避雷器耐压试验

避雷器耐压试验
避雷器耐压试验

《避雷器耐压试验》

避雷器直流耐压试验

避雷器直流耐压试验一、试验目的

避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。

二、试验数据其试验数据≦50微安三、实验步骤

1、首先拆除避雷器上与计数器连线。

2然后用计数器检测仪将计数器进行试验。

3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应≥2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。

4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。

6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。

7、用放电棒对高压发生器及避雷器进行充分放电。

8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。

9、恢复所拆避雷器及计数器接线。

四、注意事项

1、试验设备在通电前,务必接上地线。

2、实验前应将避雷器清扫干净,以减少测量误差。

3、接好线应复查无误后方可加压,同时应检查接地是否良好。

4、开机前应检查操作箱“粗调”“细调”旋钮是否良好,是否在零位。

5、实验前,应检查电源电压AC220V。

6、加压速度不能太快,以防止突然高压损坏避雷器。

7、在试验过程中应密切观察避雷器及各表计,如出现异常情况,应立即降压,并切断操作箱电源,停止操作。

五、主接线图

避雷器直流耐压试验.doc

避雷器直流耐压试验一、试验目的

避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。

二、试验数据其试验数据?50微安三、实验步骤

1、首先拆除避雷器上与计数器连线。

2然后用计数器检测仪将计数器进行试验。

3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应?2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。

4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。

6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。

7、用放电棒对高压发生器及避雷器进行充分放电。

8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。

9、恢复所拆避雷器及计数器接线。

四、注意事项

1、试验设备在通电前,务必接上地线。

2、实验前应将避雷器清扫干净,以减少测量误差。

3、接好线应复查无误后方可加压,同时应检查接地是否良好。

4、开机前应检查操作箱“粗调”“细调”旋钮是否良好,是否在零位。

5、实验前,应检查电源电压AC220V。

6、加压速度不能太快,以防止突然高压损坏避雷器。

7、在试验过程中应密切观察避雷器及各表计,如出现异常情况,应立即降压,并切断操作箱电源,停止操作。

五、主接线图避微安雷表备压器筒操作箱

避雷器试验

避雷器试验一.实验目的:

了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。

二.预习要点:

概念:灭弧电压、冲击放电电压、工频放电电压、残压、保护比、切断比、工频续流、直流电导电流、非线性系数、冲击系数。

判断:普通阀型避雷器阀片热容量小,磁吹阀型避雷器阀片热容量较大。推理:普通阀型避雷器只用于限制大气过电压,磁吹阀型避雷器既可用于限制大气过电压也可用于限制内部过电压。

相关知识点:大气过电压、内过电压、伏秒特性、冲击耐压强度、绝缘配合、雷电流计算标准。

三.实验项目:

1.FS-10型避雷器试验(1).绝缘电阻检查(2).工频放电电压测试 2.FZ-15型避雷器试验(1).绝缘电阻检查(2).泄漏电流及非线性系数的测试

四.实验说明:

阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。FS型避雷器的结构最简单,如图4-1所示,由火花间隙和非线性电阻(阀片)串联组成。FZ型避雷器

的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图4-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。非线性

α

电阻的伏安特性式为:U=CI,其中C为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图4-3所示。可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。磁吹型避雷器有FCZ型(电站用)和FCD型(旋转电机用)两种,其结构与FZ 型相似,间隙上都有均压电阻,只是磁吹型避雷器采用磁吹间隙,并配有磁场线圈和辅助间隙。由于以上结构上的不同,所以对FS型和FZ(FCZ、FCD)型避雷器的预防性试验项目和标准都有很大的不同。

根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查和工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查和直流泄漏电流及非线性系数的测试。只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。避雷器其它的预防性试验还包括底座绝缘电阻的检查、放电计数器的检查及瓷套密封性检查等。

避雷器试验应在每年雷雨季节前及大修后或必要时进行。绝缘电阻的检查应采用电压≥2500v 及量程≥2500MΩ的兆欧表。要求对于FS型避雷器绝缘电阻应不低于2500MΩ;FZ(FCZ、FCD)型避雷器绝缘电阻与前次或同类型的测试值比较,不应有明显差别。FS型避雷器的工频放电电压试验的合格值如表4-1所列。

表4-1 FS型避雷器的工频放电电压值:

FZ型避雷器的直流泄漏电流及非线性系数的测试的试验电压及电导电流值如表4-2所列,所测泄漏电流值还应与历年数据相比较,不应有显著变化,同相元件电导电流差值不应大于30%。

表4-2 FZ型避雷器的直流泄漏试验电压及电导电流值:

(式4-1)非线性系数按式4-2计算:(式4-2)

同相组合元件的非线性系数差值不应大于0.05。

图4-1 FS型避雷器结构及图4-2 FZ型避雷器图4-3 非线性电阻的电路示意图电路示意图伏安特性曲线

五.仪器设备: 50/5试验装置一套水阻一只

高压硅堆一只滤波电容一只微安表一只电压表一只

高压静电电压表一只 FS-10型避雷器一只 FZ-15型避雷器一只

六.实验接线:

图4-4 绝缘电阻测试接线图图4-5 FS型避雷器工频放电实验接线图

(a)微安表接在避雷器处(b)微安表接在试验变压器尾端图4-6 FZ型避雷器工频放电实验接线图

七.实验步骤:

1.FS-10型避雷器试验(1).绝缘电阻检查

测试接线如图4-4所示,测试前应把避雷器表面清洁干净,检查有无外伤,两端头有无松动及锈蚀。测试时避雷器应竖放,先检查兆欧表的零位和最大偏转位,然后夹好接线,以120转/分的速度匀速摇转兆欧表,读取稳定的读数;为消除表面泄露的影响,可做一屏蔽环并接于兆欧表的G端,使表面泄露不影响读数。

所测得的绝缘电阻如果小于2500MΩ,可能是避雷器瓷套密封不良引起内部受潮所至。(2).工频放电电压测试

测试接线如图4-5所示,试验电路中应设保护电阻R,用来限制击穿放电时的放电电流,要求将此电流幅值限制到0.7A以下,以避免放电烧坏火花间隙;控制电路应设电流速断保护,要求间隙放电后在0.5s内切断电源。电压测量可在低压侧进行,并通过变比折算出高压侧电压,试验步骤:

①检查接线正确后,接通电源;

②合上高压试验开关,匀速升压(≈2kv/s),直至避雷器击穿放电,并记录此时的电压值,然后将调压器电压降至零,断开高压试验开关;

③重复步骤②三次,每次间隔时间不小于1min,取三次放电电压平均值为此避雷器的工频放电电压;

④切断电源。

2.FZ-15型避雷器试验(1).绝缘电阻检查

测试方法与测FS型避雷器绝缘电阻时相同,所不同的是因FZ型避雷器火花间隙上并联有均压电阻,故所测得的值比FS

型要小得多。规程中没有规定具体数值,但必须做相对

比较。如果与前次比较明显偏小,则可能是避雷器瓷套密封不良引起内部受潮;如果明显增大,则可能是避雷器均压电阻接触不良或断裂所至。(2).泄漏电流及非线性系数的测试

测试接线如图4-6所示,注意高压硅堆的方向应使试验电压呈负极性,要求试验电压的脉动系数不大于±1.5%,一般是在回路上并接0.01~0.1μf的滤波电容C,保护电阻R应使避雷器放电时的放电电流不大于硅堆最大允许电流,应直接测量加在避雷器上的试验电压(一般用静电电压表测量),测量准确度应在3级或以上,电导电流可在图中A、B、C三处测量,以A处为优选,注意在C处测量时除避雷器外的其它试验设备的接地端应接于试验变压器的X 端,并空升一次以检查其它泄露情况。电流测量准确度应在0.5级或以上,试验步骤:

①检查接线正确后,接通电源;

②合上高压试验开关,匀速升压(≈2kv/s)至U1,记录此时的电导电流(I1),然后继续匀速升压至U2,并记录此时的电导电流(I2),完毕后将电压降至零,断开高压试验开关,切断电源;

③放电,对滤波电容。一般先通过电阻放电,然后再直接放电并挂上接地线。

八、实验数据分析

1.实验原始数据记录 FS型避雷器绝缘电阻

FZ型避雷器绝缘电阻 2. 实验数据处理与分析

FS-10型避雷器(1)根据绝缘电阻

,即绝缘电阻检查合格;

(2)由表4-1可知,FS-10型避雷器工频放电电压的范围23~33kV,实验数据符合。综合得:FS-10型避雷器合格。

FZ-15型避雷器(1)经过几次反复测量绝缘电阻R值都在

左右,相对比较可知绝缘电阻检查合格;

(2)由上表可得,当试验电压分别为6kV和12kV时,泄露电流在(3)非线性系数的测试和计算由表格数据和式4-2可得

。第一次试验的非线性系数第二次试验的非线性系数

根据同相组合元件的非线性系数差值不应大于0.05可知,两次实验所得数据均满足要求。综

合得:FZ-15型避雷器也是合格的。

九、心得体会

这次避雷器的实验,整体来说难度不大,而且步骤也不是很繁多,有学姐和学长操作并指导我们进行实验,但是实验存在一定的危险性,所以在操作时要注意安全。通过这次试验,我们了解了普通阀型避雷器的FS型和FZ型二者的作用过程,通过测量它们的参数,来判断被试品是否合格。最重要的是学会了检验一个设备是否合格的方法:在做试验之前,需要知道三个参数:①试验参数:试验品的电压、电流,以及须获得参数的变化范围,提高实验的准确性;②设备参数:如设备的容量、电压等,以保证实验所加电压不会超出设备的允许范围;③试验方法。这是做好一个试验的关键步骤。

做高电压实验必须注意安全、细心、仔细的观察试验现象,并能对试验的正常或异常现象进行分析。避雷器试验属于破坏性试验,试验所加电压属于高压,所以做试验时我们必须严格按照安全规范和老师的要求来完成试验,保证安全性。

我们做避雷器实验之前,应该了解避雷器分为哪些避雷器,各自的结构、优缺点和适用范围;用哪些参数来衡量避雷器的好坏。并可以延伸到避雷的形式有哪些(如:避雷针、避雷线、避雷器等),其作用过程,保护范围等。学会知识的联系,深入了解和拓展,学以致用,才是我们实验的真正目的。

不论实验的过程与结果怎么样,我们必须摆正态度,认真地做好实验,才会让我们学到更多的知识,在以后的道路上越走越远。

避雷器试验

避雷器在制造过程中可能存在缺陷而未被检查出来,如在空气潮湿的时候或季节装配出厂,预先带进潮气;在运输过程中受损,内部瓷碗破裂,并联电阻震断,外部瓷套碰伤或者在运输中受潮,瓷套端部不平,滚压不严,密封橡胶垫圈老化变硬,瓷套裂纹以及并联电阻和阀片在运行中老化等。这些劣化都可以通过预防性试验来发现,从而防止避雷器在运行中的误动作和爆炸等事故。

避雷器按结构分为保护间隙和管式避雷器、阀式避雷器(配电型FS、变电所型FZ)磁吹阀式避雷器和金属氧化物避雷器。

其中保护间隙和管式避雷器、磁吹阀式避雷器等均被慢慢淘汰,阀式避雷器稍有使用。对与阀式避雷器的试验项目主要有两种情况:

不带并联电阻的阀式避雷器主要试验项目有:绝缘电阻试验(用2500V兆欧表)、工频放电电压试验。

带并联电阻的阀式避雷器(包括FZ型,FCZ型和FCD型磁吹避雷器)试验主要试验项目有:绝缘电阻试验、工频放电电压试验和电导电流试验,其中电导电流试验可停电试验,也可带电进行测量。

相对来说,金属氧化物避雷器目前得到越来越广泛的应用,下面就主要介绍一下金属氧化物的有关情况。

一、金属氧化物避雷器简介

金属氧化物避雷器(MOA)又称氧化锌避雷器,是一种与传统避雷器概念有很大不同的新型避雷器,从80年代中期开始,它已在电力系统推广应用并已批量生产。它主要由氧化锌压敏电阻构成,每一块压敏电阻从制成时就有它的一定开关电压(叫压敏电压),在正常的工作电压下(即小于压敏电压)压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值被击穿,相当于短路状态。然而压敏电阻的被击穿状态是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高阻状态。因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压控制在安全范围内,从而保护了电器设备的安全。

MOA与其他传统避雷器的区别在于:其他类型避雷器,从羊角间隙到FCZ磁吹式避雷器,其内部空气间隙起着十分重要的作用,在正常运行时靠间隙将阀片与电源隔开,出现过电压间隙才被击穿,阀片放电泄流。而氧化锌避雷器是用氧化锌阀片叠装而成的,可完全取消间隙,这就解决了因间隙放电时限及放电稳定性所引起的各种问题。由于氧化锌阀片具有非线性特性好的特点,从而使避雷器的特性和结构发生了重大改变。

在额定电压下,流过氧化锌避雷器阀片的电流仅为5-10A,相当于绝缘体。因此,它可以不用火花间隙来隔离工作电压与阀片。当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。

二、金属氧化物避雷器试验

由于MOA是一种新型的避雷器,所以前几年其试验方法和试验设备都不很完善,但随着MOA在电力系统中的推广和应用。对MOA的研究也越来越深入,运行经验也在逐渐积累,随之也发现了一些重要的问题。例如:①MOA阀片性能不佳,参数设计不合理;②内

部绝缘部件爬电距离不够和材质不良,内部结构不合理;③在装配中受潮或密封不良造成运行中受潮;④额定电压选择不合理等。

随着运行时间的增加,MOA阀片在长期运行电压下的老化问题也变得突出,所以加强投运前的交接验收试验和运行中的监测,及时总结运行经验是一项重要的工作。

目前国内预试规程对MOA的试验有三项规定:

(1)绝缘电阻试验;

(2)直流1mA下电压及75%该电压下泄漏电流的测量;

(3)运行电压下交流泄漏电流及阻性分量的测量(有功分量和无功分量).

对金属氧化物避雷器的试验项目及要求如表9-1所示:

表9-1 金属氧化物避雷器的试验项目、周期和要求

根据现场条件及厂家规定,可选择性地进行以下3个试验:

1、绝缘电阻试验

测量前应检查瓷套有无外伤,测量时用兆欧表,把试验连线与避雷器可靠连接,摇表放水平位置,摇的速度不要太快或太慢,一般120r/s。

当天气潮湿时,瓷套表面对泄漏电流的影响较大,应用干净的布把瓷套表面擦净。并用金属丝在下端瓷套的第一裙下部绕一圈再接到摇表的屏蔽接线柱,以消除其影响(其测量值应大于2500MΩ)。

电压等级在35kV及以下用2500V兆欧表,35kV以上用

5000V兆欧表。

由于氧化锌阀片在小电流区域具有很高的阻值,故绝缘电阻主要取决于阀片内部绝缘部件和瓷套。进口避雷器一般按厂家的标准进行绝缘电阻试验。

阀式避雷器的绝缘电阻试验与金属氧化物避雷器的绝缘电阻试验相同。

2、lmA直流下的电压及75%该电压下泄漏电流测量

该项试验有利于检查MOA直流参考电压及MOA在正常运行中的荷电率,对确定阀片片数,判断额定电压选择是否合理及老化状态都有十分重要的作用。其试验原理接线图如图9-2所示。 25

4A

图9-2 金属氧化物避雷器直流试验接线图

1—直流电压发生器;2—滤波电容;3—静电电压表;4—直流微安表;5—试品

试验步骤:先以指针式微安表监测泄漏电流值,升至1mA。停止升压确定此时电压值,再降压至该电压的75%时,测量其泄漏电流,因该电流值较小,应用数字式万用表来检测。

试验中应注意的问题:①试验必须与地绝缘,外表面应加屏蔽,屏蔽线要封口;②直流电压发生器应单独接地;③试品底部与匝绝缘应保持干燥;④现场测量应注意场地屏蔽。

试验分析:①试验中如U1mA电压比工厂所提供的数据偏差较大,与铭牌不符时,应与

下的电流值偏大或电压加不上去,则有可能严重受潮;厂家进行联系。②通常在70%U1mA

电流>50μA,则有可能有受潮情况。

投运后,随着运行时间增加,电流有一定增大,但电流不能超过50μA。

3、MOA在持续运行电压下的交流泄漏总电流、阻性电流及损耗功率测量

金属氧化物避雷器(MOA)在保护电力系统安全运行上有十分重要的作用,但由于MOA没有放电间隙,ZnO电阻片长期承受工频电压,冲击电压和内部受潮等影响,引起内部ZnO 阀片(MOA)老化,阻性电流增加,功耗增大,导致MOA内部阀片温度升高,直至发生热崩溃。如果MOA在动作负载下发生劣化,将会使正常对地绝缘水平降低,泄漏电流增大,直至MOA被击穿而损坏。为了及时发现MOA的隐患,需要经常监测其运行状态,MOA老化后,内部电阻减小,泄漏电流阻性分量按指数规律极大地增加。因此,准确监测阻性分

量电流的变化对于MOA的健康诊断非常重要。

目前,现在国内外测量仪器有:

(1)瑞典NL型MOA泄漏电流分析仪,常配有雷电计数器(环形线匝接口)。

(2)日本日立公司的避雷器泄漏电流检测仪,它可测总泄漏平均值,也可测3次谐波成分,3次谐波经函数变换为阻性电流的信号量。

以上两种仪器的基本原理是在MOA阀片劣化后,其阻性电流中的谐波成分明显增加,通过谐波分析法,反映出全电流中阻性电流的变化,但都不明确表明阻性电流的峰值。因容易受系统谐波含量影响,无法反应MOA表面受污秽受潮等问题。

(3)日本LCD-4型阻性电流测量仪。其基本原理是利用外加容性电流将流过阀片的IX的容性电流(无功分量)补偿掉,而只保留阻性电流分量。

国内众多厂家生产的测量仪,其原理大致与LCD-4型相似。这种测量方式可在现场带电测量,测量较简便。现场测量应注意的问题是:

①注意正确选取参考电压的相位;

②现场试验测量回路应一点可靠接地;

③220kV及以上电压等级避雷器在现场带电测量时应注意其相间干扰(目前国内有些测量设备也附带有移相消除相间干扰的功能)。

10kV氧化锌避雷器的预防性试验介绍

王履公甘肃省兰州市农电公司(730030)

氧化锌避雷器具有非线性系数大。限压特性好、通流量大、响应快、残压低、无续流、寿命长、对大气过电压和操作过电压都能起保护作用的特点,尤其是对并联电容器组的过电压保护作用,碳化硅阀式避雷器与之无法比拟。现在氧化锌避雷器已广泛用于农村电网,由于我国农村10kV电网是中性点不接地系统,单相接他故障时,避雷器承受的工作电压高,时间长,加之氧化锌阀片制作技术目前尚不完美,因试验方法不当,查不出有缺陷氧化锌避雷器,曾发生运行中氧化锌避雷器爆炸事故。为此应按电气设备预防性试验规程规定周期,做好氧化锌避雷器的预防性试验工作。

一、绝缘电阻试验

该试验是各种氧化锌避雷器的必做项目。主要用于判断避雷器阀片是否受潮。内部零件装配是否合格。试验前应将避雷器瓷套管擦净,用2500V摇表测出的绝缘电阻应大于1000MΩ。

二、测避雷器通过lmA电流时直流电压值U1mA。

该电压又称标称直流电压、参考电压、最小参考电压、临界动作电压、起始动作电压等等。该电压反应氧化锌避雷器由小电流工作区到大电流工作区的分界点,是无间隙氧化锌避雷器的必做项目。10kV氧化锌避雷器在12. 7kV电压下,应该能工作24h;在15kV电压下,应能工作2h。U1mA直接反应避雷器承受短时过电压和系统额定电压的运行能力,可以检查避雷器的保护特性、装配质量和老化程度。规范规定该值与初始值相差不得大于 5%。由于避雷器型号规格不同、通流量不等、厂家不同等原因,该电压差值较大。(见表1、表2)笔者认为:凡有厂家提供数据的,实测 U1mA值与厂家数据相比较;凡厂家没提供数据的,安装时实测U1mA。U1mA值与下式计算值相比较,若在系数范围之内,可认为合格,以后试验数值与这次实测值相比较,差值不应超过5%。

测试接线如图1,直流电源选用KGF-30型或JGS-2型晶体管高压直流电源,电压脉冲不超过1.5%。

三、测量75%U1mA时的泄漏电流

相同厂家无间隙氧化锌避雷器U1mA值一览

75%U1mA的值稍大于运行相电压的峰值,该试验主要检查长期允许工作电流是否符合规定,泄漏电流愈大,说叫阀片愈老化,愈严重,避雷器寿命愈短。试验接线如图1,在75%U1mA 电压数值下保持一分钟,泄漏电流应不大于50A,泄漏电流不应有大的波动。

四、测量运行电压下的交流泄漏电流

该试验主要检查正常运行相电压下的最大工作电流。氧化锌避雷器在运行电压下工作时,可等效为一个电阻和电容的并联回路。规程规定实测有功电流与初始值相比较,当有功分量大

于初始值两倍时,应缩短监测周期为三个月一次。运行中如该值超标,常采用更换新避雷器的办法,以减少检修、测试的工作量,并保证设备安全运行。规程中还要求测试泄漏电流的无功分量,但数值没做规定。交流泄漏电流测试需要~些专用设备,现场测试较难。一般测量持续运行电压下的最大泄漏电流,将其与厂家提供数值相比较,当泄漏电流超过厂家提供最大全电流值时,避雷器应退出运行。由于泄漏电流受温度影响较大,测量时要记录好环温,并在同一温度下进行比较。无间隙氧化锌避雷器在运行压下,最大泄漏全电流参考值见表3,试验接线见图2。

五、测量交流泄漏电流1mA时的参考电压

该试验与测量直流泄漏电流 lmA时的参考电压试验作用相同,该电压稍大于避雷器承受的短时过电压和系统额定电压,使实验更接近于实际。由于阀片间电容电流的存在,不如测试直流U1mA。试验灵敏。部分厂家产品说明书提供该参考电压值,实测值与厂家提供数值相差不应大于 5%。

六、电导电流测量

规程对该项试验没做要求。对并联间隙的氧化锌避雷器,厂家要求用户做该项试验。试验电压直流10kV,泄漏电流不大于100A。

七、工频放电电压试验

该试验是串联间隙氧化锌避雷器的必做项目。与阀型避雷器相同,主要检查避雷器工频放电特性。工频放电电压范围参考阀到避雷器标准,应在23~33kV范围之内,实测值多在25~30kV以内。氧化锌避雷器工频放电电压试验要求避雷器放电后,在一秒种内试验电压应降到零,放电电流应限制在0.02~0.1A之间,防止通电时间过长烧毁避雷器阀片。试验接线如图2,但要解除交流毫安表,将避雷器接地螺栓直接接地。

目前我国氧化锌避雷器型号规格较多,各厂家提供的技术参数项目及数值不一,各厂对氧化锌避雷器有不同的试验项目和试验要求,电气设备预防性试验规程要求的试验项目,

笔者认为仅适用于无间隙氧化锌避雷器,为了正确判断氧化锌避雷器的好坏,必须统一试验项目和试验标准,建议按表四选择试验项目。新安装避雷器的交接试验及每年雷雨季节前的周期预防性试验均按选择试验项目进行,以便比较判断避雷器的运行状况。

避雷器在电力系统应用中的问题分析

1.应用中的问题探讨 1.1避雷器自身过电压防护问题

避雷器是过电压保护电器,其自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷

器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。

1.2避雷器自身对电力系统不安全影响

保护间隙和管型避雷器在间隙击穿后,保护回路再也没有限流元件,保护动作都要造成接地故障或相间短路故障,保护作用增多电力系统故障率,影响电力系统的正常、安全运行。应用氧化锌避雷器,从根本上避免保护作用产生接地故障或相间短路故障,且不用自动重合闸装置就能减少线路雷害停电事故。

1.3避雷器其连续雷电冲击保护能力

有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗最大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。

1.4工频能源的浪费

只关注防雷器件泄放雷电流的限(降)压保护作用,轻视或忽视有些器件同时泄放工频电流浪费能源作用。保护间隙或管型避雷器保护动作可能伴随短路电流(几kA至几十kA)对地放电,碳化硅避雷器保护动作有工频续流(避雷器FS型为50A,FZ型为80A,FCD型为250A)对地放电,而造成能源浪费,使用氧化锌避雷器可彻底避免保护作用带来的工频能源浪费。

2.避雷器保护特性 2.1避雷器的保护特性参数

各种型号的避雷器在同用途同电压级时,其雷电残压参数相同或接近,这是因为各生产厂都是按国标规定决定残压值的。有人认为既然雷电残压值一样,它们的保护作用和效果也应是一样的,随意选用哪种型号都可以。这是一种偏见,因为除雷电残压外,还有其它保护参数,如工频放电电压值,冲击放电电压值,是考察避雷器暂态过电压承受能力,保证其长期正常运行的参数;又如是否有雷电陡波残压值,是标示避雷器防雷保护功能完全的重要参数。综合来看,只有串联间隙氧化锌避雷器齐备上述保护特性参数,也就是说它有齐全的防护功能。

2.2避雷器动作特性运行稳定性

碳化硅避雷器保护动作要泄放雷电流和工频续流,动作负载重,经计算每次动作泄放雷电流为0.04~0.07 C电荷量,工频续流为0.5~2.5 C电荷量,后者与前者相比一般为11~17倍,且其间隙数量多隙距,常因动作负载重使部分间隙烧毛烧损,另外瓷套外壳脏污潮湿也会影响内间隙电容分布,这些都可能使部分间隙失效而降低冲击放电电压值,即动作特性稳定性差,可能增加保护动作频度,或遭受暂态过电压危害,而加速损坏。串联间隙氧化锌避雷器保护动作只泄放雷电流而无续流,动作负载轻,间隙不需具有灭弧及切断续流能力,故间隙数量特少,3~ 10kV避雷器仅一个间隙,35kV避雷器为3个间隙串联,间隙的工频放电电压值与碳化硅避雷器相同,符合GB7327规定,故间隙隙距大,动作特性可保持长期运行稳定。

2.3串联间隙氧化锌避雷器

碳化硅避雷器因其间隙结构(隙距小,数量多)带来一些缺点:如没有雷电陡波保护功能;没有连续雷电冲击保护能力;动作特性稳定差可能遭受暂态过电压危害;动作负载重寿命短等。无间隙氧化锌避雷器因其拐点电压较低,有暂态过电压承受能力差,损坏爆炸率高和寿命短等缺点。串联间隙氧化锌避雷器既有间隙又用ZnO阀片,其间隙结构不同于碳化硅避雷器,因其间隙数量少,当过电压达到冲击放电电压时间隙无时延击穿,同时因隙距大动作特性稳定,故它可避免碳化硅避雷器间隙带来的一切缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故它可避免无间隙氧化锌避雷器因拐点电压偏低带来一切缺点。串联间隙氧化锌避雷器仍有前两种避雷器保护性能优点,而避免它们的缺点。

2.4避雷器运行工况监测

避雷器失效的主要特征是泄漏电流增大,运行中不易发现,有可能长时带病运行,以致扩大事故,故有必要监察其运行工况。碳化硅避雷缺乏监察手段,靠每年定期普遍测试筛选淘汰这样作事倍功半,还不能随时剔除失效品。氧化锌避雷器可附带脱离器,当其失效损坏时,脱离器自动动作(30mA时不大于8min)退出运行,以免造成更大损失和事故,提高运行安全可靠性。

避雷器试验作业指导书和试验标准

避雷器试验作业指导书与试验标准 2016年12月6日

目录 第一章总则 (2) 第二章引用标准 (3) 第三章检修工作准备 (4) 第四章检修试验作业 (16) 第五章检修报告编写及要求 (27) 第六章检修工作的验收 (28)

第一章总则 第一条为了提高避雷器设备的检修质量,使设备的检修工作达到制度化、规范化,保证避雷器安全可靠运行,特制定本规范。 第二条本规范是依据国家有关标准、规程、制度并结合近年来国家电网公司输变电设备评估分析、生产运行情况分析以及设备运行经验而制定的。 第三条本文对避雷器主要检修作业的工作准备、工艺流程、试验验收等管理要求和技术手段;检修包括检查(检测)和修理两部分内容,检修工作在认真做好设备缺陷检查和诊断工作的基础上,根据修理的可能性和经济性,对设备进行修理或部件更换。 第四条本标准适用于国家电网公司系统的10kV~750kV金属氧化物避雷器以及系统标称电压10kV~500kV碳化硅阀式避雷器。

第二章引用标准 第五条以下列出了本规范应用的标准、规程和导则,但不限于此。 GB7327-1987 交流系统用碳化硅阀式避雷器 GB11032-2000 交流无间隙金属氧化物避雷器 GB2900.12-1989 电工名词术语避雷器 GB50150-1991 电气装置安装工程电气设备交接试验标准 GB/T16927.1-1997 高电压试验技术第一部分:一般试验方法GBJ 147-1990 电气装置安装工程高压电器施工及验收规范 DL/T596-1996 电力设备预防性试验规程 DL/T804-2002 交流电力系统金属氧化物避雷器使用导则 DL/T815-2002 交流输电线路用复合外套金属氧化物避雷器 Q/GDW109-2003 750kV系统用金属氧化物避雷器技术规范 GB 5 0150-2006 电气装置安装工程电气设备交接试验标准 国家电网公司《变电站管理规范》(试行) 国家电网公司《电力生产设备评估管理办法》 国家电网公司《110(66)kV~750kV避雷器技术标准》 国家电网公司《110(66)kV~750kV避雷器运行管理规范》 国家电网公司《110(66)kV~750kV避雷器技术监督规定》 国家电网公司《预防110(66)kV~750kV避雷器事故措施》 第三章检修工作准备

110kv75000kva电力变压器的交流耐压试验技术方案

BPXZ-HT-200kVA/50kV/200kV变频串联谐振试验装置 一、被试品对象及试验要求 1.110kV/75000kV A电力变压器的交流耐压试验,电容量≤0.018μF,试验频率为45-65Hz,试验电压160kV。 2.110kV开关、GIS、绝缘子等的交流耐压试验,试验频率为30-300Hz,试验电压不超过200kV。 3. 50000kW以下电动机交流耐压试验,试验电压不超过16kV。 二、工作环境 1.环境温度:-150C–45 0C; 2.相对湿度:≤90%RH; 3.海拔高度: ≤2500米; 三、装置主要技术参数及功能 1.额定容量:200kV A; 2.输入电源:单相380V电压,频率为50Hz; 3.额定电压:50kV;200kV 4.额定电流:4A;1A 5.工作频率:30-300Hz; 6.波形畸变率:输出电压波形畸变率≤1%; 7.工作时间:额定负载下允许连续5min;过压1.1倍1分钟; 8.温升:额定负载下连续运行5min后温升≤65K; 9.品质因素:装置自身Q≥30(f=45Hz);

10.保护功能:对被试品具有过流、过压及试品闪络保护(详见变频电源部 分); 11.测量精度:系统有效值1.5级; 四、设备遵循标准 GB10229-88 《电抗器》 GB1094《电力变压器》 GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T 596-1996 《电力设备预防性试验规程》 GB1094.1-GB1094.6-96 《外壳防护等级》 GB2900《电工名词术语》 GB/T16927.1~2-1997《高电压试验技术》 五、装置容量确定 110kV/75000kV A电力变压器的交流耐压试验,电容量≤0.018μF,试验频率为45-65Hz,试验电压160kV。 试验电流 I=2πfCU试 =2π×50×0.018×10-6×160×103=0.9A 对应电抗器电感量 L=1/ω2C=560H, 设计四节电抗器,单节电抗器为50kVA/50kV/1A/140H 验证: 110kV开关、GIS、绝缘子等的交流耐压试验,电容量不超过3000pF,试验频率为30-300Hz,试验电压不超过200kV。 使用电抗器4节串联,此时电感量L=560H 试验频率f=1/2π√LC=1/(2×3.14×√560×0.003×10-6)=122Hz。

避雷器试验方案

避雷器试验方案 1 试验目的 按试验周期安排,对避雷器按有关标准规定进行试验,为能否再正常投入运行提供试验依据。 2 标准依据 2.1 XX省电力有限公司电力设备交接及预防性试验规程 2.2 DL/T596-2005《电力设备预防性试验规程》 2.3 GB50150-2006《电气装置安装工程电气设备交接试验标准》 2.4 避雷器生产厂家技术规范 3 试验项目 3.1 测量本体绝缘电阻 3.2 测量氧化锌避雷器直流1mA参考电压及测量0.75倍直流参考电压下漏电流 3.3带电测量运行电压下的持续电流(全电流及阻性电流) 3.4测量避雷器基座的绝缘电阻 3.5检查放电记录器或在线检测仪的动作情况和电流指示 4 试验条件 该试验需3~5人参加;工作负责人至少具有高压电气试验中级工以上水平,其余人员至少需具备初级工水平。 对于安装户外的试品,该试验应在晴天且湿度不大于85%的环境状况下进行;对于安装户内的试品,该试验应湿度不大于85%的环境状况下进行。 5 仪器设备

6 试验步骤 6.1 测量本体绝缘电阻 将避雷器外部擦拭干净,分单节进行;采用2500V兆欧表进行测量,与历次试验数据比较应无明显差别。 6.2测量氧化锌避雷器直流1mA参考电压及0.75倍直流参考电压下漏电流 现场试验接线如图1所示;试验步骤和注意事项为: ⑴对直流电压发生器进行空载升压约超过预加试验电压10-20%,待直流电压发生器正常后进行过电压保护值整定,其值一般按直流电压发生器额定值(电压、电流)整定; ⑵按图1接好试验接线:注意直流发生器至避雷器之间的高压引线连接应牢靠,经检查无误后,方可缓慢升压,当直流电流达到1mA时,读取直流电压即U1mA;其值与上次数值比较,变化应不大于5%时,合格; ⑶完成U1mA测量后,立即把电压降低至0.75 U1mA左右,将直流微安表的短路刀闸合上,把直流微安表量程换至小档位,然后电压调到0.75 U1mA数值时测量避雷器的漏电流;漏电流不大于50μA时为合格; ⑷完成0.75倍直流参考电压下漏电流测量后,立即调节直流发生器降低电压至零; ⑸断开交流电源,然后对直流发生器及避雷器进行充分放电,放电完毕,方可拆除高压引线。 6.3 运行电压下持续电流的测量 测量的接线图如图2所示。 试验要求:

避雷器试验

避雷器试验 一.实验目的: 了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。 二.实验项目: 1.FS-10型避雷器试验 (1).绝缘电阻检查 (2).工频放电电压测试 2.FZ-15型避雷器试验 (1).绝缘电阻检查 (2).泄漏电流及非线性系数的测试 三.实验说明: 阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。FS型避雷器的结构最简单,如图4-1所示,由火花间隙和非线性电阻(阀片)串联组成。FZ型避雷器的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图4-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。非线性电阻的伏安特性式为:U=CIα,其中C 为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图4-3所示。可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。磁吹型避雷器有FCZ型(电站用)和FCD型(旋转电机用)两种,其结构与FZ型相似,间隙上都有均压电阻,只是磁吹型避雷器采用磁吹间隙,并配有磁场线圈和辅助间隙。由于以上结构上的不同,所以对FS 型和FZ(FCZ、FCD)型避雷器的预防性试验项目和标准都有很大的不同。 根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查和工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查和直流泄漏电流及非线性系数的测试。只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。避雷器其它的预防性试验还包括底座绝缘电阻的检查、放电计数器的检查及瓷套密封性检查等。 避雷器试验应在每年雷雨季节前及大修后或必要时进行。绝缘电阻的检查应采用电压≥2500v及量程≥2500MΩ的兆欧表。要求对于FS型避雷器绝缘电阻应不低于2500MΩ;FZ(FCZ、FCD)型避雷器绝缘电阻与前次或同类型的测试值比较,不应有明显差别。FS型避雷器的工频放电电压试验的合格值如表4-1所列。 表 FZ型避雷器的直流泄漏电流及非线性系数的测试的试验电压及电导电流值如表4-2所列,所测泄漏电流值

工频交流耐压试验

工频交流耐压试验工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力最严格有效的方法,对保证设备安全运行具有重要意义。 交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合实际运行情况,因此,能有效地发现绝缘缺陷。交流耐压试验应在被试品的绝缘电阻及吸收比测量、直流泄漏电流测量及介质损失角正切值tg δ测量均合格后进行。如在这些试验中已查明绝缘有缺陷,则应设法消除,并重新试验合格后才能进行交流耐压试验,以免造成不必要的损坏。 交流耐压试验对于固体有机绝缘来说,会使原来存在的绝缘弱点进一步发展(但又不致于在耐压时击穿),使绝缘强度逐渐衰减,形成绝缘内部劣化的积累效应,这是我们所不希望的。因此,必须正确地选择试验电压的标准和耐压时间。试验电压越高,发现绝缘缺陷的有效性越高,但被试品被击穿的可能性越大,积累效应也越严重。反之,试验电压低,又使设备在运行中击穿的可能性增加。实际上,国家根据各种设备的绝缘材质和可能遭受的过电压倍数,规定了相应的出厂试验电压标准。具有夹层绝缘的设备,在长期运行电压的作用下,绝缘具有累积效应,所以现行有关标准规定运行中设备的试验电压,比出厂试验电压有所降低,且按不同设备区别对待(主要由设备的经济性和安全性来决定)。但对纯瓷套管、充油套管及支持绝缘子则例外,因为它们几乎没有累积效应,故对运行中的设备就取出厂试验电压标准。 绝缘的击穿电压值与加压的持续时间有关,尤以有机绝缘特别明显,其击穿电压随加压时间的增加而逐渐下降。有关标准规定耐压时间为一分钟,一方面是为了便于观察被试品情况,使有弱点的绝缘来得及暴露(固体绝缘发生热击穿需要一定的时间);另一方面,又不致时间过长而引起不应有的绝缘击穿。 第一节试验方法 一、原理接线 交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验变压器是成套设备(包括控制及调压设备),对调压及控制回路加以简化如图一所示。 图1

氧化锌避雷器带电测试原理、方法和试验标准

氧化锌避雷器带电测试原理、方法和试验标准 (傅祺,成都铁路局供电处工程师 37883 张丕富,成都铁路局多元工程师) 摘要避雷器是保证牵引供电系统安全运行的重要设备之一,接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。由于电气化铁路运行的特殊性,常规避雷器预防性试验受天窗时间和现场条件限制,很难开展,氧化锌避雷器带电测试的研制使用为解决这一难题提供了新的途径。 关键词:接触网;避雷器;预防性试验; 1引言 避雷器是保证电力系统安全运行的重要设备之一,主要用于限制由线路传来的雷电过电压或操作引起的内部过电压。为保证金属氧化物避雷器的安全运行,必须定期测试避雷器的电气性能。接触网线路的雷电过电压保护基本上采用避雷器来完成,检测避雷器的主要手段仍然是周期性停电预试项目,这样既耗费了人力、物力,还常因停电原因不能完成避雷器预试项目。据统计,各线每年均有避雷器因自身原因发生击穿而造成停电的事故发生。 可见,避雷器运行状态是否良好、能否得到较好的监控,与铁路供电质量的稳定可靠有密切关系。这就需要我们尽快找到一种能解决该问题的方案。 2现状 按照《电力设备预防性试验规程》要求:变电所和接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。由于电气化铁路运行的特殊性,避雷器预防性试验目前存在很多问题:目前牵引供电系统氧化锌避雷器预防性试验的方法是直流耐压试验:即测试直流1mA 电压(U1mA)及(U1mA)下的泄漏电流。这种测试方法需要停电进行,测试结果受空气湿度和气温的影响较大。每台避雷器测试时间需要40分钟左右的天窗时间。 受馈线天窗影响,如天窗时间短、天窗时间多数为夜间、繁忙区段天窗时间无法保证等因素(特别是高铁区段,馈线天窗几乎不可能安排在天气晴朗的白天),造成变电所馈线避雷器及接触网线路避雷器每年的预防性试验无法正常进行,给供电设备运行带来了很大的安全隐患,近年来多次发生接触网避雷器炸裂导致供电中断的事故。 为解决以上问题,我们需要采取一种新的不需要停电,在运行情况下就可以进行避雷器检测的方法,确认避雷器状态是否良好。 3.测试原理 运行状态的氧化锌避雷器,在运行电压下的总泄漏电流包括阻性电流和容性电流。在正常情况下流过金属氧化物避雷器的主要为容性电流,阻性电流只占很小的一部分,约为

避雷器耐压试验

《避雷器耐压试验》 避雷器直流耐压试验 避雷器直流耐压试验一、试验目的 避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。 二、试验数据其试验数据≦50微安三、实验步骤 1、首先拆除避雷器上与计数器连线。 2然后用计数器检测仪将计数器进行试验。 3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应≥2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。 4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。 6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。 7、用放电棒对高压发生器及避雷器进行充分放电。 8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。 9、恢复所拆避雷器及计数器接线。 四、注意事项 1、试验设备在通电前,务必接上地线。 2、实验前应将避雷器清扫干净,以减少测量误差。 3、接好线应复查无误后方可加压,同时应检查接地是否良好。 4、开机前应检查操作箱“粗调”“细调”旋钮是否良好,是否在零位。 5、实验前,应检查电源电压AC220V。

6、加压速度不能太快,以防止突然高压损坏避雷器。 7、在试验过程中应密切观察避雷器及各表计,如出现异常情况,应立即降压,并切断操作箱电源,停止操作。 五、主接线图 避雷器直流耐压试验.doc 避雷器直流耐压试验一、试验目的 避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。 二、试验数据其试验数据?50微安三、实验步骤 1、首先拆除避雷器上与计数器连线。 2然后用计数器检测仪将计数器进行试验。 3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应?2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。 4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。 6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。 7、用放电棒对高压发生器及避雷器进行充分放电。 8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。 9、恢复所拆避雷器及计数器接线。 四、注意事项 1、试验设备在通电前,务必接上地线。 2、实验前应将避雷器清扫干净,以减少测量误差。

金属氧化物避雷器的特点和试验方法(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 金属氧化物避雷器的特点和试验 方法(2021版)

金属氧化物避雷器的特点和试验方法(2021 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1概述 有机复合绝缘交流无间隙金属氧化物避雷器(以下简称MOA)是近时期发展迅猛的一种新型MOA。MOA的绝缘外套采用国外已拥有长期户外运行经验的硅橡胶材料,它有优异的耐气候、耐臭氧、耐电弧性能、可在50~200℃下长期可靠的工作。其表面呈憎水性,使MOA有良好的耐污性能,可适用于多种污秽等级的地区。柔软弹性的硅橡胶外套具有良好的防爆性能,可避免因故障时而引起类似瓷外套粉碎性的爆炸,尤其是在人口密集地区及户内使用更加安全,它体积小、重量轻,运输和安装时不会碰损,使用更安全、更可靠。 2性能特点 MOA陡波响应特性好,无续流,操作残压低,放电分散性小,具有吸收各种雷电、操作过电压能力。35kV及以下电压等级悬挂式MOA带脱离装置,可用于发电厂厂用电源、铁路供电等一些重要的不停电的

电站KVGIS交流耐压试验方案

电站K V G I S交流耐压试 验方案 RUSER redacted on the night of December 17,2020

XXX电站 220kVGIS交流耐压试验方案 批准 审核 编写

XXXX有限责任公司 X X年X X月X X月 (一)技术措施 1、试验依据: ○1、中华人民共和国国家标准GB50150-2006《电气装置安装工程电气设备交接试验标准》; ○2、中华人民共和国电力行业标准DL/ T 555-2004《气体绝缘金属封闭开关设备现场耐压及绝缘试验导则》; ○3、中华人民共和国电力行业标准DL/ T 618-1997《气体绝缘金属封闭开关设备现场交接试验规程》; ○4、中华人民共和国电力行业标准DL/ T 617-2010《气体绝缘金属封闭开关设备技术条件》; ○5、中华人民共和国国家标准GB/T -1997 《高电压试验技术第一部分:一般试验要求》; ○6、中华人民共和国电力行业标准DL/ 《高压试验装置通用技术条件第2部分:工频高压试验装置》。 2、试验目的: ①、检查总体安装后的绝缘性能,以评估可能在将来导致内部故障的偶然原因(错误的紧固、处理、运输、储存和安装期间的损坏、存在外物等)。 ②、该试验为出厂绝缘试验的补充,目的在于检查完整设备的绝缘水平是否符合有关标准的规定和厂家技术条件的要求以及上述提到的非常规问题。在不危害GIS完好部件的前提下,提供设备投运前的最终检查。 3、被试设备的主要技术参数:数量:(4个间隔,不含母线PT及避雷器)

试品名称:气体绝缘金属封闭开关设备型号规格: 额定电压:252kV 相数:3相 额定电流:A 额定频率:50Hz 制造单位: 4、试验应具备的条件: 气体,气体压力保持在额定值; ○1、GIS设备已经全部安装完毕,并充以合格的SF 6 ○2、试品常规试验已经完成,且全部合格,微水合格,气体检漏合格; ○3、GIS的隔离开关、断路器及接地开关等能可靠动作; ○4、与GIS连接的电力变压器、电压互感器、避雷器、架空线应隔离,并采取措施,避免施加试验电压; ○5、GIS上所有电流互感器二次绕组应短路并且接地; ○6、与GIS连接的主变终端导体需断开,且充满合格气体; ○7、试验电压从220kV GIS的出线空气导管上施加; ○8、现场应提供大于50A/380V的三相专用试验电源; ○9、试验可分成三次完成,每次试验一相,其余两相接地。 5、试验参数计算、程序、步骤 : 试验参数计算 FC——变频控制器 Tr——励磁变压器 L——高压电感 Cx——试品电容 C1, C2——电容分压器 图1 串联谐振原理接线图 设220kV GIS电容量为Cx,分压器电容量为Cy,总电容量约为 C=Cx+Cy=12nF (根据试品长度及间隔数量估算,GIS间隔按分为三次加压,即每次带一相 ) 根据电容量选取相应的电感L=720H,谐振频率f=1/(2××√LC)=54Hz,试验频

氧化锌避雷器的特点和使用方法 (图文) 民熔

氧化锌避雷器的特点 民熔 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境:a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%;d.地震强度不超过8级;e.安装场所:无火灾、 易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用 ②电气试验: 1)绝缘电阻,用2500V兆欧表测量绝缘电阻,与同类避雷器试验值进行比较,绝缘电阻值应未有明显变化; 2)工频击穿电压试验,FS型避雷器工频放电电压标准:额定电压为3kV、6kV、10kV时;新装和大修后的避雷器为9~11kV、16~19kV、27~30kV;运行中的避雷器为8~12kV、15~21kV、23~33kV; 3)FZ型避雷器一般可不做工频放电试验,但要做避雷器

泄漏电流测量。民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器 35KV高压避雷器HY5WZ-51/134户外电站型氧化锌避雷器复合型 七大特性:一、氧化锌避雷器的通流能力大这主要体现在避雷器具有吸收各种雷电过电压、工频暂态过电压、操作过电压的能力。川泰生产的氧化锌避雷器的通流能力完全符合甚至高于国家标

避雷器技术规范

中华人民共和国电力行业标准 进口交流无间隙金属氧化物 避雷器技术规范 DL/T613—1997 Specification and technical requirement for import AC gapless metal oxide surge arresters 中华人民共和国电力工业部1997-05-19批准1997-10-01实施 前言 本规范是根据1991年电力部避雷器标准化技术委员会年会上提出的任务制订的(后补列为95DB087—95计划)。 本规范是根据我国电力系统运行条件,按国际标准IEC99—4《交流无间隙金属氧化物避雷器》和有关国家标准制订的。由于国家标准GB11032—89《交流无间隙金属氧化物避雷器》与IEC99—4标准对中性点非直接接地系统中避雷器的规定有所不同,增加了制订本规范的难度。在本规范的制订中尽量总结我国进口与国产交流无间隙金属氧化物避雷器的使用与生产经验,体现其先进性与实用性,为引进产品提供了较全面的技术要求。 本规范由电力工业部避雷器标准化技术委员会提出并负责起草。 主要起草人:舒廉甫、梁毓锦、李启盛、陈慈萱、刘先进。 1范围 本规范规定了进口交流无间隙金属氧化物避雷器的技术要求,并按本规范规定的试验项目、试验方法和技术要求的标准进行设备验收。 本规范适用于3kV~500kV交流电网进口无间隙金属氧化物避雷器的技术谈判,并给出应遵循的基本要求,以及一般情况下的推荐值,个别地区的特殊使用条件应由订货单位向外商及制造部门提出,本规范不作规定。 2引用标准 下列标准包含的条文,通过在本规范中引用而构成为本规范的条文。本规范出版时,所示版本均为有效。所有标准都会被修订,使用本规范的各方应探讨使用下列标准最新版本的可能性。 GB156—93标准电压 GB311.1—83高压输变电设备的绝缘配合 GB2900.12—89电工名词术语避雷器 GB/T5582—93高压电力设备外绝缘污秽等级 GB11032—89交流无间隙金属氧化物避雷器 IEC71(93)绝缘配合 IEC99—4(91)交流无间隙金属氧化物避雷器 3名词术语、符号定义 名词术语、符号定义与所引用的标准一致。

避雷器预防性试验规程

避雷器预防性试验规程 修改时间:2011-9-21 09:05:04 浏览次数:838次 14避雷器 14.1阀式避雷器的试验项目、周期和要求见表39。 表39阀式避雷器的试验项目、周期和要求 序 号 项目周期要求说明 1绝缘电 阻 1)发电厂、 变电所避雷 器每年雷雨 季前 2)线路上 避雷器1~3 年 3)大修后 4)必要时 1)FZ(PBC.LD)、FCZ和FCD型避雷器的绝 缘电阻自行规定,但与前一次或同类型的测量 数据进行比较,不应有显著变化 2)FS型避雷器绝缘电阻应不低于2500MΩ 1)采用2500V及以上兆欧表 2)FZ、FCZ和FCD型主要 检查并联电阻通断和接触情 况 2 电导电 流及串联 组合元件 的非线性 因数差值 1)每年雷 雨季前 2)大修后 3)必要时 1)FZ、FCZ、FCD型避雷器的电导电流参考 值见附录F或制造厂规定值,还应与历年数据 比较,不应有显著变化 2)同一相内串联组合元件的非线性因数差 值,不应大于0.05;电导电流相差值(%)不应大 于30% 3)试验电压如下: 1)整流回路中应加滤波电容 器,其电容值一般为0.01~ 0.1μF,并应在高压侧测量电 流 2)由两个及以上元件组成的 避雷器应对每个元件进行试 验

元件额 定电压kV 3610152030 3)非线性因数差值及电导电 流相差值计算见附录F 4)可用带电测量方法进行测 量,如对测量结果有疑问时, 应根据停电测量的结果作出 判断 5)如FZ型避雷器的非线性 因数差值大于0.05,但电导电 流合格,允许作换节处理,换 节后的非线性因数差值不应 大于0.05 6)运行中PBC型避雷器的 电导电流一般应在300~ 400μA范围内 试验电 压U1 kV ———81012 试验电 压U2 kV 4610162024 3工频放电 电压1)1~3年 2)大修后 3)必要时 1)FS型避雷器的工频放电电压在下列范围内:带有非线性并联电阻的阀 型避雷器只在解体大修后进 行 额定电压 kV 3610 放电 电压 kV 大修后9~11 16~ 19 26~31 运行中8~12 15~ 21 23~33 2)FZ、FCZ和FCD型避雷器的电导电流值及 FZ、FCZ型避雷器的工频放电电压参考值见附

断路器交流耐压试验方案

±500kV肇庆换流站HPL550B2型583开关交流耐压试验方案 四川省送变电建设有限责任公司 2012年05月15日

目录 1试验目的 (3) 2编制依据、文件和标准 (3) 3试验作业准备和条件要求 (3) 4试验项目及程序 (3) 5试验的方法和接线 (5) 6安全措施 (3) 7环保要求 (4)

1 试验目的 断路器设备交接试验是检验断路器设备在制造、运输和安装后,设备的主绝缘、断口间绝缘是否具有规定的电气强度、符合厂家技术要求,确保断路器能承受各种电压作用、能安全、可靠地投入系统运行。 2 编制依据、文件和标准 2.1 GB 50150-2006 《电气装置安装工程电气设备交接试验标准》; 2.2 GB/T 16927.1-1997 《高电压试验技术第一部分一般试验要求》 2.3 相应的施工设计要求和厂家技术资料; 3 试验作业准备和条件要求 3.1 试验作业要求:断路器设备和就地控制盘柜已安装完成,并已检查调整完毕;3.2 试验所需的主要试验仪器(表) 4 安全措施 4.1 为保证人身和设备安全,应严格遵守DL408-91《电业安全工作规程(发电厂和变电所电气部分)》中有关规定。 4.2 进行交流耐压试验时,为保证人身安全和设备安全,要求必须在试验设备周围设围栏,并有专人监护,防止无关人员误入。试验时试验人员与看守人员通讯要畅通,没有试验人员的命令看守人员不得离开岗位。负责升压的人要随时注意周围的情况,一旦发现电压表指示摆动很大,电流表指示急剧增加、绝缘烧焦气味或冒烟或发生响声等异常现象时,应立即降低电压,断开电源停止试验,对被试相设备进行放电后再对该相设备进行检查,查明原因并排除后方可继续试验。 4.3 断路器外壳的接地及接地连线铜牌已完成。 4.4 现场试老化试验电压值为U m/√3(U m/√3=318kV),停留15分钟。 4.5 现场试验电压值为出厂试验施加电压值的80%,加压时间为1min。

氧化锌避雷器交接试验项目及检验标准

一、金属氧化物避雷器的试验项目,应包括下列内容 1 测量金属氧化物避雷器及基座绝缘电阻; 2 测量金属氧化物避雷器的工频参考电压和持续电流; 3 测量金属氧化物避雷器直流参考电压和0.75 倍直流参考电压下的世漏电流; 4 检查放电计数器动作情况及监视电流表指示; 5 工频放电电压试验。 二、各类金属氧化物避雷器的交接试验项目,应符合下列规定 1 元间隙金属氧化物避雷器可按本标准第20.0.1 条第l~4 款规定进行试验,不带均压电容器的无间隙金属氧化物避雷器,第 2 款和第 3 款可选做一款试验,带均压电容器的元间隙金属氧化物避雷器,应做第2 款试验; 2 有间隙金属氧化物避雷器可按本标准第20.0.1 条第1 款和第5 款的规定进行试验。

三、测量金属氧化物避雷器及基座绝缘电阻,应符合下列规定 1 35kV 以上电压等级,应采用5000V 兆欧表,绝缘电阻不应小于2500MΩ; 2 35kV 及以下电压等级,应采用2500V 兆欧表,绝缘电阻不应小于1000MΩ; 3 lkV 以下电压等级,应采用500V 兆欧表,绝缘电阻不应小于2MΩ; 4 基座绝缘电阻不应低于 5 MΩ 。 四、测量金属氧化物避雷器的工频参考电压和持续电流,应符合下列规定 1 金属氧化物避雷器对应于工频参考电流下的工频参考电压,整支或分节进行的测试值,应符合现行国家标准《交流无间隙金属氧化物避雷器》GB 1103 2 或产品技术条件的规定; 2 测量金属氧化物避雷器在避雷器持续运行电压下的持续电流,其阻性电流和全电流值应符合产品技术条件的规定。 五、测量金属氧化物避雷器直流参考电压和0.75 倍直流参考电压下的泄漏电流,应符合下列规定 1 金属氧化物避雷器对应于直流参考电流下的直流参考电压,整支或分节进行的测试值,不应低于现行国家标准《交流无间隙金属氧化物避雷器》GB 1103 2 规定值,并应符合产品技术条件的规定。实测值与制造厂实测值比较,其允许偏差应为±5%; 2 0.75 倍直流参考电压下的世漏电流值不应大于50μA ,或符合产品技术条件的规定。750kV 电压等级的金属氧化物避雷器应测试1mA 和3mA 下的

避雷器试验操作规程办法范本

工作行为规范系列 避雷器试验操作规程办法(标准、完整、实用、可修改)

编号:FS-QG-25806避雷器试验操作规程办法 Lightning arrester test operation procedures 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1引用标准 DL596—96《电力设备预防性试验》、《高电压技术控制程序》 2流程 2.1试验准备 2.1.1试验条件:天气良好,试品及环境温度不低于±5℃。 2.1.2作业人员2-3人,并经过年度考试合格。 2.1.3试验项目:绝缘电阻、电导电流、检查放电计数器。 2.1.4试验仪器:直流高压发生器ZGF-1,绝缘电阻测试仪,冲击试验器。 2.1.5安全措施:试验现场设围栏或设专人监护,防止他人误入或误登。

2.2试验接线 2.2.1试验避雷器的绝缘电阻、电导电流、检查放电计数器。 2.3试验步骤 2.3.1试验的避雷器一次接线拆除 2.3.2通知所有人员离开避雷器。 2.3.3调好直流高压发生器和交流220V电源,开始试验。 2.3.4对由两个及以上元件组成的避雷器应对每个元件进行试验。 2.3.5测量组成避雷器每个元件的电阻。 2.3.6对放电计数器应进行3—5次,均应正常进行,测试后计数器应调整为0。 2.3.7试验数据分别计入《试验报告》。 2.4试验结果判断 依国家标准、部颁标准及历年试验数据对本次试验数据进行判断并作出结论。 2.5试验结束

拆除试验接线,清理工作现场 电气安全用具试验操作规程 绝缘杆的试验 1试验环境条件 采用工频交流电压,温度不低于±5℃。 2试验步骤 2.1试验前应对绝缘棒绝缘部分表面绝缘部分的表面绝缘层进行检查,若发现有绝缘缺陷如裂纹、飞弧痕迹、烧焦、老化等,应按其轻重程度和所在部位的重要性,分别提出处理后做试验或停止使用等意见。 2.2试验开始时加电压不得超过规定值的50%,以后,按每秒1000V向上递增,当升到规定值时,保护该试验电压5分钟。如果没有发现刷状放电或爆炸声,并且在试验完毕后电源切断后,用手触摸没有局部发热现象,即可认为绝缘杆试验合格。 2.3若没有足够高的高压试验设备,可采用分段试验的办法进行。

避雷器的实验步骤 民熔

氧化锌避雷器 110kV氧化锌避雷器绝缘电阻测量 1检查确认试品与引线连接已断开,有明显断开点,符合试验条件。 2将合格的温湿度表放置在阴凉通风处。 . 三。将试品高压端充分放电,戴绝缘手套先通过电阻放电,再直接放电。将试品的低压端和底座接地。 4用干燥、干净、柔软的布擦拭试品外绝缘表面的污垢,必要时用适当的洗涤剂清洗。 5复制试品铭牌,记录天气情况、环境温度和湿度。 6根据被试品的电压等级选用合适的兆欧表(2500V或5000v),检查兆欧表的合格证和有效期。 7检查兆欧表(以3121为例):将功能旋钮旋至“batt Check”,按“press t0 test”按钮,兆欧表指针应在“bat good”右侧,表示电源充足。将兆欧表水平放置,将功能旋钮旋至“MQ”,按下“按下测试”按钮,用导线瞬间连接“线路”和“Erh”端子,当电路开路时,兆欧表指针应指向零,表示兆欧表合格。 8将兆欧表“接地”端与被试品接地线连接,将功能旋钮旋至“MQ”,按“按t0测试”按钮,将兆欧表“线”端接至试品高压端,开始计时,60s 后读取绝缘电阻值,首先断开与试品高压端连接的连接线,然后松开“按t0测试”按钮,将功能旋钮旋至“关”。在高湿度条件下测量时,可在试品表面加等电位屏蔽。试品的屏蔽环应靠近带电压线,远离接地部分,以减少屏蔽对地的泄漏,避免兆欧表过载。屏蔽环可以用几圈紧的保险丝或软

铜线制成。 9取下样品低压端接地线,按上述步骤测量底座的绝缘电阻。 10戴上绝缘手套,用接地良好的放电棒对试品进行充分放电。 11记录所用仪器的测试数据、测试仪、测试日期、名称、型号、编号和制造商。 12拆除所有接线,将试品恢复原状,并将试验仪器放回原位。 13检查接地线是否拆除,现场有无遗留物品。 110kV氧化锌避雷器1直流参考电压和泄漏电流试验。检查确认试品与引线连接已断开,有明显断开点,符合试验条件。 2查阅试品的历史试验数据和缺陷记录,使其清晰明了。 三。将合格的温湿度表放置在阴凉通风处。 4将样品的高压端放电并接地。用绝缘手套放电,先通过电阻放电,再直接放电。接地端应先接地,再接试品高压端。 5安全措施布置:将作业现场围起来,在室外悬挂“停止、高压危险”标志,并在试品上悬挂“此处作业”标志。 6用干燥、干净、柔软的布擦拭试品外绝缘表面的污垢,必要时用适当的洗涤剂清洗。 7复制试品铭牌,记录天气情况、环境温度和湿度。 8根据试验对象,选择合适的仪表并合理放置,控制台与高压发电机的距离应适当。检查仪器是否有检验合格证,是否在检定期内,并记录仪器的名称、型号、序列号和生产厂家。 9正确接线。注意试品底部、控制台和直流高压发电机的正确接地,并

2#主变交流耐压试验方案(精选、)

110KVXX扩输变工程2#主变 交流耐压 试 验 方 案 二零一二年二月

110KVXX扩输变工程2#主变交流耐压试验方案编制: 审核: 批准: 编制日期

目录 1.试验目的 2.变压器主要参数 3.试验设备 4.试验程序 5.试验标准 6.试验条件及方法 7.危险点分析和预控措施

摘要:本方案提出了110KV XX扩输变工程2#主变交流耐压试验的试验准备、试验程序、试验接线以及安全措施等内容。 关于词:变压器交流耐压试验方案 一、试验目的 检验新投运一次设备的绝缘是否完好。电力变压器投运前的试验,以检查设备的制造及安装质量,保证其安全投入运行。 二、变压器主要参数 XXXXXXXX 三、试验设备 试验仪器用VFSR变频串联谐振试验装置及其他辅助测量仪器工具等。配置为: 1.变频电源(VFSR-220/220 1台) 输入电压380V,三相,50Hz 输出电压:0~440V 输出容量:20kW 输出电流:50A 频率调节范围:20~300Hz 2.励磁变(YD-20/20 1台并联) 输入:400V ,50A 输出:11.2KV/12.3KV/13.8KV额定容量:20kW 3. 试验电抗器(YDTK-55/55 6只并联) 额定电压:55kV 20Hz ~ 300Hz 额定电流:1A 额定容量:55kVA 4.分压器(TRF-200/0.01 1只)

电容量:10000pF 额定电压:200kV 5.其他辅助测量仪器工具等 四、试验程序 1、绝缘电阻试验 2、交流耐压试验 3、绝缘电阻试验 五、试验标准 1、GB 50150-2006《电气装置安装工程电气设备交接试验标准》。 2、试验项目: 六、试验条件 1、被试变压器组装完毕,真空注油后应静止48小时以上。变压器本体已放气。 2、变压器高压侧、中压侧、低压侧及中性点所有一次线与外部连接线拆除,拆除的外部架空线及连接母排三相短路并接地,与变压器高压、中压、低压侧的距离满足耐压试验要求。套管CT二次侧应短路接地。 3、变压器的现场常规试验项目,如绝缘电阻、吸收比(极化指数)、

避雷器的结构与常规电气试验(图文) 民熔

避雷器 买避雷器,就选民熔电气 品质有保障,价格实惠。 1、电力系统过电压可分为三类:1。临时过电压:这种过电压一般由单相接地、甩负荷或谐振引起,持续时间较长。 2操作过电压:正常运行或故障引起的电磁暂态过程,使系统从一个稳定状态变为另一个稳定状态,从而产生过电压。 三。雷电过电压可分为以下三种类型:感应雷达电压、雷击过电压、雷击杆塔引起的反击过电压。 由于杆塔本身的电感和接地电阻的存在,雷电电流对杆塔导体电阻产生的电压降产生反击电压。一般要求杆塔接地电阻小于10欧姆。电磁式电压互感器为星形一次性绕组,中性点直接接地。 当进行某些操作时,电压互感器的励磁阻抗和系统对地电容构成一个非线性谐振电路。由于电路参数和外部励磁条件的不同,可能会产生分频、工频或高频铁磁谐振过电压。 统计表明,由电磁式电压互感器引起的铁磁谐振过电压是中性点不接地系统中最常见的内部过电压,也是造成事故最多的原因2氧化锌避雷器(MOA)的作用是电力系统中的电气设备不仅承受正常工作电压下的工频电压,有时还会遭受临时过电压、操作过电压和雷电过电压。由于雷电过电压和操作过电压的幅值会超过电力设备

的绝缘承受水平,在过电压的冲击下,设备的绝缘会受到破坏,从而发生设备事故。 因此,必须采取综合措施来限制电力系统的过电压。避雷器是电力系统的防雷措施之一。三。避雷器是限制过电压的主要保护装置。它是发电厂变电站防雷的基本防护措施之一。 4工作原理:避雷器通常连接在系统和地之间,并与“被保护”设备并联。在正常工作电压下,氧化锌电阻表现出很高的电阻,通过它的电流只有微安级;当系统存在危及电气设备绝缘的过电压时,由于氧化锌电阻的非线性,避雷器两端的残余电压被限制在允许值内,并吸收过电压能量来保护电气设备的绝缘。 5、避雷器的运行特性1)在正常工作电压情况下,避雷器对地有较高的绝缘电阻,等于开路。 6、在出现异常电压(如大(过电压)时,不论异常电压频率的高低,避雷器均能很快地对地接通,使雷电流迅速对地放电。这时避雷器电阻变得很小,接近短路。

交流耐压试验作业指导书

Q/YNDW 云南电网公司企业标准 Q/YNDW 113.2.187-2006交流耐压试验作业指导书 2006-05-20发布 2006-05-30实施 云南电网公司发布

前言 为提高云南电网公司供电企业输变电设备的运行、检修、试验水平,规范操作方法,确保人身和设备安全,由云南电网公司组织,编写了目前我公司交流耐压试验作业指导书。编写中遵循了我国标准化、规范化和国际通用的贯标模式的要求。该指导书纳入公司生产技术管理标准体系。 本指导书由云南电网公司生产技术部提出。 本指导书由云南电网公司生产技术部归口。 本指导书由云南省电力试验研究院(集团)有限公司负责编写。 本指导书主编人:陈宇民 本指导书主要起草人:陈宇民 本指导书主要审核人:崔志刚郑易谷 本指导书由云南电力试验研究院(集团)有限公司负责修编。 本指导书修编人:陈宇民 本指导书审定人:赵建宁 本指导书批准人:廖泽龙 本指导书由云南电网公司生产技术部负责解释。

目次 1 目的 (4) 2 适用范围 (4) 3 引用标准 (4) 4 支持性文件 (4) 5 技术术语 (4) 6 安全措施 (5) 7 作业准备 (6) 8 作业周期 (6) 9 工期定额 (6) 10 设备主要技术参数 (6) 11 作业流程 (6) 12 作业项目、工艺要求及质量标准 (6) 13 作业中可能出现的主要异常现象及对策 (9) 14 作业后的验收和交接 (9)

交流耐压试验作业指导书 1 目的 本作业指导书提出了高压电气设备交流耐压试验所涉及的试验接线、试验设备、试验方法和注意事项等技术细则,以规范交流耐压试验作业、提高试验质量。 交流耐压试验是鉴定电气设备绝缘强度最直接的方法,它对于判断电气设备能否投入运行具有决定性意义,也是保证设备绝缘水平、避免发生绝缘事故的重要手段。 2 适用范围 本作业指导书适用于云南电网公司供电企业高压电气设备的交流耐压试验作业。 3 引用标准 下列标准所包含的条文,通过引用而构成本作业指导书的条文。本书出版时,所示版本均为有效。所有标准都会被修订,使用本书的各方,应探讨使用下列标准最新版本的可能性。 GB 50150-91《电气装置安装工程电气设备交接试验标准》 GB/T 2900.1994 《电工术语高电压试验技术和绝缘配合》 DL 408—91《电业安全工作规程(发电厂和变电所电气部分)》 DL 474.4-1992《现场绝缘试验实施导则交流耐压试验》 Q/CSG 1 0007—2004《电力设备预防性试验规程》 4 支持性文件 《云南电力技术监督系统》(待批) 5 技术术语 5.1 闪络 沿介质表面发生的破坏性放电; 5.2 击穿 介质中发生的破坏性放电; 5.3 工频试验变压器 产生工频高电压的试验用变压器 5.4 串级工频试验变压器 由几台工频试验变压器串接以获得较高试验电压的变压器 5.5 工频谐振试验变压器 改变变压器的激磁电抗,可与负载电容发生谐振的试验变压器; 5.6 串联谐振试验设备

相关文档
最新文档