解程度及糖化程度,指葡萄糖(所有测定的还原糖都当作葡萄糖来计算)占干物质的百分率。 (22)补料分批培养:在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。在此过程中只有料液的加入没有料液的取出,所以 发酵结束时发酵液体积比发酵开始时有所增加。在工厂的实际生产中采用这种 方法很多。 (23)次级代谢产物:从初级代谢途径中形成分枝代谢途径,并用初级代谢产物生成与菌体生长繁殖无关的物质或功能还未明的化合物,这个过程称次级代谢。

传统发酵食品工艺学复习提纲

发酵工艺学 1、我国发酵食品的工艺特色 采用多种原料,且多以淀粉质原料为主。多菌种混合发酵,且多以霉菌为主的微生物群(国外多以细菌、乳酸菌)。工艺复杂、多用曲:董酒生产制的曲用72味中药。多为固态发酵:醅、醪。 2、生产酱油用的原料、菌种有哪些?P7 原料包括蛋白质原料(豆粕、豆饼、花生饼、大豆、其它蛋白质原料)、淀粉质原料(麸皮、小麦、碎米、米糠、玉米、甘薯、大麦、粟、高粱等)、食盐、水及一些辅助原料(苯甲酸钠、山梨酸钠,丙酸)。 菌种①霉菌主要为曲霉(米曲霉、黑曲霉、甘薯曲霉、黄曲霉)、毛霉和根霉,其中最重要的是米曲霉(有些酱油发酵料会受到黄曲霉的污染),其产酶能力较强。②细菌有有益的醋酸杆菌、乳酸菌等,有害的小球菌、短杆菌、马铃薯杆菌、芽孢杆菌和粪链球菌等;③酵母菌有有益的鲁氏酵母、假丝酵母、汉逊酵母,有害的醭酵母、毕赤氏酵母和圆酵母等菌属。 3、酱油发酵剂: 酱油发酵料中微生物的数量在发酵前和发酵后有很大的变化,这是因为在发酵前温度较低,适合各类微生物生长,当进入高温期(55~60℃)后,大部分微生物被淘汰,仅剩下一些高温且耐盐的微生物继续生长。 从微生物优势菌群变化情况来看,低温发酵时细菌占绝对优势,其次为霉菌,再次是酵母菌;当发酵进入高温期后,细菌大量衰亡,被霉菌中少数耐热种取代,但芽孢菌的数量和优势变化不大。 酱油发酵料中的主要霉菌为曲霉、毛霉和根霉,其中最重要的是米曲霉(有些酱油发酵料会受到黄曲霉的污染),其产酶能力较强。酱油发酵料中主要的细菌有有益的醋酸杆菌、乳酸菌等,有害的小球菌、短杆菌、马铃薯杆菌、芽孢杆菌和粪链球菌等;酵母菌有有益的鲁氏酵母、假丝酵母、汉逊酵母,有害的醭酵母、毕赤氏酵母和圆酵母等。 酱油发酵醪液的初始pH值一般为6.5-7.0,由于蛋白质被酶降解成氨基酸和低肽以及乳酸菌的发酵,pH会迅速降低。酱油醪中的主要乳酸菌为酱油足球菌、大豆足球菌以及植物乳杆菌。 如果pH低于5.5-5.0,这些菌生长将逐渐趋缓。在酱油醪中主要发酵酵母的耐渗透压酵母,在18%的盐溶液中最适pH为4.0-5.0。因此当醪液的pH降至5.5-5.0时,酵母发酵取代乳酸发酵。 当pH在这个范围内时,常添加耐酸酵母菌的纯培养种子。在酱油发酵醪中,耐渗透压酵母、假丝酵母,耐渗透压酵母和假丝酵母的水活度分别为0.78 -0.8 1和0.84-0.98。这两种酵母都能在24%和26%的盐溶液中生长。 产膜酵母是引起酱油污染的主要菌。比如异常汉逊酵母和膜醭毕赤氏酵母这两种酵母就会在酱油表面氧化生长,并形成白色的薄膜,从而降低酱油的感官和营养品质。当酱油的盐分降低至15%以下还会生成一些对酱油品质产生不利影响的乳酸菌,如胚芽乳杆菌,降低酱油的风味。 4、酱油加工的生化变化有哪些?P21 ①原料植物组织的分解②蛋白质分解③淀粉糖化④脂肪的水解⑤酒精发酵⑥酸类发酵 5、生酱油需经过加热的目的是什么? 杀灭酱油中残存微生物,延长酱油保存期。破坏微生物所产生的酶,特别是脱羧酶和磷酸单酯酶,避免继续分解氨基酸而降低酱油质量。还有澄清、调和香味,增加色泽作用。 6、简述酱油的酿造原理和工艺流程。P12 原料中的蛋白质经过米曲霉所分泌的蛋白酶作用,分解成多肽、氨基酸,谷氨酰胺酶使谷氨酰胺转化为谷氨酸。原料中的淀粉质经米曲霉分泌的淀粉酶糖化作用,水解成糊精和葡萄糖。

发酵工艺学原理作业

调味品报告 姓名:班级:学号: 一、行业简介 1.行业的历史 (1)调味品定义 调味品(flavouring、condiment、seasoning)是指在饮食、烹饪和食品加工中广泛应用的,用于调和滋味和气味并具有去腥、除膻、解腻、增香、增鲜等作用的产品。 (2)调味品历史沿革 ①第一代——单味调味品 例如:酱油、食醋、酱、腐乳及辣椒、八角等天然香辛料,其盛行时间最长,跨度数千年。 ②第二代——高浓度及高效调味 例如:超鲜味精、甜蜜素、阿斯巴甜、甜叶菊和木糖等,还有酵母抽提物、HVP、HAP、食用香精、香料等。此类高效调味品从70年代流行至今。 ③第三代——复合调味品 例如:火锅底料、烧肠香料、午餐肉香料、酱猪头香料、五香扒鸡料。现代化复合调味品起步较晚,进入90年代才开始迅速发展。目前,上述三代调味品共存,但后两者逐年扩大市场占有率和营销份额。 ④第四代——纯天然调味品 纯天然调味品以纯提前技术为前提,更以营养健康为重。目前,在益意追求健康为主的呼吁下,纯天然调味品所占领的市场份额越来越大。 (3)酱油的历史 酱油及酱类酿造调味品生产最早发明于我国,至今已有两千多年的历史。制酱的方法最早出现在《齐民要术》中〔公元532-549年)。中国历史上最早使用“酱油”名称是在宋朝,林洪著《山家清供》中有记述。此外,古代酱油还有其他名称,如清酱、豆酱清、酱汁等。公元755年后,酱油生产技术随鉴真大师传至日本,后又相继传入朝鲜、越南、泰国、马来西亚、菲律宾等国。制作酱油的原料因国家、地区的不同,使用的配料不同,风味也不同,比较出名的是泰国的鱼露(使用鲜鱼)和日本的味噌(使用海苔)。 2.产品的分类和用途 (1)调味品按照性质分类 ①酿造类调味品 以含有较丰富的蛋白质和淀粉等成分的粮食为主要原料,经过处理后进行发酵,即借有关微生物酶的作用产生一系列生物化学变化,将其转变为各种复杂的有机物。此类调味品主要包括:酱油、食醋、酱、豆豉、豆腐乳等。 ②腌菜类调味品 将蔬菜加盐腌制,通过有关微生物及鲜菜细胞内的酶的作用,将蔬菜体内的蛋白质及部分碳水化合物等转变成氨基酸、

相关文档
最新文档