地应力与地应力测量方法简介

地应力与地应力测量方法简介
地应力与地应力测量方法简介

地应力与地应力测量方法简介地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。

地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。

随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。

地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。

采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

严重的事故,造成人员伤亡和财产的重大损失。

岩体地应力测量,主要是指对处于地下原始状态的岩(矿)中的某点的应力或应变的测量。近半个世纪以来,特别是近30年来,随着地应力测量工作的不断开展,各种测量方法和测量仪器也不断发展起来。就世界范围而言,目前主要测量方法有数十种之多,而对测量方法的分类并没有统一的标准。目前各国采用和正在研究的测定地应力的方法主要有:应力解除法,水压致裂法,钻孔锯法,非弹性应变恢复法等。利用从钻孔中采取的岩芯实验室测量方法有:凯塞尔效应法,变形率分析,微分应变曲线分析等。近年来发展有超声波检测原岩应力的方法等。

根据测量手段的不同,将地应力测量方法分为五大类,即:构造法、变形法、电磁法、地震法、放射性法。根据测量原理的不同,可分为应力恢复法、应力解除法、应变恢复法、应变解除法、水压致裂法、声发射法、X射线法、重力法共八类。而国内外多数依据测量基本原理的不同,可将测量方法分为间接测量和直接测量法两大类。

间接测量法是借助某些传感元件或某些介质,测量和记录岩体中某些与应力有关的间接物理量的变化,如岩体中的变形或应变,岩体的密度、渗透性、吸水性、电阻、电容的变化,弹性波传播速度的变化等,然后由测得的间接物理量的变化,通过已知的公式,计算岩体中的应力值。因此,在间接测量法中,为了计算应力值,首先必须确定岩体的某些物理力学性质以及所测物理量和应力的相互关系。套孔应力解除法和其它应力或应变解除方法以及地球物理方法等是间接法中较常用的。其中,套孔应力解除法是目前国内外最普遍采用的发展较为成熟的一种地应力测量方法。

直接测量法是由测量仪器直接测量和记录各种应力量,如补偿应力、恢复应力、平衡应力,并由这些应力量和原岩应力的相互关系,通过计算获得原岩应力值。在计算过程中并不涉及不同物理量的换算,不需要知道岩石的物理力学性质和应力应变关系。扁千斤顶法、水压致裂法、刚性包体应力计法和声发射法均属直接测量法。其中,水压致裂法在目前的应用最为广泛,声发射法次之。

早期的原位地应力测量一般是在岩体的表面进行,分为表面应力恢复法和表面应力解除法两种。扁千斤顶法是表面应力恢复法的代表,而中心钻孔法和平行

钻孔法则为表面应力解除法的代表。岩体表面应力测量一般都在开挖表面进行,只能测量岩体表面的一维或二维应力状态。而这种应力状态也受到开挖扰动影响,并非原岩应力。而且,岩体表面因开挖会受到程度不同的破坏,使它们与未受扰动的岩体的物理力学性质大不相同。同时隧道开挖对原始应力场的扰动也是十分复杂的,不可能进行精确的分析和计算。所以这类方法不能准确确定测点的原岩应力状态。为了克服这类方法的缺点,另一类方法是从隧道表面向岩体中打小孔,直至原岩应力区,地应力测量是在小孔中进行的。由于小孔对原岩应力状态的扰动是可以忽略不计的,这就保证了测量是在原岩应力区中进行。这类方法称为“钻孔测量法”,目前普遍采用的应力解除法和水压致裂法均属此类方法,其特点见表3-1。

表3-1钻孔测量法分类表

钻孔应力解除技术已基本成熟,国内的学者、专家们对之进行了深入的研究。总的来说,地应力的测量是一项综合性的测试,可以说任何一种单一的方法都不能很好地保证精度,往往需要几种方法结合起来对比使用,才可以保证结果的可靠性。

辽宁工程技术大学多年来致力于地应力方面的测试与研究,使用空芯包体应力解除法在诸多矿区进行了地应力测量工作,测量效果良好。受韩城矿业公司委

托,辽宁工程技术大学与中国矿业大学合作,对韩城矿业公司所属的象山矿进行现场地应力测试。现场地应力测量采用空芯包体应力解除法进行,应变计使用中国地质科学院地质力学研究所研制的kx81-1型空芯包体应力计,应用kx81-1型空芯包体计算程序进行地应力计算,最后给出各矿地应力的主要参量,并根据计算结果对该矿地应力特征进行简要分析。

空芯包体地应力测量方法及测量仪器

应力解除法

1)应力解除法的种类

(1)、钻孔位移法

该法又称为钻孔变形法。它是通过测量解除槽开出前后钻孔孔径的变化来测量地应力的。使用的传感器称为钻孔变形计。

(2)、钻孔应变法

该法又分为孔底应变法和孔壁应变法。孔底应变法是通过测量解除前后钻孔底面的应变变化来测量应力的;孔壁应变法则是通过测量解除前后钻孔孔壁表面的应变变化来测量地应力的。

(3)、钻孔应力法

该法是将刚性的钻孔变形计置于钻孔内,利用测量解除前、后变形计上的压力变化来测量地应力。变形计上的压力变化与钻孔孔径变化有关。通过力学分析,可以建立变形计的压力与地应力的解析表达式。这种刚性变形计称为钻孔应力计。

2)应力解除法常用的测试仪器

地应力的测试仪器很多,这里只介绍几种常用的仪器。

(1)、KX-81型空芯包体式三轴地应力计

KX-81型空芯包体式三轴地应力计是由地质力学研究所制造的。这种应力计是澳大利亚CSIRO应力计的一种改进型,目前这种测试仪器在我国得到广泛的应用。

图3-1 KX-81型空心包体三轴地应力计结构示意图

1-安装杆;2-定向器导线;3-定向器;4-读数电缆;5-定向销;6-密封圈;7-环氧树脂筒;8-空腔(内装粘胶剂);9-固定销;10-应力计与孔壁之间的空隙;11-柱塞;12-岩石钻孔;13-出胶孔;

14-密封圈;15-导向头;16-应变花

(2)、YG-73型和YG-81型压磁地应力计

YG-73型和YG-81型压磁地应力计是由地质力学研究所和地壳应力研究所研制的,是对瑞典哈斯特应力计的一个改进。这种测试仪在我国得到广泛的应用。

图3-2 YG-73型压磁地应力计图3-3 YG-81型压磁地应力计

(3)、USBM钻孔变形计

该变形计是由美国矿物局研制的,是国际岩石力学学会实验方法委员会建议采用的一种变形计。该变形计可安装在孔径为38mm的钻孔中,可测三个方向的直径变化,灵敏度为钻孔直径的十万分之一。该应力计在套芯过程中可牢固地固定在测量孔中,不会产生滑动。它具有良好的防水性能,并能与讯号电缆分离。通过贴有应变计的触头与孔壁相接触,量测钻孔直径的变化。USBM钻孔变形计使用电阻应变仪进行读数,使用双向模量率定台测量岩芯的弹模。

(4)、36-2型钢环式钻孔变形计

该变形计是由中国科学院武汉岩土力学研究所研制的。变形计中有4个钢环,每个钢环上贴有应变片,可量测互成45°的四个直径方向的直径变化。该应变计可安装在36mm直径的岩石钻孔中。该方法需要测量岩石的弹性模量和泊松比。

(5)、CSIR三向应变计

CSIR三向应变计与KX-81型空芯包体三轴地应力计的原理相同,也是用来进行孔壁应变测量的。它可在单孔中通过一次套芯解除获得三维地应力状态,所不同的只是应力计的结构不一样。

(6)、SDX定向仪

SDX水平定向仪是用来确定水平或倾斜钻孔中地应力计应变片的方向的。显示器由三位半袖珍式数字万用表改装而成,它的作用是供给转换器一个恒压电源和显示测量读数。转换器由圆形的高精度线性快速电位器、重锤、外壳、安装卡头组成。电位器固定在外壳上,重锤固定在电位器旋转轴上,使重锤与滑动臂相对固定不变,由于重力作用,重锤永远指向重力方向,所以滑动臂的指向也固定不变。当电位器电阻膜片随着外壳旋转时,滑动臂与电阻膜片上的参考点之间的夹角将发生变化。测出电压的变化即可求算出探头的安装角度。

图3-4部分测量仪器

(7)、静态电阻应变仪

目前空芯包体地应力测量中使用的YJK4500静态电阻应变仪是由煤炭科学研究总院北京开采所生产的。特点是稳定性好、灵敏系数调节范围宽、电阻平衡范围宽、量程宽、分辨率高、精度高。仪器按安全型电路设计,密封便携,可应用于野外及煤矿井下,是现场进行钻孔应力解除中可靠的测量工具。

(8)、传感器围压率定机

传感器围压率定机的作用一是将仪器的读数换算成折算位移;二是求算岩石的弹性模量和泊松比。

为了把仪器的读数换算成折算位移,以便进行主应力的计算,必须对元件进行率定,做出率定曲线。率定机主要由围压器和油泵组成,原理结构如图3-5。

图3-5围压率定机结构图

现场测量时,取出带有空芯包体探头的岩芯,将套芯之后所取出的带有元件的岩芯放入元件率定机中,用油泵将油打入围压器中,给岩芯施加均匀围压到预定值,然后退压,同时进行仪器读数,就可以根据下列公式画出率定曲线。

将套取的岩芯连同应力计一同放入围压率定机中并加压,测出不同压力下各应变片的读数,用下式计算弹性模量E 和泊松比μ:

E =2

0)(12

D d P t

μ=

t

x εε 式中:P 0—围压值,Mpa ;

d —岩芯小孔内径;

D —岩芯外径; x ε—轴向应变;

t ε—周向应变;

这种率定是在现场进行的,在应力解除之后,将带有元件的岩芯立即放入率定机中进行率定。因而岩芯中的水份散失很小,可以认为岩芯的力学性质变化不大。

在计算主应力时,需要岩石弹性模量E 和泊松比μ这两个参数,现场地应力测量时是通过围压率定机来测量的。同时围压率定机还要检测应力计可靠性。如果时间允许,也可将取得的岩芯拿到实验室用试验机进行试验,这样结果会更可靠。

《岩石力学》地应力及其测量

1. 地壳是静止不动的还是变动的?怎样理解岩体的自然平衡状态? 答:地壳是变动的。 自然平衡状态是指:岩体中初始应力保持不变的状态。 2. 初始应力、二次应力和应力场的概念。 答:未受影响的应力称为初始应力 工程开挖时,受工程开挖影响而形成的应力称为二次应力 地应力是关于时间和空间的函数,可以用“场”的概念来描述,称之为地应力场。 3. 何谓海姆假说和金尼克假说? 答:海姆首次提出了地应力的概念,并假定地应力是一种静水应力状态,即地壳中 任意一点的应力在各个方向上均相等,且等于单位面积上覆岩层的重量,即???= ????=???? 金尼克认为地壳中各点的垂直应力等于上覆岩层的重量,而侧向应力(水平应力)是泊松效应的结果,其值应为乘以一个修正系数K。他根据弹性力学理论,认 为这个系数等于?? 1-??,即????=????,???=?? 1-?? ???? 4. 地应力是如何形成的? 答:地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。 另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力 场。 5. 什么是岩体的构造应力?构造应力是怎样产生的?土中有无构造应力?为什么?答:岩体中由于地质构造运动引起的应力称为构造应力。 关于构造应力的形成有两种观点:地质力学观点认为是地球自转速度变比的结果;大地构造学说则认为是出于地球冷却收缩、扩张、脉动、对流等引起的,如板 块边界作用力。 土中没有构造应力,由于土本身是各向同性介质,不存在地质构造。 6. 试述自重应力场与构造应力场的区别和特点。 答:由地心引力引起的应力场称为重力应力场,重力应力场是各种应力场中惟一能 够计算的应力场。地壳中任一点的自重应力等于单位面积的上覆岩层的重量,即????=????。 重力应力为垂直方向应力,它是地壳中所有各点垂直应力的主要组成部分,但 是垂直应力一般并不完全等于自重应力,因为板块移动,岩浆对流和侵入,岩体非 均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。 构造应力是由地质构造运动形成的。当前的构造应力状态主要由最近一次的构 造运动所控制,但也与历史上的构造运动有关。构造应力主要表现为以水平应力为 主,“在构造应力的作用仅影响地壳上层一定厚度的情况下,水平应力分量的重要性远远超过垂直应力分量。” 7. 岩体原始应力状态与哪些因素有关? 答:地形地貌;岩体结构;岩石力学性质;地下水。 8. 简述地应力场的分布规律 答:1)地应力场的特性 (1)地应力场是一个以水平应力为主的三向不等压应力场 (2)地应力场是一个具有相对稳定性的非稳定应力场 2)垂直应力的分布规律 在深度为25~~2700m的范围内,????呈线性增长,大致相当于按平均容量??γ等于273kN???-3?计算出来的重力????。 3)水平应力的分布规律

地应力与地应力测量方法简介

地应力与地应力测量方法简介地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

地应力测试步骤、所需仪器及注意事项总结——张念超

地应力测试步骤、所需仪器及注意事项总结从淮南到淮北,地应力测试做了五个孔了,成功率60%。虽然成功率刚刚过半,但这都是我们课题组在没有任何前辈莅临指导的情况下,经过多个井下不眠之夜,独立摸索完成的。虽然做地应力测试比较苦,但是虽苦犹乐,因为我们又掌握了一样新知识,新技术。 现根据我们在朱集矿和孙疃矿做地应力测试的情况,总结经验吸取教训,总结地应力测试步骤、所需仪器及注意事项如下: 1、地质钻打孔。 1.1步骤: (1) 地点选取。选取整体岩性较好区域的巷道,安设测点。测点巷道内应水电方便,地质钻工作时应不影响巷道运输。 (2) 打孔取芯。使用75/105型地质钻机,配直径为42mm/50mm的接长钻杆,并运用特制的取芯套筒(长度为2m和1m,直径为127 mm)及平钻头(直径为127 mm),在所测巷道岩壁上打直径为127 mm的水平钻孔,至巷道跨度的2~3倍深处,以保证应变计安装位置位于原岩应力区。当钻孔至预定长度时,取出岩芯,并编号套袋保护岩芯。 (3)打空心包体孔。利用自备的钻头(直径为127 mm),其上带有长370mm,直径36mm的小钻头,打同心小孔并取岩芯,同时将孔底磨平,并用锥形钻头打出7cm长的喇叭口,小孔深35~40cm。此小孔一杆打到底,钻孔过程中,必须利用2m长岩芯管定向。 (4) 冲洗钻孔。小孔成形后,抽出钻杆5cm,用钻机的水管冲洗。 1.2注意事项 (1) 钻孔要稍向上倾斜,并测量倾斜角度确切数值,一般控制在3°~5°,以便排水并易于清洗钻孔; (2) 打孔要一次用一种钻头,不要先打孔再扩孔,因为孔长度较大,容易导致两钻头轴向不在同一条直线上,进而产生台阶,安装时定位器会被卡住,孔就废掉了。 1.3仪器准备 (1) 矿方准备:75/105型地质钻机;42mm/50mm钻杆;长度2m和1m,直径127 mm 取芯套筒;直径127 mm平钻头,岩芯箱:1000mm×500mm×150mm。 (2) 矿大自备:记号笔;记录本;塑料袋;直径127 mm带有直径36mm的小钻头

地应力测量

地应力测量的国内外研究现状 0 引言 地应力(in-situ stress),又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场(雷化南,等译.1976)。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。因此,岩石中的原地应力是由主动施加的力和积蓄的残余应变两者引起的。 地应力测量(In situ stress measurement),就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是一项综合性的测试,可以说任何一种单一的方法都不能很好地完成,往往需要几种方法结合起来对比使用,才可以保证结果的可靠性。即使如此,地应力测量中也往往会出现同一测点测量值分散的情况。 地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 1 地应力测量在国外发展概况及研究现状 人们最初对地应力概念的认识以及地应力测量技术的发展都源于早期的矿山工程建设,最早的原位地应力测量起始于20世纪30年代。1932年,美国人劳伦斯(Lieurace)在胡佛坝(HooverDam)下面的一个隧道中采用岩体表面应力解除法首次成功地进行了原岩应力的测量。此后,地应力测试技术一直停留在岩体表面应力测量上,发展十分缓慢,在20世纪50年代,哈斯特(Hast)采用应力解

矿山地应力测试方案

- 矿山地应力测试工作方案 省XXXXXX勘察院 2015年4月

目录 1 前言 (2) 2 地应力的基本原理 (2) 2.1 地应力的基本概念 (2) 2.2 地应力的组成部分和影响因素 (3) 2.3 地应力场的变化规律 (5) 2.4 我国地应力场的区域划分 (8) 3 水压致裂法试验介绍 (9) 3.1 水压致裂法基本原理 (9) 3.2 水压致裂法地应力测量的主要设备 (14) 3.3 水压致裂法测试步骤 (15) 4 测试结果 (17) 4.1 参数确定 (17) 4.2 现场实测 (18) 5 测试成果综合分析 (21) 5.1 试验结果的可靠性分析 (21) 5.2 最大水平主应力的量级 (21) 5.3 最大水平主应力的方向 (21) 5.4 侧压系数及应力构成分析 (21) 5.5 分析最大、最小水平主应力与岩层深度的关系 (22) 6 地应力场反演分析 (23) 6.1 有限元数学模型多元回归分析法基本原理 (24) 6.2回归结果分析 (25)

1 前 言 地应力是引起采矿和其他各种地下或露天岩土开挖工程变形和破坏的根本作用力,是确定工程岩体力学属性,进行围岩稳定性分析,实现岩土工程开挖设计和决策科学化的必要前提。 地应力是所有地下工程,包括地下采场、巷道地压显现的根本来源。地应力是存在于地层中的天然应力,也称原岩应力。在没有开挖工程扰动的情况下,岩体处于原始平衡状态。地下巷道或采场的开挖,打破了原始平衡状态,导致地应力的释放,从而引起岩体的变形和向自由面的位移,引起围岩应力的重新分布。围岩的过量位移和应力集中将导致围岩局部的或整体的失稳和破坏,这就是地压形成的过程和机理。因此,从本质上来定义,地压就是岩体因受开挖扰动而产生的力学效应。它与岩体的受力状态、岩体结构和重量、岩体物理力学性质、工程地质条件以及时间等因素有关。 2 地应力的基本原理 2.1 地应力的基本概念 蓄存在岩体部未受扰动的应力,称之为地应力(Insitu stress 或Geostress),它是岩体中存在的一种固有力学状态,是岩体区别于其它固体如土体的最基本特征。 地应力的概念最早是由瑞士地质学家海姆(Heim ,1905-1912)提出。他认为,岩体中有应力存在,并处于近似静水压力状态。应力的大小等于上覆岩体的自重,即岩体中各个方向的应力均等于H γ(γ为岩体的重度,H 为研究点的深度)。此后,金尼克(1926)又根据弹性理论分析,假定岩体是均匀、连续的弹性介质,提出岩体的铅垂应力为H γ,而水平应力应等于H γμμ -1的假说(μ为岩石的泊松比,μ μ-1为侧压系数)。按照金尼克的理论,海姆假说只是金尼克假说在5.0=μ时的一个特例。 然而,随着地应力现场实测资料的积累,表明在浅层的地应力并不

地应力与地应力测量方法简介

地应力与地应力测量方法简介 地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

水准测量的方法及其实施

水准测量的方法及其实施 水准测量原理 水准测量的基本测法是:在图2-1中,已知A点的高程为H A,只要能测出A点至B点的高程之差,简称高差h AB。,则B点的高程 H B就可用下式计算求得: H B=H A+h AB (2-1) 差h AB。的原理如图2-1所示, 在A、B两点上竖立水准尺, 并在A、B两点之间安置— 图2-1 水准测量原理示意图架可以得到水平视线的仪器 即水准仪,设水准仪的水平视线截在尺上的位置分别为M、N,过A 点作一水平线与过B点的竖线相交于C。因为BC的高度就是A、B 两点之间的高差h AB。,所以由矩形MACH就可以得到计算h AB的式: h AB = a - b (2-2) 测量时,a、b的值是用水准仪瞄准水准尺时直接读取的读数值。 因为A点为已知高程的点,通常称为后视点,其读数a为后视读数,

而B点称为前视点,其读数b为前视读数。即 h AB = 后视读数-前视读数 视线高H i=H A+a (2-3)B点高程H B=H i-b (2-4)综上所述要测算地面上两点间的高差或点的高程,所依据的就是一条水平视线,如果视线不水平,上述公式不成立,测算将发生错误。因此,视线必须水平,是水准测量中要牢牢记住的操作要领。 水准仪和水准尺 一、微倾式水准仪的构造 如图2-2所示,微倾式水准仪主要由望远镜、水准器和基座组成。水准仪的望远镜能绕仪器竖轴在水平方向转动,为了能精确地提供水平视线,在仪器构造上安置了一个能使望远镜上下作微小运动的微倾螺旋,所以称微倾式水准仪。 1.望远镜 望远镜由物镜、目镜和十字丝三个主要部分组成,它的主要作用是能使我们看清远处的目标,并提供一条照准读数值用的视线。 十字丝是在玻璃片上刻线后,装在十字丝环上,用三个或四个可

地应力与地应力测量方法简介

3.1 地应力与地应力测量方法简介 地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

水准测量基本原理教案

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为:b a h AB -= 图1-1 水准测量原理

设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法: AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。 ?? ? -=+=b H H a H H i B A i 注意事项: ①区别仅在与计算方法不同;

地应力测量方法共6页

地应力测量方法 1.水压至裂法 水压致裂法地应力测试是通过在钻孔中封隔一小段钻孔,然后向封隔段注入高压流体,从而确定原位地应力的一种方法。水压致裂法的2种方法试验设备相同,都有封隔器、印模器,使用高压泵泵入高压液体使围岩产生新裂隙或使原生裂隙重张。 常规水压致裂法(HF法) HF法是从射井方法移植而来,假定钻孔轴向为1个主应力方向,岩石均质、各向同性、连续、线弹性,采用抗拉破坏准则,在垂直于最小主应力方向出现对称裂缝,其仅能测得垂直于钻孔横截面上的二维应力。在构造作用弱和地形平坦区,垂直孔所测结果可代表2个水平主应力,垂直应力约等于上覆岩体自重,裂缝方位为最大水平主应力方位。 HF法测试周期短,不需要岩石力学参数参与计算,适合工程初勘阶段,不需试验洞,可进行大深度测量,是目前惟一一种可直接进行深部地应力测定的方法。通过对HF法的改进,德国大陆科学深钻计划(KTB)在主孔6 000 m和9 000 m处已成功获得了地应力资料。HF法是一种平面应力测量方法,为获得三维应力,YMizutaI和M KuriyagawaE提出3孔交汇地应力测量,我国长江科学院和地壳所也进行了大量的测试。但研究表明,当钻孔轴向偏离主应力方向,其结果就有疑问,要精确获得三维地应力较困难。为此,文献[7]基于最小主应力破坏准则,对3孔交汇HF法测试理论进行了完善,其有助于提高测量结果的计算精度,但还有待足够的测量数据来验证。

原生裂隙水压致裂法(HTPF法) HTPF法是HF法的发展,其要求在含有原生节理和裂隙的钻孔段进行裂隙重张试验以确定原位应力。HTPF法假定裂隙面是平的,且面上应力一致。对于深孔三维地应力直接测量,HTPF法可进行大尺度的地壳地应力测试,很有发展前途。HTPF法同HF法相比,假设少,不需考虑岩石 破坏准则和孔隙水压力,在单孔中便可获得三维地应力。但用HTPF法测试费时,且裂隙产状和位置的确定误差都可降低计算精度。 2.套钻孔应力解除法 套钻孔应力解除法根据解除方式和传感器的安装部位分为探孔应力解除法、孔底应变解除法和孔壁切割解除法。探孔应力解除法根据传感器的类型可分为孔壁应变法和孔径变形法。 孔壁应变法 孔壁应变法基于岩石各向同性、均质、连续、线弹性的假设,通过孔壁6个以上不同方向的应变值来计算岩体的三维地应力。孔壁应变法又可分为直接粘贴方法和包体方法。CSIR型三轴应变计就是将应变元件直接贴到孔壁中。空心包体是将应变元件贴到薄筒壁中,再用胶将薄筒和孔壁粘结。还有一种实心圆柱式包体技术,由于受包体材料和岩石物理力学性质差异影响大,已基本不用。 孔壁应变法最大的优点是单孔单点可准确测量岩体的三维地应力,缺点是:对岩石的完整性要求高,岩芯解除长度大于40~60 cm,并且在岩芯易饼化时测试很难成功;存在应变元件的粘贴、防潮、全过程测量和定向等问题;受温度变化、岩性差异影响大,测量结果离散性大。

地应力知识

地应力知识 简介 地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。 随着水利水电、矿山、交通与城建等边坡、洞室及深基坑等事故的明显增加从而使人们对地应力引起较为广泛的注意与重视,所以,地应力研究不但具有重要的实际意义,而且具有重要的理论意义。 一地应力的成因 产生地应力的原因是十分复杂的,也是至今尚不十分清楚的问题。30多年来的实测和理论分析表明,地应力形成主要与地球的各种动力运动过程有关,其中包括: 板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其它物理化学等也可引起相应的应力场,其中,构造应力场和重力应力场是现今地应力场的主要组成部分。 1大陆板块边界受压引起的应力场 以中国大陆板块为例,由于受到印度板块和太平洋板块的推挤,推挤速度为每年数厘米,同时受到西伯利亚板块和菲律宾板块的约束。在这样的边界条件下,包括发生变形,产生水平受压应力场。2地幔热对流引起的应力场 由硅镁质组成的地幔因温度很高,具有可塑性,并可以上下对流和蠕动。地幔热对流引起地壳下面的水平切向应力,在亚洲形成由孟加拉湾一直延伸到贝加尔湖的最低重力槽。 3由地心引力引起的应力场(也称为重力场) 重力场,是各种应力场中唯一能够计算的应力场。重力应力为垂直方向应力,是地壳中所有各点垂直应力的主要组成部分,但是垂直应力一般并不完全

等于自重应力,因为板块移动、岩浆对流和侵入、岩体非均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。 4岩浆侵入引起的应力场 岩浆侵入挤压、冷凝收缩和成岩,均在周围底层中产生相应的应力场,其过程也是相当复杂。熔融状态的岩浆处于静水压力状态,对其周围施加的是各个方向相等均匀压力,但是热的岩浆侵入后逐渐冷凝收缩,并从接触面界面逐渐向内部发展,不同的热膨胀系数及热力学过程会使侵入岩浆自身及其周围岩体应力产生复杂的变化过程。 岩浆侵入引起的应力场是一种局部应力场。 5地温梯度引起的应力场 地层的温度随着深度增加而升高,一般为a=3℃/100m。由于地温梯度引起地层中不同深度不相同的膨胀,从而引起地层中的压应力,其值可达相同深度自重应力的数分之一。6地表剥蚀产生的应力场 地壳上升部分岩体因为风化、侵蚀和雨水冲刷搬运而产生剥蚀作用。剥蚀后,由于岩体内的颗粒结构的变化和应力松弛赶不上这种变化,导致岩体内仍然存在着比由地层厚度引起的自重应力还要大得多的水平应力值。因此,在某些地区,水平应力除与构造应力有关外,还和地表剥蚀有关。 二地应力的研究观点 对地应力的研究已有一百多年的历史了,但总的说来,现在主要有三种观点: 1“静水应力式”分布的观点 它最早是海姆(Heim)于1878年提出的“静水压力”假说。 以后(1905~1912年),又提出相应的应力计算公式。1925年,金尼克也提出了弹性理论计算法及相应的公式。但事实表明,它们只能适用于一定的环境条件下,如,埋深较大的未受到扰动的地层。

地应力及其测试技术

地应力及其测试技术 1、引言 岩体中的应力是岩体稳定性与工程运营必须考虑的因素。在漫长的地质年代里,地壳始终处于不断运动、变化之中,由此引起构造应力。引起岩体的应力除了构造应力,还有上覆岩体的自重应力、气温变化引起的温度应力、地震力以及由于结晶作用、变质作用、沉积作用、固结作用、脱水作用所引起的应力等。这些在人类工程活动之前存在于岩体中的应力,就称为地应力或天然应力。 由于岩体中的地应力分布是及其复杂的,特别是岩体遭受地质构造运动之后应力状态更为复杂,分布规律千变万化。因此目前对于岩体中地应力的大小以及其分布规律的研究尚缺乏完整系统的理论成果。尽管近年来很多学者对于地应力的现场测量和理论研究都做了大量的工作,并取得一定的进展。但是,要达到能够确切掌握岩体中的初始应力大小及其分布规律,目前还有较大的距离。 虽然目前仍难以对岩体中地应力的大小及其分布规律达到确切的掌握,但是地应力状态与岩体稳定性的关系极大,它不仅是决定岩体稳定性的重要因素,而且直接影响各类岩体工程的设计和施工。在高地应力区所进行的岩体开挖,常常会引起一系列与开挖卸载回弹和应力释放相联系的变形和破坏现象。在高地应力的脆性岩体开挖时,甚至能发生岩爆现象。这些不利现象都极大程度上影响着施工和运营安全,因此,岩体地应力状态对工程建设有着重要的意义。 2、地应力的组成及其特点 2.1 地应力的组成 地应力的组成成分是地应力的来源,它主要来自五个方面,即岩体自重、地质构造运动、地形势、剥蚀作用和封闭应力。自重应力是地心对岩体的引力。地质构造运动引起的应力,包括古构造运动应力和新构造运动应力。前者是地质史上由于构造运动残留于岩体内部的应力,也称为构造残余应力;后者是现今正在形成某种构造体系和构造型式的应力,也是导致当今地震和最新地壳变形的应力。地形势与剥蚀作用引起的应力仅限于局部的应力场受到影响,例如,高山峡谷或者深切河谷底部的应力往往比较集中;地表剥蚀会使该处地应力的铅垂应力分量降低较多,而水平应力基本保持不变等等。封闭应力是地壳经受高温高压引起岩石变形时,由于岩石颗粒的晶体之间发生摩擦,部分变形受到阻碍而将应力积聚封闭于岩石之中,并处于平衡状态,即使卸载,其变形往往不能完全恢复,故称封闭应力。 2.1.1 自重应力

地应力的测量方法

地应力的测量原理 目前地应力测量方法有很多种,根据测量原理可分为三大类: 第一类是以测定岩体中的应变、变形为依据的力学法,如应力恢复法、应力解除法及水压致裂法等; 第二类是以测量岩体中声发射、声波传播规律、电阻率或其他物理量的变化为依据的地球物理方法; 第三类是根据地质构造和井下岩体破坏状况提供的信息确定应力方向。其中,应力解除法与水压致裂法得到比较广泛的应用,其他几种只能作为辅助方法。 1.应力解除法测试原理和技术 1.1应力解除法测试原理 具有初始应力的岩体,用人为的方法卸去其应力,在岩体恢复变形的过程中测试其应变,然后用弹性力学理论计算出地应力的大小,得出其方向、倾角。目前国内外地应力测量普遍采用空心包体应变计测量技术。KX一81型空心包体应变计由A、B、C 3组共12枚应变片嵌埋在1个壁厚约3 mm的空心环氧树脂圆筒中间,圆筒外表面与钻孔壁用专用环氧树脂胶黏结在一起,其是在澳大利亚CSIRO空心包体应变计的基础上研制出来的,是套钻孔应力解除法的一种,只需1个孔就能测量出某点的三维原岩应力,具有使用方便、安装操作简单、成本低、效率高等优点。 1.2完全温度补偿技术 KX一81型空心包体应变计与其他许多应变测量仪器一样,均采用应变计作为敏感元件,并根据惠斯顿电桥的原理13J,将应变的变化转换成电压变化经放大后记录下来。电阻应变计对温度变化是很敏感的,温度发生变化时应变计的电阻值将发生变化,从而产生虚假的附加应变值。因此在现场测试中必须采取温度补偿措施。 惠斯顿电桥原理:平衡时,检流计所在支路电流为零,则有,(1)流过R1和R3的电流相同(记作I1),流过R2和R4的电流相同(记作I2)。(2)B,D两点电位相等,即UB=UD。因而有 I1R1=I2R2;个阻值已知,便可求得第四个电阻。测量时,选择适当的电阻作为R1和R2,用一个可变电阻作为R3,令被测电阻充当R4,调节R3使电桥平衡,而且可利用高灵敏度的检流计来测零,故用电桥测电阻比用欧姆表精确。电桥不平衡时,G的电流IG与R1,R2,R3,R4有关。利用这一关系也可根据IG及三个臂的电阻值 求得第四个臂的阻值,因此不平衡电桥原则上也可测量电阻。在不平衡电桥中,G应从“检流计’改称为“电流计”,其作用而不是检查有无电流而是测量电流的大小。可见,不平衡电桥和平衡电桥的测量原理有原则上的区别。利用电桥还可测量一些非电学量。 1)根据惠斯顿电桥的原理自行设计并制成1个应变一电阻一电压转换装置,在每一桥路中,除工作应变桥臂外,其他3个桥臂均为电阻,其温度系数为1×10.6/℃,这样电阻在温度变化1℃时只产生5 X 10~P变化,从而可以忽略不计。 2)增加1个热敏电阻,在应力解除过程中连续不断地测量测点的温度变化。 3)在每一次应力解除完成后,进行温度、应变标定试验,为计算地应力给出正确的测量数据。 测点的布置 测点布置 测点应布置在裂隙、孔隙少且均匀致密的完整岩体中,且不受开采影响的区域,一般选择在开拓巷道或专门硐室内布置测试钻孔。钻孔要施工到巷道或硐室扰动应力场范围之外,避开巷道和采场的弯、叉拐、顶部等应力增高区,保证应力测点处于原岩应力区,钻孔深度一般

地应力测量方法文献综述

地应力测量方法文献综述 通过查阅大量的与地应力测量相关的文献,对地应力测量法进行了系统的总结归类,明确了每种方法的适用范围优缺点及工作原理;同时提出了地应力测量过程中需要注意的问题,并对我国地应力测量的发展现状做出了展望。 标签:测量方法;地应力;适用范围 地应力又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于物理变化、化学变化以及侵入等原因综合作用产生的[1]。地应力不仅是决定区域稳定性的重要因素,而且对矿山开采、大型地下工程建设和能源开发等生产实践均起着至关重要的作用。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提,所以选择合理有效的地应力测量方法意义重大。 1.国内外地应力测量的研究概况 19世纪末20世纪初,瑞士著名的地质学家海姆(Heim)通过观察阿尔卑斯山大型越岭隧洞围岩的工作状态,发现隧洞在各个方向都承受着很高的压力,首次提出了地应力的概念,并于1905~1912年提出了地应力为“静水压力”的假说,即著名的Heim假说:岩体地应力的垂直分量与水平分量相等,其大小等于上覆岩体的重力γH(其中,γ为岩石的容重,H为深度)[2]。产生地应力的原因是十分复杂的,要弄清楚所有因素尚有困难。工程岩体中地应力的主要来源是岩体自重和各种地质构造运动,而实测地应力的工作具有直接、重要的意义。 2.应力解除法 应力解除法的原理是,岩块从具有一定应力环境的岩体中取出后,岩石发生弹性变形,测量出接触后岩块的弹性变形,通过岩石力学实验测定弹性模量,有胡克定律即可计算得到解除前岩体中的应力大小及方向[3]。操作过程是,将特制传感器安装在已施工好的待测岩体钻孔中的同心小孔内,同心套取岩心,岩心应力解除发生弹性变形,通过仪器记录应变,在实验室测量解除岩块的弹性模量,计算获得应力矢量。目前根据测试的应变或变形,应力解除法大体上可分为孔壁、孔径、孔底应变法。 3.水力压裂法 应力测量中的水压致裂法又称微型水压致裂法,微型是相对于油田压裂而言。在水压致裂技术提出之前,科学家们主要使用应力解除法来测定原地应力,包括平面应力解除法、钻孔套芯应力解除法、扁千斤顶法(平面应变恢复法)等。Hubbert和Willis于1957年提出井孔液体压裂所产生的裂缝与岩体中所赋存的应力状态密切相关,并指出岩体压力并非处于静水压力状态[4]。Scheidgger(1962)是第一位利用油井孔底压力曲线分析地壳应力的科学家。Fairhurst(1964)是第

水准测量基本原理教案

水准测量基本原理教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为 a ,在B 点的水准尺上读数为 b ,则A 、B 两点间的高差为: b a h AB -=

图1-1 水准测量原理 设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法:AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。

地应力检测(1)

1、地质雷达检测隧道支护情况 包括隧道衬砌厚度是否满足设计要求、钢筋保护层厚度是否满足设计要求、隧道衬砌钢筋布臵是否满足设计要求、隧道衬砌钢架布臵是否满足设计要求、隧道衬砌的密实情况(包括二衬背后脱空及初支背后空洞、不密实)。 评判标准:《公路工程质量检验评定标准》(GTG F80/1-2004);参考《铁路隧道衬砌质量无损检测规程》(TB10233-2004)。 2、地应力检测 我国地应力测量试验和研究开始于20世纪50年代后期,迄今为止,地应力测量的主要方法虽然很多,但尚未形成统一的分类标准.根据测量数据特点的不同,地应力测量大体分为绝对应力测量和相对应力测量.前者主要是确定地壳应力背景值,即主应力的大小和方向;后者则是观测应力随时间变化的动态变化规律,通常也称为地应力监测.根据测量基本原理的不同,绝对应力测量方法又可分为直接测量法和间接测量法.所谓直接测量法就是利用测量仪器直接测量和记录各种应力量,并由这些应力量和原岩应力的相互关系直接换算得到原岩应力值.间接测量法则是借助某些传感元件或媒介,测量和记录与岩体相关物理量的变化(如密度、泊松比、弹性波速等变化),然后通过相应的公式换算间接得到原岩应力值.目前,较为常用的绝对应力测量方法主要有水压致裂法、声发射法、钻孔崩落法、套芯应力解除法、应变恢复法等.其中,前3种方法属于直接测量方法,后2种方法属于间接测量方法.相对应力测量方法包括压磁法、压容法、体应变法、分量应变法及差应变法等.我们采用水压致裂法 地应力测量存在的问题与展望:随着我国工程建设不断向深部发展,地应力测量及监测正面临着严峻的考验.与发达国家相比,尚存在许多问题与不足.首先,在宏观层面上存在的问题与挑战有:第一,测量和监测深度不足。目前,国际上最大地应力测量深度已达5100m.在德国的KTB深钻及美国的SAFOD计划中,应力测量深度一般达到2000~3000m;日本也建立了数10座深度为1000~3800m的深井观测台站.我国的绝大部分应力测量深度仅数百米,超过1000m的深井观测极为稀少,这严重制约了测量数据在空间上的代表性.第二,缺乏合理系统的地应力监测网络.我国虽然积累了大量的地应力测量数据,但数据分布不均且质量参差不齐,地应力监测台站少、布局不合理,

地应力测量方法.

地应力测量方法 目前,我所地应力测量主要采用四种方法进行,分别为基于钻孔的深孔套芯解除法、深孔水压致裂法和基于岩芯的差应变法、滞弹性恢复法。其中套芯法测试精度最高,水压致裂法次之,但套芯法测试周期长,建议根据项目需求选择合适地段进行测试。几种测试方法可以联合使用,综合比对各种方法的测试结果,最终确定测试钻孔的地应力状态及规律。 一、实验参数 ①深孔套芯解除法 应变、弹性模量 ②深孔水压致裂法 应力 ③岩芯的差应变法 声波波速、应力 ④岩芯的滞弹性恢复法 应变、时间 二、实验仪器设备及技术参数 ①深孔套芯解除法 2006型-深孔套芯地应力测量仪是中国地质科学院地质力学研究所研制的深孔专用地应力测量仪(实物见图2和图3),包括井下专用空心包体探头和井下应变记录仪,另外还有配套的井下专用安装工具,在青藏铁路沿线、南水北调西线和西气东输等国家重大工程中得到应用。

图2 中国地质科学院地质力学研究所2006型-深孔套芯地应力测量仪 a b c 图3 井下应变记录仪(深孔型外壳为无磁不锈钢) a.井下应变记录仪操作面板; b.36Ф全应力测量探头; c. 井下应变记录仪分解图 KB-2006-J型井下专用空心包体探头,是我所获地质部科技成果一等奖的KX-81型空心包体全应力计的基础上改进发展的全应力测量探头,12个120Ω箔式应变片(三组90°、0°、±45°应变花,呈径向120°排列),一次测量即可获

得该点的三维应力。水下胶为丙烯酸树脂或可水下低温固化的双组份环氧树脂两种,下井前配好,适应期2小时。 KB-12-J型深孔应变仪是超小型智能化数字仪器,是我所研制的钻孔专用定时记录式微型应变仪,采用目前最先进的msc1200微处理器芯片和Flash存贮器及独立知识产权的电子开关技术研制开发的技术先进、方便实用的智能数字应变仪。主要特点是:①外壳采用高强度不锈钢和高强度钢化玻璃视窗,端面密封圈防水结构耐静水压40MPa;②独立微功耗电子定时器,可按事先设定的时间定时启动主机,一次充电可在井下定时待机数月,连续采集工作时间>20小时; ③1秒~12小时采集控制时间间隔;④RS232C接口可以实现事后通讯,事后回访主机为PC机或笔记本电脑,简明快捷的人机对话窗口,利用主机或PC双向设置控制;⑤理想实用的PC处理软件--多点曲线实时显示同时生成数据文件,σ-ε曲线自动生成。除此之外为满足不同用户需要还设计了功能丰富的隐含菜单。 主要技术指标 (1)精度:测量值的± 0. 1%±1个字; (2)分辩度:1个με; (3)量程: ±19999με; (4)供桥电压:2.4V或1.2V; (5)灵敏系数:0.001~999.999数字设置; (6)适用电阻应变片阻值:60Ω~1000Ω; (7)平衡方式:自动; (8)平衡范围:±6000με; (9)存贮空间:主机32K字节;当实时通讯时为海量存贮;

相关文档
最新文档