加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践
加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践

发表时间:2019-09-01T18:59:57.400Z 来源:《防护工程》2019年12期作者:薛晓阳

[导读] 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。

中国石油哈尔滨石化公司 150030

摘要:随着社会日益发展的需要和原油的日益劣质化、重质化,以及环境的污染,国家对干净、清洁的能源燃料越来越重视,而蜡油加氢裂化技术是原油深度加工生产清洁燃料的重要方式,所以在未来加氢裂化技术将会越来越普遍和推广。本文就以美国UOP公司的

Unicraking两段加氢裂化工艺技术为例进行实践论证。

关键词:加氢裂化;?催化柴油;?产品质量;

1 装置概况

为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。设计加工来自国外的减压蜡油,经过加氢脱硫、加氢脱氮、加氢裂化等反应,生产优质的轻、重石脑油、航煤和柴油产品,加氢尾油作为催化裂化装置原料。本装置反应的部分流程如下:

图1 装置反应部分流程

2?催化剂分布及原料性质

2.1 催化剂分布

本装置一段反应器共六个床层,其中第一床层到第四床层为加氢精制床层,催化剂型号分别为CT-30、KF-542、KG-5、HYT-8109、HYT-8119、KF-848 (再生) 、HYT-6219,第五床层和第六床层为加氢裂化床层,催化剂型号为HC-115LT (再生) ,反应器底部后精制剂型号为KF-851 (再生) 。

表1 原料油性质分析对比表

2.2 原料性质及特点

本装置自开工正常运转一段时间后,为了维持全厂物料平衡和实现效益最大化,开始在原料油中掺入催化柴油,并逐步增加至60 t/h。如表1所示为在总进料量330 t/h不变的情况下,原料中未掺入以及掺入20 t/h、40 t/h及60 t/h数量催化柴油组成的滤后原料油的主要性质参数。在整个掺炼观察期间,装置正常运行,各产品质量合格。

通过表1原料油性质分析对比表可以看出随着催化柴油掺炼比例的提高,混合原料油的密度逐渐增大,氮含量、硫含量所占比例都有相应的升高,这与催化柴油高硫、高氮性质特点相吻合,但由于本装置氮含量设计要求不大于867 mg/kg,所以为保证本装置催化剂失活速率在正常范围内,建议在装置运行前期,当混合原料油中氮含量大于867mg/kg时,操作人员应密切关注原料油性质及反应器床层温度变化。随掺炼比例的增加,初馏点温度呈现下降趋势和350℃馏出量所占体积分数逐渐增大的情况来看,催柴中含有一定比例的小分子轻组分;根据混合原料终馏点温度的逐渐上升和500℃馏出量所占体积分数下降的情况,得出催化柴油中同时含有大量的单环和多环芳烃,使得混合后

柴油加氢改质装置

柴油加氢改质装置 一工艺原理 1加氢精制 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其 典型反应如下 (1)脱硫反应: 在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原 子被脱掉。 化学反应方程式: 二硫化物:RSSR’ + 3H2→RH + R’H + 2H2S 二硫化物加氢反应转化为烃和H2S,要经过生成硫醇的中间阶段,即首先S-S键上断开,生 成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也能转化成硫醚。 噻吩与四氢噻吩的加氢反应: 噻吩加氢产物中观察到有中间产物丁二烯生成,并且很快加氢成丁烯,继续加氢成丁烷苯并噻吩在50-70大气压和425℃加氢生成乙基苯和硫化氢: 对多种有机含硫化物的加氢脱硫反应进行研究表明:硫醇、硫醚、二硫化物的加氢脱硫反应 多在比较缓和的条件下容易进行。这些化合物首先在C-S键,S-S键发生断裂,生成的分子碎片 再与氢化合。环状含硫化物加氢脱硫较困难,需要苛刻的条件。环状含硫化物在加氢脱硫时,首 先环中双键发生加氢饱和,然后再发生断环再脱去硫原子。 各种有机含硫化物在加氢脱硫反应中的反应活性,因分子结构和分子大小不同而异,按以下 顺序递减:

RSH>RSSR>RSR>噻吩 噻吩类化合物的反应活性,在工业加氢脱硫条件下,因分子大小不同而按以下顺序递减:噻吩>苯并噻吩>二苯并噻吩>甲基取代的苯并噻吩 (2)脱氮反应 石油馏分中的含氮化合物可分为三类: a 脂肪胺及芳香胺类 b 吡啶、喹啉类型的碱性杂环化合物 c 吡咯、咔唑型的非碱性氮化物 在各族氮化物当中,脂肪胺类的反应能力最强,芳香胺(烷基苯胺)等较难反应。无论脂肪族胺或芳香族胺都能以环状氮化物分解的中间产物形态出现。碱性或非碱性氮化物都是比较不活泼的,特别是多环氮化物更是如此。这些杂环化合物存在于各种中间馏分,特别是重馏分,以及煤及油母页岩的干馏或抽提产物中。在石油馏分中,氮化物的含量随馏分本身分子量增大而增加。在石油馏分中,氮含量很少,一般不超过几个ppm。 在加氢精制过程中,氮化物在氢作用下转化为NH3和烃。几种含氮化物的氢解反应如下: 根据发表的有关加氢脱氮反应的热力学数据,至少对一部分氮化物来说,当温度在300-500℃范围内,需要较高的氢分压才能进行加氢脱氮反应。从热力学观点来看,吡啶的加氢脱氮比其它氮化物更困难。为了脱氮完全,一般需要比脱硫通常采用的压力范围更高的压力。 在几种杂原子化合物中,含氮化合物的加氢反应最难进行,或者说它的稳定性最高。当分子结构相似时,三种杂原子化合物的加氢稳定性依次为: 含氮化合物>含氧化合物>含硫化合物 例如:焦化柴油加氢时,当脱硫率达到90%的条件处,其脱氮率仅为40%。

蜡油加氢裂化装置

180万吨/年蜡油加氢裂化装置 一、工艺流程选择 1、反应部分流程选择 A.反应部分采用单段双剂串联全循环的加氢裂化工艺。 B.反应部分流程选择:本装置采用部分炉前混氢的方案,即部分混合氢和原料油混合进入高压换热器后进入反应进料加热炉,另一部分混合氢和反应产物换热后与加热炉出口的混氢油一起进入反应器。 C.本装置采用热高分流程,低分气送至渣油加氢脱硫后进PSA部分,回收此部分溶解氢。同时采用热高分油液力透平回收能量。因本装置处理的原料油流含量很高,氮含量较高,故设循环氢脱硫设施。 2、分馏部分流程选择 A.本项目分馏部分采用脱硫化氢塔-吸收稳定-常压塔出航煤和柴油的流程,分馏塔进料加热炉,优化分流部分换热流程。采用的流程比传统的流程具有燃料消耗低、投资省、能耗低等特点。 B.液化气的回收流程选用石脑油吸收,此法是借鉴催化裂化装置中吸收稳定的经验,吸收方法正确可靠,回收率搞。具有投资少、能耗低、回收率可达95%以上等特点。 3、催化剂的硫化、钝化和再生 A、本项目催化剂硫化拟采用干法硫化 B、催化剂的钝化方案采用低氮油注氨的钝化方案 C、催化剂的再生采用器外再生。 二、工艺流程简介 1、反应部分

原料油从原料预处理装置和渣油加氢裂化装置进入混合器混合后进入原料缓冲罐(D-101),经升压泵(P-101)升压后,再经过过滤(SR-101),进入滤后原料油缓冲罐(D-102)。原料油经反应进料泵(P-102)升压后与部分混合氢混合,混氢原料油与反应产物换热(E-101),然后进入反应进料加热炉(F-101)加热,加热炉出口混氢原料和另一部分经换热后的混合氢混合,达到反应温度后进入加氢精制反应器(R-101),然后进入加氢裂化反应器(R-102),在催化剂的作用下,进行加氢反应。催化剂床层间设有控制反应温度的急冷氢。反应产物先与部分混合氢换热后再与混氢原料油换热后,进入热高压分离器(D-103)。 装置外来的补充氢由新氢压缩机(K-101)升压后与循环氢混合。混合氢先与热高分气进行换热,一部分和原料油混合,另一部分直接和反应产物换热后直接送至加氢精制反应器入口。 从热高压分离器出的液体(热高分油)经液力透平(HT-101)降压回收能量,或经调节阀降压,减压后进入热低压分离器进一步在低压将其溶解的气体闪蒸出来。气体(热高分气)与冷低分油和混合氢换热,最后由热高分气空冷器(A-101)冷却至55℃左右进入冷高压分离器,进行气、油、水三相分离。为防止热高分气中NH3和H2S在低温下生成铵盐结晶析出,赌赛空冷器,在反应产物进入空冷器前注入除盐水。 从冷高压分离器分理出的气体(循环氢),经循环氢脱硫后进入循环氢压缩机分液罐(D-108),有循环氢压缩机(K-102)升压后,返回反应部分同补充氢混合。自循环氢脱硫塔底出来的富胺液闪蒸罐闪蒸。从冷高压分离器分离出来的液体(冷高分油)减压后进入冷低压分离器,继续进行气、液、水三相分离。冷高分底部的含硫污水减压后进入酸性水脱气罐(D-109)进行气液分离,含硫污水送出装置至污水汽提装置处理。从冷低压分离器分离出的气体(低分气)至渣油加氢装置低压脱硫部分:液体(冷低分油)经与热高分气换热后进入脱硫化氢塔。从热低压分离器分离出的气体(热低分气)经过水冷冷却后至冷低压分离器,液体(热低分油)直接进入脱硫化氢塔。 2、分馏和吸收稳定部分

加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践 发表时间:2019-09-01T18:59:57.400Z 来源:《防护工程》2019年12期作者:薛晓阳 [导读] 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。 中国石油哈尔滨石化公司 150030 摘要:随着社会日益发展的需要和原油的日益劣质化、重质化,以及环境的污染,国家对干净、清洁的能源燃料越来越重视,而蜡油加氢裂化技术是原油深度加工生产清洁燃料的重要方式,所以在未来加氢裂化技术将会越来越普遍和推广。本文就以美国UOP公司的 Unicraking两段加氢裂化工艺技术为例进行实践论证。 关键词:加氢裂化;?催化柴油;?产品质量; 1 装置概况 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。设计加工来自国外的减压蜡油,经过加氢脱硫、加氢脱氮、加氢裂化等反应,生产优质的轻、重石脑油、航煤和柴油产品,加氢尾油作为催化裂化装置原料。本装置反应的部分流程如下: 图1 装置反应部分流程 2?催化剂分布及原料性质 2.1 催化剂分布 本装置一段反应器共六个床层,其中第一床层到第四床层为加氢精制床层,催化剂型号分别为CT-30、KF-542、KG-5、HYT-8109、HYT-8119、KF-848 (再生) 、HYT-6219,第五床层和第六床层为加氢裂化床层,催化剂型号为HC-115LT (再生) ,反应器底部后精制剂型号为KF-851 (再生) 。 表1 原料油性质分析对比表 2.2 原料性质及特点 本装置自开工正常运转一段时间后,为了维持全厂物料平衡和实现效益最大化,开始在原料油中掺入催化柴油,并逐步增加至60 t/h。如表1所示为在总进料量330 t/h不变的情况下,原料中未掺入以及掺入20 t/h、40 t/h及60 t/h数量催化柴油组成的滤后原料油的主要性质参数。在整个掺炼观察期间,装置正常运行,各产品质量合格。 通过表1原料油性质分析对比表可以看出随着催化柴油掺炼比例的提高,混合原料油的密度逐渐增大,氮含量、硫含量所占比例都有相应的升高,这与催化柴油高硫、高氮性质特点相吻合,但由于本装置氮含量设计要求不大于867 mg/kg,所以为保证本装置催化剂失活速率在正常范围内,建议在装置运行前期,当混合原料油中氮含量大于867mg/kg时,操作人员应密切关注原料油性质及反应器床层温度变化。随掺炼比例的增加,初馏点温度呈现下降趋势和350℃馏出量所占体积分数逐渐增大的情况来看,催柴中含有一定比例的小分子轻组分;根据混合原料终馏点温度的逐渐上升和500℃馏出量所占体积分数下降的情况,得出催化柴油中同时含有大量的单环和多环芳烃,使得混合后

适应用户需求的催化柴油加氢改质技术

适应用户需求的催化柴油加氢改质技术 摘要:针对国内炼油企业在柴油质量升级中所面临的问题,抚顺石油化工研究院开发了系列催化柴油加氢改质技术。工艺研究和工业应用结果表明抚顺石油化工研究院所开发的系列技术各具特点,用户可以根据自身不同的需求选择适宜的相关技术,生产满足清洁燃料标准的高品质油品。 关键词:催化柴油加氢清洁燃料 前言 催化裂化(FCC)技术是重油轻质化的主要工艺手段之一,在世界各国的炼油企业中都占有比较重要的地位。而催化裂化工艺技术的主要特点是对进料中的链烷烃和环烷烃进行裂解,对芳烃基本不具备破环的能力,因此在催化裂化柴油中通常富集了大量稠环芳烃。催化裂化柴油的硫含量和芳烃含量高,发动机点火性能差,属于劣质的柴油调和组分,在国外主要用于调和燃料油、非车用柴油和加热油等。而在我国,由于石油资源的紧缺,催化柴油还主要是加氢精制或加氢改质后用于调和柴油产品,统计资料表明中国石化所属炼油企业所生产的催化柴油中的85%用于普通柴油的生产。 近年来,随着国内所加工原油质量的日益重质化,催化裂化所加工的原料也日趋重质化和劣质化,加之许多企业为了达到改善汽油质量或增产丙烯的目的,对催化裂化装置进行了改造或提高了催化裂化装置的操作苛刻度,导致催化裂化柴油的质量更加恶化。目前,国内炼油企业所生产的催化柴油的芳烃含量通常会达到45%~80%,十六烷值在20~35左右,随着环保法规的日趋严格,企业所面对的产品质量升级压力日益增加。 中国石化是中国最大的一体化能源化工公司之一,也是国内最大的石油、石化产品生产商和供应商,为全社会提供高品质的清洁油品是中国石化所承担的重要任务和责任。抚顺石油化工研究院作为中国石化直属科研单位,多年来在加氢催化剂和工艺技术开发上开拓创新,研发了系列可以满足炼油企业实际生产需求的加氢催化剂和工艺技术,为企业产品质量升级提供助力。 1 催化柴油加工难点 对于炼油企业而言,柴油馏分主要是由常减压、催化裂化、延迟焦化和加氢裂化4 类装置生产的。如表1中国石化炼油事业部装置数据集统计数据显示,2008年催化柴油在中国石化所生产柴油构成中所占比例为17.8%。虽然从中国石化整体上看催化柴油所占比例并不大,但由于各炼油企业的规模、原油性质以及装置构成等方面的不同,这个比例在不同企业的差别较大,有的企业催柴所占比例超过了30%。目前,在中国石化所属企业催化柴油主要用于:加氢后作为普通柴油的调和组份,这种用途目前最为广泛,据统计有85%或更多的催化柴油用于普通柴油的生产;用于船舶燃料生产,需求量相对较小,市场流动性强,主要集中在沿海和沿江地区;作为工业燃料销售,用于陶瓷厂或者发电厂,主要集中于广东和浙江2 省,消耗量低于1.0 Mt/a。 表1 中国石化2008年柴油馏分构成及主要性质 产量/(Mt·a-1) 构成比例,(wt)% 十六烷值总芳烃,(wt)%

加氢裂化工艺流程概述

加氢裂化工艺流程概述 全装置工艺流程按反应系统(含轻烃吸收、低分气脱硫)、分馏系统、机组系统(含PSA系统)进行描述。 1.1反应系统流程 减压蜡油由工厂罐区送入装置经原料升压泵(P1027/A、B)后,和从二丙烷罐区直接送下来的轻脱沥青油混合,在给定的流量和混合比例下原料油缓冲罐V1002液面串级控制下,经原料油脱水罐(V1001)脱水后,与分馏部分来的循环油混合,通过原料油过滤器(FI1001)除去原料中大于25微米的颗粒,进入原料油缓冲罐(V1002),V1002由燃料气保护,使原料油不接触空气。 自原料油缓冲罐(V1002)出来的原料油经加氢进料泵 (P1001A,B)升压后,在流量控制下与混合氢混合,依次经热高分气/混合进料换热器(E1002)、反应流出物/混合进料换热器(E1001A,B)、反应进料加热炉(F1001)加热至反应所需温度后进入加氢精制反应器(R1001),R1001设三个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物进入加氢裂化反应器(R1002)进行加氢裂化反应,两个反应器之间设急冷氢注入点,R1002设四个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物设有精制油取样装置,用于精制油氮含量监控取样。 由反应器R1002出来的反应流出物经反应流出物/混合

进料换热器(E1001)的管程,与混合原料油换热,以尽量回收热量。在原料油一侧设有调节换热器管程出口温度的旁路控制,紧急情况下可快速的降低反应器的入口温度。换热后反应流出物温度降至250℃,进入热高压分离器(V1003)。热高分气体经热高分气/混合进料换热器(E1002)换热后,再经热高分气空冷器(A1001)冷至49℃进入冷高压分离器(V1004)。为了防止热高分气在冷却过程中析出铵盐堵塞管路和设备,通过注水泵(P1002A,B)将脱盐水注入A1001上游管线,也可根据生产情况,在热高分顶和热低分气冷却器(E1003)前进行间歇注水。冷却后的热高分气在V1004中进行油、气、水三相分离。自V1004底部出来的油相在V1004液位控制下进入冷低压分离器(V1006)。自V1003底部出来的热高分油在V1003液位控制下进入热低压分离器(V1005)。热低分气气相与冷高分油混合后,经热低分气冷却器(E1003)冷却到40℃进入冷低压分离器(V1006)。自V1005底部出来的热低分油进入分馏部分的脱丁烷塔第29层塔盘。自V1006底部出来的冷低分油分成两路,一路作为轻烃吸收塔(T1011)的吸收油,吸收完轻烃的富吸收油品由T-1011的塔底泵P-1016再打回进冷低分油的进脱丁烷塔线。依次经冷低分油/柴油换热器(E1004)、冷低分油/减一线换热器(E1005A,B)、冷低分油/减二线换热器(E1014)和冷低分油/减底油换热器(E1015),分别与柴油、减一线油、减二

催化柴油MCI工艺技术

催化柴油MCI工艺技术 ?催化柴油MCI工艺技术应用概况 ?催化柴油MCI工艺的理论基础 ?催化柴油MCI技术对催化剂的要求 ?催化柴油MCI技术对不同原料的适应性 ?催化柴油MCI工业应用效果 催化柴油MCI工艺技术应用概况 我国目前的柴汽比较低,柴油数量满足不了市场的需求。柴油中的三分之一是催化裂化柴油。催化柴油中含有较多的杂原子化合物、烯烃和芳烃,颜色不好,安定性较差,尤其是十六烷值很低。随着重油催化裂化技术的发展和掺渣量的增加,催化柴油的质量问题变得更为突出。 当前国内外普遍采用的劣质催化柴油改质手段是加氢精制和加氢裂化。催化柴油加氢精制,是在中、低压的条件下,进行烯烃加氢饱和、脱硫、脱氮及芳烃部分饱和反应,可改善其颜色和安定性,而十六烷值提高幅度较小,尤其是加工劣质原料的催化装置,其催化柴油通过加氢精制远不能满足产品对十六烷值的要求。 近几年开发的劣质柴油中压加氢改质工艺,是中压下的一种加氢裂化过程,转化率一般为40%~60%,虽然其柴油产品的十六烷值较原料可提高10~20个单位,但柴油收率低,化学氢耗高,不适应国内市场的需求。因此,开发一种既能最大限度提高柴油十六烷值,又能得到较高的柴油收率的劣质催化柴油改质技术,是人们普遍关注的课题。 抚顺石油化工研究院新开发的一种提高催化柴油十六烷值的加氢改质工艺技术(Maximum Cetane number Improvement,简称MCI)。该技术在吉林化学工业公司炼油厂20万吨/年加氢装置应用成功后,先后有7家炼厂采用该技术。该技术不仅能大幅度提高催柴的十六烷值,同时还能获得较高的柴油收率,获得2001年度国家科技发明二等奖,具有显著的经济效益和社会效益,有可观推广应用前景。 催化柴油MCI工艺的理论基础 众所周知,石油产品的烃类族组成直接影响产品的性质。十六烷值是柴油燃烧性能的重要指标。柴油馏分中,链烷烃的十六烷值最高,环烷烃次之,芳香烃的十六烷值最低。同类烃中,同碳数异构程度低的烃类化

PHF-102型催化剂在柴油加氢精制装置的应用

PHF-102型催化剂在柴油加氢精制装置的应用 前言 某厂70万吨/年柴油加氢精制装置采用柴油深度加氢脱硫技术。装置由反应、分馏以及公用工程三部分组成, 2013年12月完成设计,2014年10月建成投产。装置加工的原料油为直馏柴油和焦化柴油。装置的主要产品是低硫柴油,副产品是低分气和酸性气,其主要目的是脱硫、脱氮、脱氧和解决色度及贮存安定性的问题,满足日益严格的环保要求,同时提高柴油的十六烷值,降低芳烃含量,使总厂调和柴油达到国Ⅳ柴油标准。本文仅对PHF-102型催化剂在某厂柴油加氢精制装置中的首次应用进行分析。 1反应部分工艺流程 柴油加氢精制装置反应部分流程简图见图1。原料油自装置外来经原料油过滤器进行过滤,再经原料油聚结器脱水后进入原料油缓冲罐,再经反应进料泵升压,经精制柴油-原料油换热器与精制柴油换热后,与混合氢混合作为混合进料。 混合进料经过反应产物-混氢油换热器换热后,进入反应进料加热炉加热至反应所需温度,再进入加氢精制反应器。该反应器设置二个催化剂床层,床层间设有注急冷氢设施。 来自加氢精制反应器的反应产物,经反应产物-混氢油换热器、反应产物-低分油换热器换热后,经反应产物空冷器冷却,进入冷高压分离器。冷高压分离器顶部出来的气体(循环氢)进入循环氢脱硫塔入口分液罐分离出气体中夹带的液体后,进入循环氢脱硫塔(C-101)脱除其中的H2S 气体,然后经过循环氢压缩机入口分液罐分液后,进入循环氢压缩机(K-102)升压后分三路:―路作为急冷氢进入反应器;―路与升压后的新氢混合,混合氢与原料油混合作为混合进料。另―路打旁路至冷高分气空冷器前,返回至循环氢压缩机入口。 冷高压分离器油相减压后送至冷低压分离器进行再次闪蒸分离,低分油经反应产物-低分油换热器换热后进入脱硫化氢汽提塔(C-201)。装置外来的PSA氢气经新氢压缩机入口分液罐分液后进入新氢压缩机(K-101),经二级升压后与循环氢混合,作为反应所需的混氢原料。 柴油加氢精制装置反应部分流程简图见图1。原料油自装置外来经原料油过滤器和聚结器滤除杂质和明水后进入原料油缓冲罐,再经反应进料泵升压,经精制柴油-原料油换热器与精制柴油换热后,与混合氢混合作为混合进料。装置外来的PSA氢气经新氢压缩机入口分液罐分液后进入新氢压缩机(K-101),经二级升压后与循环氢混合,作为反应所需的混合氢。 混合进料经过反应产物-混氢油换热器换热后,进入反应进料加热炉加热至反应所需温度,再进入加氢精制反应器。该反应器设置二个催化剂床层,床层间设有注急冷氢设施。 来自加氢精制反应器的反应产物,分别与混氢油、低分油换热后,经反应产物空冷器冷却,进入冷高压分离器。冷高压分离器顶部出来的气体(循环氢)进入循环氢脱硫系统脱除其中的H2S 气体,循环氢经循环氢压缩机(K-102)升压后分三路:―路作为急冷氢进入反应器;―路与升压后

加氢装置

加氢装置 拼音:jiaqingliehuazhuangzhi 英文名称:hydrocracker 说明:加氢裂化的工业装置有多种类型。按反应器中催化剂的态不同分为固定床和沸腾床加氢裂化工艺,目前前者是主流。按反应器的作用又分为一段法和两段法。两段法包括两级反应器,第一级作为加氢精制段,除掉原料油中的氮、硫化物。第二级是加氢裂化反应段。一段法的反应器只有一个或数个并联使用。一段法固定床加氢裂化装置的工艺流程是原料油、循环油及氢气混合后经加热导入反应器。反应器内装有粒状催化剂,在 9.8-14.7兆帕(100-150公斤/厘米2)压力,氢油比约为1500:1,400℃左右条件下进行反应。反应产物经高压和低压分离器,把液体产品与气体分开,然后液体产品在分馏塔蒸馏获得产品石油馏分。一段法裂化深度较低,一般以减压蜡油为原料,生产中间馏分油为主。二段法裂化深度较深,一般以生产汽油为主。 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 装置简介 (一)装置的发展 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 (二)装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。

加氢裂化柴油回炼技术探讨

龙源期刊网 https://www.360docs.net/doc/1915617550.html, 加氢裂化柴油回炼技术探讨 作者:臧晖 来源:《科学大众》2019年第12期 摘; ;要:文章在分析加氢裂化柴油回炼技术的基础上,进行了小型回炼实验。实验结果表明,通过对比加氢柴油、加氢蜡油的单独反应情况,在运用混合原料进行实验后,低价值产物产率会下降,总液体收率会有所增加。分别选择了两种工况进行工业生产验证,实践证明该技术路线是可行的。 关键词:加氢裂化柴油;加氢;回炼技术 加氢裂化工艺技术对原料油适应性强,具有可大量生产优质中间馏分油产品、液体产品收率高并且灵活调整产品结构等优点,是炼油企业提高柴汽比的最有效的重油加工技术和清洁生产技术。因此,加氢裂化及加氢精制工艺和技术越来越受到世界各大石油公司的重视,加氢装置的建设和技术的开发得以更快地发展。近年来,我国加氢裂化及加氢精制技术的开发和应用得到快速发展,在低利润、高竞争性的炼油行业中,如何提高产品收率成为工艺流程研究的重点,这就需要应用新技术进行柴油的回炼,可使炼油企业在减少投入和操作成本的情况下,改善产品结构,提高目的产品收率。 1; ; 加氢回炼技术原理 一般情况下,催化柴油的转化有两种方式,一种是催化裂化,另一种是加氢裂化。无论是采用哪种技术,其技术开发点都是以催化柴油组成特点为基础的。其技术路线可分为4种:第一种是加氢精制。要么直接加工催化柴油,要么在直馏柴油中加入10%左右的催化柴油,这样就可有效增加十六烷值单元。第二种是加氢改质。主要就是指运用加氢裂化剂、加氢精制剂,实现烯烃、芳烃等的饱和加氢,以此达到增加十六烷值单元的目的。比如催化柴油深度加强处理技术、提高催化柴油十六烷值的加氢改质工艺技术就是以此为原理的。第三种是利用加氢装置掺入部分催化柴油,并进行回炼,主要就是实现柴油的深度转化。第四种是加氢-催化裂化组合技术,即在加氢装置的基础上,进行柴油加氢或蜡油加氢,然后将其与精制蜡油进行混合,作为装置原料,接下来利用加氢装置进行催化柴油的转化。在具体选择中,企业必须要根据实际生产流程、柴油质量升级要求、柴油组成等,选择性价比较高的技术路线。 另外,还需注意加氢柴油黏度低、沸点低,正有利于加氢柴油、高黏度新鲜原料的混合原料黏度。比如对比常压渣油、加氢柴油的密度和蒸馏曲线,并利用软件模拟混合不同比例加氢柴油,且基准温度为180 ℃,210 ℃的原料黏度。可以明显地发现在混合加氢柴油后,混合原料黏度会下降,且随着温度的降低,其黏度下降数值越大。这主要就是因为混合原料运动黏度可以改变原料油的性质,使其能经受住高温的催化。

加氢裂化工艺简述

加氢裂化工艺简述 摘要:加氢裂化是重油的深度加工的重要技术之一,是一种使油品变轻的加氢工艺,其加工原料范围广,并且通常可以直接生产优质的液化气,汽油,柴油,喷气燃料等清洁燃料和轻石脑油等优质的化工原料。 关键词:加氢;重油;裂化;石脑油 Abstract: Hydrocracking is an important technology for deep processing of heavy oil is a lighter oil hydrogenation process to make a wide range of its processing of raw materials, and typically can produce high quality gas, gasoline, diesel, jet fuels and other clean fuels and light naphtha quality chemical raw materials. Keywords: hydrogenation; heavy oil; cracking; naphtha 1概论 加氢裂化是重油深度加工的重要技术之一,即在催化剂存在的条件下,在高温及较高的氢分压下,使C—C键断裂的反应,可以使大分子的烃类转化为小分子的烃类,使油品变轻的一种加氢工艺。它加工原料范围广,包括直馏石脑油,粗柴油,减压蜡油以及其他二次加工得到的原料如焦化柴油,焦化蜡油和脱沥青油等,通常可以直接生产优质的液化气,汽油,柴油,喷气燃料等清洁燃料和轻石脑油等优质的化工原料。 为了便于统计,美国油气杂志将转化率大于50%的加氢过程称为“加氢裂化”。在实际应用中,人们习惯将通过加氢反应使原料油中10%到50%的分子变小的那些加氢工艺称为缓和加氢裂化。通常所说的“常规(高压)加氢裂化”是指反应压力在10 Mpa以上的加氢裂化工艺;“中压加氢裂化”是指在10 Mpa以下的加氢裂化工艺。 加氢裂化反应中除了裂化是吸热反应,其他反应大多是放热反应,总的热效应是强放热反应。 2加氢裂化原料油 加氢裂化过程可以加工的原料油相当广泛。由于现代石油化工工业的发展对化纤,依稀原料以及轻质油品的需求,加氢裂化技术得到迅速发展,轻至石脑油,重至常压馏分油,减压馏分油,脱沥青油,减压渣油均可作为加氢裂化原料,二次加工产品如催化裂化循环油,和焦化瓦斯油也可以作为加氢裂化原料,目前国内装置加氢裂化使用量最多的是减压馏分油。 根据生产资料反馈以及实验,原料油的密度越大,越难加氢裂化,密度高一般需提高反应温度。原料油中烷烃较难裂解,而环烷基的原料难裂解需提高苛刻度。原料油的干点高,原料油的氮含量将随之增加,原料油的平均沸点越高和分

炼油厂催化柴油转化装置运行方式

炼油厂催化柴油转化装置运行方式摘要在国五车用柴油升级后,催化柴油组分油无法全部平衡,只能外销部分催化柴油,效益损失大。为应对2017年国五普柴升级,新建催化柴油转化装置。本文对催化柴油转化装置与其它加氢精制装置并行运行方式进行总结,提出未来的运行思路。 关键词催化柴油十六烷值辛烷值转化芳烃含量 1.普通柴油升级进度说明 按照国家规定,普通柴油从2017年7月1日开始执行国Ⅳ标准,从2018年1月1日开始执行国Ⅴ标准。 按照总部规定,普通柴油的升级时间比国家要求还要提前一个季度,从2017年4月1日开始执行国Ⅳ标准,从2017年10月1日开始执行国Ⅴ标准。也就是说,2017年内,普通柴油质量在半年时间需跳跃2级。 总部要求普柴升级规定(比国家要求提前三个月) 普柴内控指标2017年4月1日前2017年4月1日(国Ⅳ)2017年10月1日(国Ⅴ) 硫含量(mg/kg) 340 47 8 十六烷值45.5 45.5 45.5 十六烷指数45 45 45 下表为外销混合催化柴油分析数据,因外销柴油没有芳含数据要求,总芳烃含量用历史数据表示。 表一: 第一批第二批第三批第四批 密度(kg/m3)936.3 946.3 952.4 948.4 馏程(℃)170-345 159-351 161-348 162-345 氮含量(ppm) 743 905 857 822 十六烷指数22.3 21.1 20.6 20.7 总芳烃(%) 80-85 硫含量(%) 0.6477 0.6097 0.6283 0.5201 由此表可以看出催化柴油密度大、十六烷值低、芳烃含量高。富含芳烃是催化柴油 质量差的根源(80%~85%芳烃),如何有效利用催化柴油是柴油质量升级必须解决的难题。

加氢裂化装置技术问答

第一章基础知识 1.1基础知识 什么是不饱和烃? 不饱和烃就是分子结构中碳原子间有双键或三键的开链烃和脂环烃。与相同碳原子数的饱和烃相比,分子中氢原子要少。烯烃(如烯烃、丙烯)、炔烃(如乙炔)、环烯烃(如环戊烯)都属于不饱和烃。不饱和烃几乎不存在于原油和天然气中,而存在于石油二次加工产品中。 原料油特性因数K值的含义?K值的高低说明什么? 特性因数K常用以划分石油和石油馏分的化学组成,在评价原料的质量上被普遍使用。它是由密度和平均沸点计算得到,也可以从计算特性因数的诺谟图求出。K值有UOP K值和Watson K值两种。特性因数是一种说明原料石蜡烃含量的指标。K值高,原料的石蜡烃含量高;K值低,原料的石蜡烃含量低。但它在芳香烃和环烷烃之间则不能区分开。K的平均值,烷烃约为13,环烷烃约为11.5,芳烃约为10.5。特性因数K大于12.1为石蜡基原油,K为11.5~12.1为中间基原油,K为10.5~11.5为环烷基原油。另外非通用的分类法还有沥青基原油,K小于11.5;含芳香烃较多的芳香烃基原油。后两种原油在通用方法中均属于环烷基原油。 原料特性因素K值的高低,最能说明该原料的生焦倾向和裂化性能。原料的K值越高,它就越易于进行裂化反应,而且生焦倾向也越小;反之,原料的K值越低,它就难以进行裂化反应,而且生焦倾向也越大。 什么是油品的比重和密度?有何意义? 物质的密度是该物质单位体积的质量,以符号ρ表示,单位为千克/米3。 液体油品的比重为其密度与规定温度下水的密度之比,无因次单位,常以d表示。我国以油品在20℃时的单位体积重量与同体积的水在4℃时的重量之比作为油品的标准比重,以d420表示。 由于油品的实际温度并不正好是20℃,所以需将任意温度下测定的比重换算成20℃的标准比重。 换算公式:d420=d4t+r(t-20) 式中:r为温度校正值 欧美各国,油品的比重通常用比重指数或称API度表示。可利用专用换算表,将API度换算成引d15.615.6,再换算成d420,也可反过来查,将d420换算成API比重指数。 油品的比重取决于组成它的烃类分子大小和分子结构,油品比重反映了油品的轻重。馏分组成相同,比重大,环烷烃、芳烃含量多;比重

加氢裂化装置掺炼催化裂化柴油研究

加氢裂化装置掺炼催化裂化柴油研究 发表时间:2018-10-16T16:07:47.777Z 来源:《基层建设》2018年第27期作者:白广友 [导读] 摘要:文章以加氢裂化装置掺炼催化裂化柴油为研究对象,首先对加氢裂化装置概况进行了阐述分析,随后分析研究了加氢裂化装置进行FCC柴油掺炼催化产品,最后运用加氢裂化装置掺炼FCC柴油应注意的问题以供参考。 中石化天津分公司炼油部天津市 300270 摘要:文章以加氢裂化装置掺炼催化裂化柴油为研究对象,首先对加氢裂化装置概况进行了阐述分析,随后分析研究了加氢裂化装置进行FCC柴油掺炼催化产品,最后运用加氢裂化装置掺炼FCC柴油应注意的问题以供参考。 关键词:加氢裂化装置;催化裂化柴油;掺炼 前言:FCC柴油具有杂质含量高、密度较大、储存安全性差等特点,并且直接用作车用能源产生的污染气体较多,随着人们的环保意识不断增强,国家对车用柴油产品质量要求不断提升,需要进一步加强对FCC柴油的处理,有效改善并提升FCC柴油的品质,降低柴油用作能源带来的污染,从而有效满足我国对车用柴油质量品质的要求。 一、加氢裂化装置概况 该加氢裂化装置为2.0Mt/a 高压加氢裂化装置,由中国石化工程建设公司参与设计,并于2007年成功投料开车。该装置主要由四部分组成,分别是反应部分、分馏部分、吸收稳定部分及脱硫部分组成,其中反应部分采用的是目前国内外已经应用较为成熟的炉前混氢流程,操作更加简便,传热效率更加高效,流程也得到了良好的优化。分馏部分通过设置硫化氢汽提塔,并采用分馏塔进料,常压塔与加热炉出柴油的方案,在分馏塔中,还设置了两个中段回流,从而使得热量得到了较好的回收,有利于整体装置能耗降低。吸收稳定部分在吸收方案选择上,采用的是重石脑油作为吸收剂的方案,从而使得干气中的液化气得到很好的回收,有效避免了轻石脑油与液化气出现更大的损失;最后对于脱硫部分来说,在脱硫剂选择上,选择的是N-甲基二乙醇胺,进行低分气与液化气的脱硫方案。主要产品为石脑油、航煤、柴油及用作制乙烯原料的尾油。该装置所得产品众多,并且分向不同的去向,例如所得的柴油更加清洁,十六烷值高,倾点低,造成污染更小;所得的尾油作为乙烯原料,烷烃含量高,芳烃指数值较低;所得的重石脑油作为催化重整原料,芳烃潜含量较高。在2010年,该装置转入了第二生产周期,结合实际生产需求,该装置采用了RN—32V 制催化剂和 RHC—3 裂化催化剂,上述两种催化剂由中国石化石油化工科学研究院研发,对尾油质量提升上具有较为积极的影响意义。 二、加氢裂化装置进行FCC柴油掺炼催化产品分析 (一)FCC柴油前后掺炼条件分析 具体条件如表1所示,通过表一我们可以看出,在掺炼前与掺炼后二者总的加工量基本保持一致的前提下,FCC柴油在掺炼后变得更加轻量,精制反应平均温度和裂化反应平均温度都有所降低,总的能耗相对更低。但同时我们应注意到,相应的耗氢量增加,冷氢用量更多。究其原因在于,从FCC 柴油本身来看,由于其含有大量的芳烃,因此在高压加氢裂化条件下,芳烃想要达到深度饱,就必然要消耗大量的氢。 表1:掺炼催化柴油主要操作条件 (一)FCC柴油前后掺炼液化气(脱硫后)质量对比 由表2我们可以看出,FCC柴油在掺炼后,并没有对液化气的质量产生任何不利影响,并在在其具体的烃组成中,丙烷的含有呈上升

柴油加氢装置的原理

由焦化柴油,催化柴油经过液控阀进入柴油反冲洗过滤器除去原料油中大于25μm的颗粒,过滤后的原料油经原料油/精制柴油换热器,与精制柴油换热后进入原料油缓冲罐稳压,然后经原料油泵升压,在流量的控制下,与混合氢混合作为混合进料混合进料经反应流出物/混合进料热热器与反应流出物换热后分四路进入加热炉进行加热,加热后汇成一路进入反应器(R101),反应后经反应流出物/混合进料换热器与混合进料换热后进热高压分离器。热高分气体经热高分气/混合氢换热器换热后,再经热高分器空冷器冷至49℃进入冷高压分离器。为了防止反应流出物中的铵盐在低温部分析出,通过注水泵将脱盐水注至上游处的管道中。冷却后的热高分气在中进行油、气、水三相分离。自塔顶部出来的循环氢(冷高分气)经循环氢脱硫塔入口分液罐分液后,进入循环氢脱硫塔底部,设有层浮阀塔盘,自贫溶剂缓冲罐来的贫溶剂,经循环氢脱硫塔贫溶剂泵升压后进入第一层塔盘。脱硫后的循环氢自塔顶出来,经循环氢压缩机入口分液罐分液后进入循环氢压缩机升压,然后分成两路,一路作为急冷氢去反应器(R101)控制反应器床层温升,另一路与来自新氢压缩机出口的新氢混合成为混合氢。自底部出来的富液在液位控制下与来自底部来的富液合并后至装置外。V102底部出来的热高分油在液位控制下经过液力透平(HT101)回收能量后进入热低压分离器(V104)。热低分气经热低分气/冷低分油换热器(E103)与冷低分油换热,再经热低分气冷却器(E104)冷却到49℃后与冷高分油混合进入冷低压分离器(V105)。自V104底部出来的热低分油与经热低分气/冷低分油换热器(E103)与热低分气换热后的自V105底部出来的冷低分油混合后进入产品分馏塔第26层塔盘。V105气相与产品分馏塔顶气及汽油脱硫化氢汽提塔塔顶气合并后去干气脱硫塔(T104)脱硫后送装置外管网。V103与V105底部排出的酸性水及分馏部分V106、V107排出的酸性水合并至公用工程部分含硫污水除油器(V117)进行脱气除油后,污水经泵送至装置外处理。 装置外来的新氢经新氢压缩机入口分液罐(V108)分液后进入新氢压缩机(C102A,B),经三级升压后与C101出口的循环氢混合成为混合氢。 二、分馏部分 从反应部分来的低分油直接进入产品分馏塔(T101),T101设与36层浮阀塔盘,塔底通入汽提蒸气。塔顶油气经产品分馏塔顶空冷器(A102)。产品分馏塔顶冷却器(E109)冷凝冷却至40℃,进入产品分馏塔顶回流罐(V106)进行气、油、水三相分离。闪蒸出的气体送至T104脱硫;含硫污水送至含硫污水除油器(V117);油相经产品分馏塔回流泵(P103A,B)升压后,一部分作为分馏塔顶回流,另一部分作为汽油脱硫化氢汽提塔(T102)的进料。 为了抑制硫化氢对塔顶管道和冷换设备的腐蚀,在塔顶管道注入缓蚀剂。 产品分馏塔底油经柴油泵P105A,B升压后,一部分经汽油脱硫化氢汽提塔底重沸器(E111)、精制柴油/汽油脱硫化氢汽提塔进料换热器(E112)换热,然后与另一部分混合,再经原料油/精制柴油换热器(E105A,B,C)换热后进入精制柴油空冷器(A103)冷却至50,最后经电离脱水设施脱水后出装置。 产品分馏塔顶油作为汽油脱硫化氢汽提塔的进料先经精制柴油/汽油汽提塔进料换热器(E112)换热至200℃后进入T102顶部。T102内装两层散装填料,塔顶油气经汽油脱硫化氢汽提塔顶冷却器(E110)冷却至40℃,进入汽油脱硫化氢汽提塔顶回流罐(V107)进行气、油、水三相分离。闪蒸出的气体与低分气、分馏塔顶气合并送至T104脱硫后至装置外管网;含硫污水与高分污水、V106底含硫污水一起送至含硫污水除油器(V117);油相经汽油脱硫化氢汽提塔顶回

催化柴油加氢裂化生产BTX研究现状

2018年2月第26卷第2期 工业催化 INDUSTRIAL CATALYSIS Feb. 2018 Vol. 26 No. 2 综述与展望 催化 氢裂化生产BTX研究现状 徐洁,吴韬,陈胜,袁桂梅 (中国石油大学(北京)重质油国家重点实验室,北京102249)摘要:总结催化柴油中的主要组分(双环芳烃和单环芳烃)在发生加氢裂化过程中的反应机理和 动力学研究现状,分析催化剂中活性组分和载体的选择对产物分布的影响,介绍国内外以催化柴油 为原料生产轻质芳烃B T X的工艺进展。 关键词:石油化学工程;催化柴油;加氢裂化;B T X doi:10. 3969/j.issn. 1008-1143. 2018. 02. 002 中图分类号:T Q241. 1;0643. 1文献标识码:A文章编号:1008-1143(2018)02-0015-08 Research progress of hydrocracking of diesel to produce BTX Xu Jie,Wu Tao,Chen Shengli&,Yuan Guimei (State Key Laboratory of Heav? Oil Processing,China UrdversiPy of Petr o leum(Beijing),Beijing 102249,China) Abstract:Hydrocracking reaction rule and kinetics of main components(double - ring aromatics and monocylic aromatics)in catalytic diesel are summarized.And effects of active component and carrier of catalyst on product distribution are stated.Technology progress of producing B T X using catalytic diesel as feedstock i s introduced as well. Key words:petrochemical engineering;FCC diesel;hydrocracking;B T X doi:10. 3969/j.issn. 1008-1143. 2018. 02. 002 CLC number:T Q241.1$0643.1 Document code:A Article I D:1008-1143(2018)02-0015-08 轻质芳经,如苯(Benzene)、甲苯(Tolene)、二甲 苯(Xylene)是重要的基本化工原料。随着工业发展 和人类生活水平的提高,纤维、塑料和合成 橡胶工业发展迅速,对B T X的需求逐年增长,已出 现供不应求的现状。目前,我国B T X年消费量超过 20 M t,其中以对二甲苯为主,约占B T X总量的 45'。2012年我国对二甲苯(P X)表观消费量13.85 M t,国内产品自给率仅56'[1]。一直以来,我国B T X的生产主要利用直馏汽油、石脑油经贵金 属铂重整工艺和蒸汽 制乙烯工艺获得[2],原料供应不足,苯 衍生物的 在很大程度上受到限制。另一方面,受我国经济 调整、天然替代燃料发展较快等因素的影响,对柴油需求增长 慢,且国内炼油能力与水 ,柴油供过于求。催化裂化柴油约占我国柴油生 的三分之一,其芳经质量分数为70% ~ 90',且芳烃中大部分为 十 、安 差的双环芳烃和单环芳烃,是柴油中最差的组分[3]。为解决柴油过剩的问题,炼 油企业积极调整汽柴油的生产比,但受生产工艺的 制,柴汽 不能从根本上抑制柴油产能过剩[4]。 采用加氢裂化工艺将催化柴油中的双环芳经转 化为轻质芳烃(如B T X等),是解决柴油过剩和低碳 芳烃短缺的理想途径[54]。在加氢裂化过程中,双 收稿日期:2017 -11-28 作者简介:徐洁,1994,女,辽宁省沈阳市人,在读硕士研究生。 通讯联系人:陈胜利,男,教授,博士研究生导师,研究方石油化工。E -mall:Slchen@cup. edu. c

加氢裂化工艺的进展和发展趋势

辽宁石油化工大学 中文题目加氢裂化工艺的进展和发展趋势 教学院研究生学院 专业班级化学工程0904 学生姓名张国伟 学生学号 01200901030412 完成时间 2010 年6月20日

加氢裂化工艺的进展和发展趋势 张国伟 (辽宁石油化工大学抚顺113001) 摘要:加氢裂化是油料轻质化的有效方法之一,且原料适应性强,他可以将馏分油到渣油的各种油料转化为更轻的油品,随世界范围内原油变重,重油加氢裂化技术发展较快。本文主要介绍了重油高压和中压加氢裂化技术的特点,阐述了固定床、沸腾床、移动床、悬浮床重油加氢裂化技术在世界范围内工艺发展趋势。 关键字:加氢裂化;工艺;技术特点; 发展趋势 Hydrocracking process of development and trends Zhang guowei (Liaoning petrochemical industry university fushun 113001) Abstract:The hydrocracking is one of effective methods which transfer fuel oils to light one , and raw material is uncompatible.Tt may transform range from the fraction oil to residual oil of each kinds of fuel oils to a lighter oil quality. Accompanying with the crude oil change heavy ,the heavy oil hydrocracking technological development is pretty quick.This article mainly introduce the characteristics of the heavy oil hydrocracking technology in high pressure and mid-presses, The article elaborates the fixed bed, the ebullition bed, the moving bed, hang the floating floor heavy oil hydrocracking technology in the worldwide scale and the craft trend of development. Key word:hydrocracking; artwork; tech- characteristic; development tendency

相关文档
最新文档