变形实验制作实验报告

变形实验制作实验报告
变形实验制作实验报告

梁变形实验报告

(1)简支梁实验

一、实验目的

1、简支梁见图一,力f在跨度中点为最严重受力状态,计算梁内最危险点达到屈服应力

时的屈服载荷fs;

2、简支梁在跨度中点受力f=1.5kg时,计算和实测梁的最大挠度和支点剖面转角,计算

相对理论值的误差;

3、在梁上任选两点,选力f的适当大小,验证位移互等定理;

4、简支梁在跨度中点受力f=1.5kg时,实测梁的挠度曲线(至少测8个点挠度,可用对

称性描点连线)。

二、试件及实验装置

简支梁实验装置见图一,中碳钢矩形截面梁,屈服应力

?s?360mpa,弹性模量

e=210gpa。

图一实验装置简图

百分表和磁性表座各1个;砝码5个,各砝码重0.5kg;砝码盘和挂钩1套,约重0.1kg;

游标卡尺和钢卷尺各1个。

三、实验原理和方法 1、求中点挠度

1

简支梁在跨度中点承受力f时,中点挠度最大,在终点铅垂方向安装百分表,小表针调

到量程中点附近,用手轻拍底座振动,使标杆摩擦力最小,大表指针示值稳定时,转表盘大

表针调零,分级加力测挠度,检验线性弹性。 2、求支点转角

梁小变形时,支点转角??挠度,代入算式求支点转角。 3、验证位移互等定理:

图二的线弹性体,f1在f2引起的位移?12上所作之功,等于f2在f1引起的位移?21上

所作之功,即:f1??12?f2??21,

?

a

;在梁的外伸端铅垂方向安装百分表,加力测

若f1=f2,则有:?12??21 上式说明:当f1与f2数值相等时,f2在点1 图二位移互等定理示意图

沿f1方向引起的位移?12,等于f1在点2沿f2方向引起的位移?21,此定理称为位移互

等定理。

为了尽可能减小实验误差,重复加载4次。取初载荷f0=(q+0.5)kg,式中q为砝码盘

和砝码钩的总重量,?f=2kg,为了防止加力点位置变动,在重复加载过程中,最好始终有0.5kg

的砝码保留在砝码盘上。

四、数据记录

1、中点分级加载时,中点挠度值:

2 2、测支点转角

f=1.5kg;w(端点)=0.15mm;a=71mm 3、验证位移互等定理

f(2)=1.5kg w(5)=0.34mm f(5)=1.5kg w(2)=0.36mm

4、绘制挠曲线(中点加载f=1.5kg)

五、实验结果处理 1、计算梁的屈服载荷最危险点为中点,

2、计算最大挠度和支点处转角:实验值:f=1.5kg时,w=0.62mm;

3

理论值:f=1.5kg;b=20mm;h=9mm;e=200gpa;

l=0.8m 实验值和理论值的比较:

3、验证位移互等定理:

有试验数据不难看出,位移互等定理成立,测量误差大致为 5.6% 画中点载荷f=1.5kg

时的挠曲线:

数据如下:

4

挠曲线图

(2)悬臂梁实验

一、实验目的

利用贴有应变片的悬臂梁装置,确定金属块的质量。

二、实验设备 1、悬臂梁支座; 2、电阻应变仪;

3、砝码两个,金属块一个,砝码盘和挂钩。

4、游标卡尺和钢卷尺。

三、实验试件及装置

中碳钢矩形截面梁,屈服极限?s?360mpa,弹性模量e=210gpa。篇二:变形监测实验报

合肥工业大学

土木与水利工程学院

09级测绘工程(1)班

实验报告

20 11 — 20 12学年第二学期

课程名称变形监测

设计题目前方交会实验

学生姓名刘钊

学号

专业班级指导教师高飞

2012 年 05 月28日

1、实验要求:

应用全站仪对科技楼楼顶避雷针进行变形观测

2.实验过程:

首先认真理解前方交会原理,然后利用gps做静态控制得出控制点坐标,将全站仪架在

其中一个控制点a上,另一个控制点b架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,

然后置零,转动照准部对准避雷针顶端c,记录角度,然后盘右观测,一站观测两个测回,

得出夹角α将全站仪与反射棱镜互换位置,同样方法测得夹角β,根据已知a,b两点坐标可

求得避雷针顶端的平面坐标,然后在另一已知点d上架全站仪,a点架上反射棱镜,以a点

做后视定向,观测a,d两点间夹角,盘左盘右观测两个测回γ,同时观测竖角β,量取仪器

高,根据观测数据计算进行比较检核。

3.实验已知数据:

a点坐标 x 3525052.175

y 527483.758

b点坐标 x 3525047.348

y 527412.793

d点坐标 x 3524903.239 y 527259.558 4.实验观测数据:

α=76°22′05″,β=80°37′19″,

γ=88°39′44″(检核角)

竖角θ=37°24′03″

5实验结果:

c点坐标:x 3524875.2304

y 527453.3827

z 75.066 检校误差3″

6.实验心得:

通过本次实验巩固了在变形监测课堂上所学的理论知识,极大的提高了我的动手操作能

力,仪器操作还不是很熟练,以后应该多加练习,理论和实际还是有一定的差距。要有耐心,

要学会等待,忍耐,有时候仪器不稳定,必须得等。篇三:《flash动画制作》实验报告《flash动画制作》

实验教学指导

目录

实验一

flash

动画欣赏,熟悉软件环境?????3 实验二图形对象的绘制与对象的编辑处理???????????4 实验三制作形状渐变动画????????????????5 实验四制作图层特效动画——运动引导层动画??????????6 实验五制作图层特效动画——遮罩动画???????????7 实验六 flash特殊按钮的制作????????????8 实验七按钮、声音和action脚本语句的综合运用??????11 实验八actionscript的脚本语言????????????13 实验九 flash欣赏和综合设计???????????????14 实验一 flash动画欣赏,熟悉软件环境

一、实验目的

1、通过flash动画欣赏,了解该软件的功能并熟悉软件环境;

2、掌握舞台、工作区、时间轴、帧和关键帧的概念,了解制作flash动画的基本流程;

3、学习flash帮助的使用。

二、实验前的准备工作

认真阅读以下教学内容: 1、 flash动画制作原理;

2、舞台、时间轴、帧、关键帧、图层的概念,了解flash动画制作的基本流程;

3、 flash

动画文件的格式,如何新建、保存、输出打开和播放两种格式的文件。

三、实验指导

1、打开flash软件,分别选择打开已有.fla文件,观看界面的时间轴、图层、舞台、帧

等;2、分别点击时间轴、帧、舞台、图层,观看属性栏; 3、设置舞台的属性;

4、选中图层上的锁、眼睛、方框,观看时间轴、舞台变化;

5、新建、保存和导出文件。

四、实验内容

1、启动和退出flash、了解flash的工作环境;

2、打开、保存动画文件并观看flash 影片;

3、打开flash帮助,浏览其目录结构。

五、实验报告要求

1、写出实验内容及过程。

实验二图形对象的绘制与对象的编辑处理

一、实验目的

1、学会设置笔触颜色和填充颜色,能使用铅笔、钢笔、笔刷、直线、圆、矩形等绘图工具绘制简单的图形,掌握复制和移动图形、对图形进行选取、变形、修改等操作;

2、熟练使用颜色调板。

3、绘制flash图形,进一步认识帧、关键帧、图层、时间轴的概念。

二、实验前的准备工作

认真阅读以下教学内容: 1、flash工具的基础知识。 2、flash时间轴和图层的知识。

三、实验指导

1、启动flash 8.0软件,新建一个空白文档,观察主界面。

2、点击工具窗口中列出的flash的各种图像编辑和调板工具,同时观察其属性栏,并在flash舞台中使用工具,观察工具的作用。

3、绘制图形时,使用颜料调色板,然后使用颜料桶和墨水瓶填充,观察图形变化。

4、绘制图形时,使用选取工具、变形工具、颜料填充工具等进行修改和调整外形。 4、点击工具箱上的显示模式按钮,切换图形的显示模式,观察舞台内容变化。

5、使用工具箱中的工具创建一幅flash图形对象,并将其保存为.fla文件。

四、实验内容

1、启动flash程序,新建一个flash文档。

2、熟悉flash界面,熟悉各种绘图工具的使用。

五、实验报告要求

1、写出实验内容及步骤。

2、根据自己制作的图形对象,写出使用到的工具命令及其特性。

实验三制作形状渐变动画

一、实验目的

1、由浅入深地学习形状渐变动画的制作方法。

2、掌握控制形状渐变趋势的方法。

二、实验前的准备工作

认真阅读以下教学内容:

1、flash形变图形、补间动画的制作方法和要求。

2、flash形变动画精确变形的设置步骤。

三、实验指导

1、新建一flash文档。

2、分别绘制“三角形”“正方形”“圆”图形元件。

3、在时间轴第1、第5、第10帧处插入关键帧,并分别放入三图形元件的实例。

4、在三关键帧中把三图形打散。

5、分别第1和第5关键帧中间及第5和第10关键帧的任一帧处,在属性栏“补间”选项中选择“形状”。

6、按住键盘“ctrl+enter”测试。

四、实验内容

1、制作色彩变幻的文字。

2、制作“黑猫白狗”变形动画。

3、实现字母的精确变形

五、实验报告要求

1、写出实验内容及步骤。

2、根据自己制作的精确变形的动画,写出使用到的菜单命令及步骤。篇四:flash制作实验报告

iphone4动画广告制作实验报告

一、设计目的:

1、通过本课程的学习,掌握利用flash工具箱的各种工具绘制动画的素材。

2、在理论与实践相结合的学习中,充分掌握各种类型的flash动画制作方法和技巧。

3、在应用分析中能应用所学知识进行动画的分析、设计与制作。

二、设计思路:

flash视频广告以其展示内容丰富、全面、形象,广受欢迎。这则关

于苹果iphone4手机的广告,以flash视频广告的形式展示iphone4的主要功能,能对iphone4起到很好的广告宣传作用。我的设计思路如下:第一步,构思动画内容及效果实现方式,确定制作一则关于苹果iphone4的短片广告,主要采用本学期所学的关键帧动画、逐帧动画、补间动画、遮罩动画、影片剪辑、图片元件、插入音频、按钮以及简单的代码实现动画效果。

三、主要步骤:

1、打开flash软件设置舞台大小为451×370像素、背景颜色为白色;

2、使用翻转帧功能制作电视形象的动画显示;

3、使用新建影片剪辑和补间动画命令新建了苹果标志旋转的影片剪辑;

4、使用任意变形工具缩放图片大小,并使用补间动画命令使手机正面图片渐变切入场景;

5、使用移动、任意变形工具旋转图片、补间动画命令使展示手机拍照功能的图片渐变切入切出场景;

6、使用任意变形工具旋转缩放图片、补间动画命令使展示手机剪辑功能的图片渐变切入切出场景;

7、通过改变图片的alpha值、插入补间动画使图片渐变显示和消失在场景中;

8、使用移动和插入补间动画命令切入切出展示手机信息更新功能的图片;

9、任意变形旋转缩放、新建影片剪辑创建元件7;

10、使用遮罩层动画功能实现展示手机下载、读功能的图片切换显示;

11、使用任意变形缩放命令切入切出展示显示功能的图片;

12、使用移动、插入补间动画命令切入切出后面的展示图片;

13、制作有滚动效果的影片剪辑元件9,并放置舞台最低层,使舞台背景具有科技的动感;

15、使用插入按钮元件制作元件11,并使用滤镜功能对按钮中的文字进行

效果处理,新建代码图层图层40在第246帧处插入关键帧,将按钮元件拖放到舞台合适的位置,选中关键帧按f9打开代码编辑窗口写入stop();命令,使动画播放完后停留在该帧;选中按钮按f9打开代码编辑窗口写入on (press) {gotoandplay(1);}命令,使动画从第一帧重新开始播放;

16、检查调整制作中不合理的地方,按ctrl+enter键预览动画效果,效果满意发布动画。

四、实验总结:

在视频制作中采用了本学期所学的flash制作的大部分技术内容:关键帧动画、逐帧动画、补间动画、遮罩动画、影片剪辑、图片元件、插入音频、按钮以及简单的代码运用。

在制作过程中采用百度等互联网工具进行材料的收集,并使用硕思

教科院教育技术学7班

杨秀琴

2011/12/21篇五:显示器件设计制作实验报告

显示器件设计制作实验报告

一、实验目的

通过只做表面传到电子发射源的实验过程,了解平板显示器件核心部件的工作原理及制作方法,熟悉磁控溅射镀膜、光刻、丝网印刷、真空系统中电子发射测试等在显示器件中的应用。

二、实验任务

通过学习实践平板显示器件的制作过程,结合所学知识,深刻认识场致电子发生的机理和应用,了解平板显示技术。

1、学习、了解表面传导电子发射源的原理以及真空器件的制作;

2、学习、了解平板显示器件对玻璃基板的要求,玻璃清洗和退火的工艺过程;

3、学习、了解磁控溅射原理和方法,学习光刻法制作薄膜电极;

4、学习、了解到店默默材料的选择和导电薄膜的制备方法;

5、学习、了解丝网印刷原理,学习阳极荧光板的制作;

学习、了解在真空系统中进行电子发射源的测试以及性能评价方法。

三、实验原理

1、sed工作原理与发展

2、sed的结构

sed是一个真空器件,依次为,上下两块玻璃以及四周的特殊玻璃封接组成;上班玻璃是发光部分,在其上一依次制备有滤色膜、黑矩阵、荧光粉和面板电极,滤色膜分别对应三种荧光粉,用以提高色纯度、

黑矩阵将3种荧光粉按像素分割以避免干扰,荧光粉间隔沉积。上面还要镀上一层铝膜作为阳极。

sed下板是电子发射源,在阳极作用下,隧道效应电子向阳极运动,进而轰击荧光物质,达到发光的效果。

3、sed电子发射机理

sed的简单物理模型,他表示孤岛之间的电场分布和电子发射情况。电子从一个孤岛发射到下一个孤岛,实现了表面传导。如果在阳极板上施加电压,股道至简通过真空传导电子中的一部分将会在阳极电压的作用下到达阳极。

目前关于sed电子发射机理有两种理论模型解释:

2)电子惯性离心模型:电子在电场中运动时,由于运动轨迹不是垂直的,会受到惯性离心力的作用李的作用更容易脱离西风,到达阳极。

4、溅射镀膜:

溅射镀膜是借助高能粒子攻击所产生的动量交换,把镀膜材料的原子从固体表面撞出并发射出来出来,放在靶前面的的基材料截溅射出来的原子流,后者凝聚成镀膜。主要分为: 1)直流溅射;2)射频溅射;3)磁控溅射;4)反应溅射

5、光刻加工工艺

光刻加工艺是一种图形复印和腐蚀相结合的表面微细加工工艺。先用光照的方法,将光刻掩模上的图形景区地印制在涂有感光胶的薄膜表面,然后李勇敢硬件的选择保护作用薄膜进行选择性腐蚀,从而刻出图形,主要流程:

1)衬底准备;

2)涂胶;

3)前烘;

4)曝光;

5)显影;

6)坚膜;

7)刻蚀;

8)去胶

光刻主要分为正性光刻和负性光刻,正性把掩膜板的图形复制到硅片上,负性与正性光刻相反,本实验采用正性光刻。

弯扭组合变形实验报告

弯扭组合变形实验报告 水工二班 叶九三 1306010532 一、实验目的 1用电测法测定薄壁圆管弯扭组合变形时表面任一点的主应力值和主方向,并与理论值进行比较。 2测定分别由矩和扭矩引起的应力w σ和n τ,熟悉半桥和全桥的接线方法。 二、实验设备 仪器名称及型号:静态电阻应变仪 精度:1μm 三、试件尺寸及有关数据 试件材料:铝合金 弹性模量:70GPa 泊松比μ=0.33 应变片灵敏系数K=2.20 试件外径D=40mm 试件内径d=36mm 自由端端部到测点的距离L=300mm 臂长a=200mm 试件弯曲截面系数z W =2.16*610-3m 试件扭转截面系数P W =4.32*610-3m 四、实验数据与整理 1.实测数据 弯ε(W ε) 扭ε(n ε) 0ε 45ε 90ε 荷载F (N ) 读数με 增量με 读数με 增量με 读数με 增量με 读数με 增量με 读数με 增量με 0F 0 396 0 358 0 150 0 193 0 -19 1F 396 358 150 193 -19 393 363 150 194 -21 2F 789 721 300 387 -40 391 353 150 193 -20 3F 1180 1074 450 580 -60 394 357 149 192 -21 4F 1574 1431 599 772 -81 平均增量 393.50 357.75 150 193 -20 计算结果: εⅠ=218.7με εⅡ=-88.7με 0?=o 2.28

1σ=14.9MPa 2σ=-1.3MPa W E εσ?=*w =13.7725MPa ||1n n E εμ τ?+= =4.7072MPa 误差分析 w σ(MPa ) n τ(MPa ) I σ ∏σ 0? 实测值 13.7725 4.7072 14.9 -1.3 28.2 理论值 13.8889 4.6296 15.2 -1.4 33 相对误差% 0.84 1.68 1.9 7.1 14.5 思考题 1可以,因为主应力大小与方向是唯一的,不论应变片延哪个方向粘贴, 只要测出平面应力状态下的三要素,就可以计算出主应力的大小与主平 面方向。 2半桥自补偿法好,精度比半桥外补偿法高。 3不需要,因为采用的全桥测法已经将温度影响消除了。

热变形温度测试方法的总结(20130106)

一、外壳测试标准 参考《GB 20641-2006低压成套开关设备和控制设备空壳体的一般要求(GBT)》 9.8绝缘材料性能 9.8.1 热稳定性验证 根据GB/T 2423.2-2001所给出的方法进行试验。 对于没有技术意义,只用于装饰目的的部件不进行此项试验。 用下列试验进行检查: 将一个如同正常使用时一样安装的壳体放在加热箱中进行试验,加热箱带有混合大气和大气压力而且自然通风,如果加热箱的容积与壳体的尺寸不匹配,试验可在一个有代表性的壳体样品上进行。 1、加热箱内部的温度应为(70+2)℃。 2、壳体或样品应在加热箱放置7d(168h)。 3、建议使用电加热箱。 4、在加热箱的壁上留一个自然通风孔。 5、然后,将壳体或样品从加热箱移出,置于环境温度下,相对湿度在45%-55%之间,至少存放4d(96h)。 目测壳体或样品应没有可见的裂缝或无新裂缝,其材料不应变成粘性或油脂性,用下列方法进行。 判断: 在食指上裹一片干粗布,以5N力按压样品。 注:5N力可用下面方法获得:将样品放在天平的一个秤盘上,天平的另一称盘加载的质量等于样品的质量+500g,在食指上裹一片粗糙的干布按在样品上使天平平衡。 样品和壳体材料上应没有布的痕迹或样品和布不相粘连。

二、实验室塑料热稳定性测试方法 1、维卡热变形温度 《GB/T 1633-2000 热塑性塑料维卡软化温度的测定》 当匀速升温时,测定在第1章中给出的某一种负荷条件下标准压针刺人热塑性塑料试样表面1m m深时的温度。 2、马丁耐热温度 《GB 1035-70塑料耐热性(马丁)试验方法》 本方法是试样在等速升温环境中,在一定静弯曲力矩作用下,测定达到一定弯曲变形时的温度,以示耐热性。本方法不适用于耐热性低于60℃的塑料。 3、热变形温度 《GB/T 1634-2004 负荷变形温度的测定》 塑料试样放在跨距为100mm的支座上,将其放在一种合适的液体传热介质中,并在两支座的中点处,对其施加特定的静弯曲负荷,形成三点式简支梁式静弯曲,在等速升温条件下,在负载下试样弯曲变形达到规定值时的温度,为热变形温度。 三、分析:哪种实验室方法更贴近标准要求 马丁耐热,不用介质,不用针刺。

弯扭组合变形实验报告

薄壁圆管弯扭组合变形应变测定实验 一.实验目的 1.用电测法测定平面应力状态下主应力的大小及方向; 2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的 应力。 二.实验仪器和设备 1.弯扭组合实验装置; 2.YJ-4501A/SZ 静态数字电阻应变仪。 三.实验原理 薄壁圆管受力简图如图1所示。薄壁圆管在P 力作用下产生弯扭组合变形。 薄壁圆管材料为铝合金,其弹性模量E 为72 2m GN , 泊松比μ为0.33。薄壁圆管截 图1 面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。Ⅰ-Ⅰ截面现有A 、B 、C 、D 四个测点,其应力状态如图3所示。每点处已按 –450、00、+450方向粘贴一枚三轴450应变花,如图4所示。 图2 图3 图4 四.实验内容及方法 1. 指定点的主应力大小和方向的测定 薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 ()()()?? ? ???-+--±++-=--24502 0454******* 1211εεεεμεεμ μσσE

主应力方向计算公式为 ()()04545045 452εεεεεεα----= --tg 或 ()45 450454522εεεεεα+---=--tg 2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定 只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2 Md M εε= 然后由虎克定律可求得弯矩M 引起的正应力 2 Md M M E E εεσ= = b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可 测得扭矩M n 在450方向所引起的线应变 4 nd n εε= 由广义虎克定律可求得剪力M n 引起的剪应力 ()214nd nd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的线应变 4 Qd Q εε= 由广义虎克定律可求得剪力Q 引起的剪应力 () 2 14Qd Qd Q G E εμετ=+= 五.实验步骤 1. 接通测力仪电源,将测力仪开关置开。 2. 将薄壁圆管上A 、B 、C 、D 各点的应变片按单臂(多点)半桥测量接线方法接至应变仪测量通道上。 3. 预加50N 初始载荷,将应变仪各测量通道置零;分级加载,每级100N ,加至450N ,记录各级载荷作用下应变片的读数应变,然后卸去载荷。 4. 按图5各种组桥方式,从复实验步骤3,分别完成弯矩、扭矩、剪力所引起应变的测定。 六.实验数据及结果处理

习题1热变形参考答案

一、基本概念 恒载荷蠕变:拉伸时,作用在样品上的载荷恒定不变,即拉伸力保持不变的变形过程。 恒应力蠕变:拉伸时,塑性变形后,截面不断减小,但作用在样品上的应力恒定,载荷在一直变化的变形过程。 恒应变速率变形:在拉伸试验过程中,样品的变形速率保持恒定(此时要保证夹头速率不断增加)。 恒拉伸速度变形:在拉伸试验过程中,样品的拉伸速率保持恒定,即夹头移动速率恒定(应变速率是减小的)。 变形速度激活能:金属发生塑性变形时,是一个热激活的过程,在此过程中金属原子发生剧烈的热运动,这需要原子跨越一个能量“门槛值”而需要的能量就称为变形激活能 时效成形:时效成形是将零件成形和人工时效处理相结合的新型成形工艺.它能够改善合金的微观组织,提高材料强度,降低残余内应力水平,增强耐应力腐蚀能力,延长零件使用寿命。 应变硬化:常温下钢经过塑性变形后,内部组织将发生变化,晶粒沿着变形最大的方向被拉长,晶格被扭曲,从而提高了材料的抗变形能力。这种现象称为应变硬化或加工硬化。 应变速率硬化:当应变速率提高后,材料的屈服强度及拉伸极限强度都会增加。 二、问答 1. 请论述多晶体热变形激活能的理论意义,并介绍其在控制应力的蠕变变形实验中的测试方法。 答:变形激活能反应材料热变形的难易程度,也是材料在热变形过程中重要的力学性能参数。通过对激活能值的分析可以推断回复机制,激活能控制塑性变形速率,动态回复和动态在结晶,激活能Q 越大,变形速率越小,材料越难变形,高温塑性变形的显著特点就是变形速 度受热激活过程控制,即遵从Arrhenius 方程: )(e x p ..)(e x p ),(..0 0RT Q RT Q y -=-=εεσεε 1等温法: 采用将多个样品在相同应力和不同温度条件下蠕变,测量蠕变曲线在亚稳态阶段的斜率,表示成)l og(?ε和1/T 的函数关系的形式,并将结果表示在)l og(?ε和1/T 坐标上,和实验点吻合最好的直线的斜率即为Q 值 。 2时间补偿法:在蠕变稳态阶段 )()e x p()e x p()e x p(......00000θεεεεεεf RT Q t d t RT Q d t RT Q t t =??????-=-==-=?? )exp(RT Q t -=θ 可见若将ε 表示为补偿时间θ的函数,则不同温度和相同应力条件下得到的蠕变曲线相互重合,求以此来求Q 值。也可将不同温度下达到给定变形ε所需时间的对数表示成 1/T 的函数,所得直线的斜率即Q 值。 3变温法:

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

热变形温度测定

热变形温度测定 实验目的 了解高分子材料弯曲负载热变形温度测定的基本原理。 掌握高分子材料弯曲负载热变形温度的测定方法。 实验原理 测定高分子材料试样浸在一种等速升温的合适液体传热介质中,在简支梁式的弯曲负载作用下,试样弯曲变形达到规定值时的温度,即弯曲负载热变形温度。 液体传热介质在试验过程中与试样相容性好,即不造成溶胀、软化、开裂等影响的液体。通常选用硅油比较合适。温度计及形变测定仪应定期进行校正。 热变形温度适用于控制质量和作为鉴定新材料热性能的一个指标,不代表使用温度。 本方法适用于在常温下是硬质的模塑材料和板材。 实验主要原材料及设备 实验原料PS 666D 样条尺寸 长:120mm 宽:10mm 高:15mm 实验仪器 RW-3塑料热变形温度测试仪 由架、负荷压头、硅码、中点形变测定 仪、温度计及可程序升温的保温浴槽组成,其 基本结构如图所示。 实验条件 在试样高度变化时相对应形变量的变化表中查出本实验的相对变形量为0.21mm 应加砝码质量由下式计算: W=2σbh 3l—R—T W:砝码质量,g σ:试样最大弯曲正应力,N b:试样宽度,mm h:试样高度,mm l:两支座中心距离,mm R:负载杆、压头质量,g T:变形测量的附加力,N 计算的砝码质量为2626g 选择A+C+D三个砝码 实验步骤 1.测量试样中心附近的高度h 和宽度b 精确至0 .05mm 。 2.把试样对称地放在试样支座上,高度方向(h =15mm ) 必须垂直放置,拧紧负载杆和压头的固定螺钉,压头对正试样中心。 3.插入温度计,使水银球在试样中心点附近约3mm 以内、但不能触及试样或压头。 4.把装好试样的支架小心放入保温液槽内,试样应在距液面35mm 以下。加上砝码,

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

实验一----弯扭组合变形

实验一----弯扭组合变形

弯扭组合变形的实验报告 力学-938小组 一.实验目的 1.测定薄壁圆管表面上一点的主应力; 2.验证弯扭组合变形理论公式; 3.掌握电阻应变片花的使用。 二.实验设备和仪表 1.静态数字电阻应变仪; 2.弯扭组合试验台。 三.实验原理与分析 1.实验计算简图如下所示: 在D点作用一外力,通过BD杆作用在C点,同时产生 弯矩和扭矩; 2.应变测量常常采用电阻应变花,把几个敏感栅制作成特殊夹角 形式,组合在同一基片上。本实验采用45o直角应变花,在A,B,C,D四点(这四点分别布置在圆管正前方、正上方、正后

方,正下方)上各贴一片,分别沿-45o ,0o ,45o 方向,如图所示。测量并记录每一点三个方向的应变值-45εo 、0εo 、45εo 。 正上方和正下方(B 、D 点)处于弯扭组合情况下,同时作 用有弯曲正应力和扭转切应力,其中弯曲正应力上端受拉,下端受压,而前方和后方由于弯矩作用产生的切应力远远小于扭转产生的切应力,所以可以忽略不计,这样,在前后位置只受扭转剪应力。 3. 理论应变的计算公式及简单推导 弯曲正应力计算公式:()4432 z M PLD W D d σπ= = -; (1) 扭转剪应力计算公式:()44 16 n p M PaD W D d τπ== -; (2) 根据(1)(2)式可计算出理论上作用在每点的应力值。 由应力状态理论分析可知,薄壁圆管表面上各点均处于平面应力状态。若在被测位置x,y 平面内,沿x,y 方向的线应变

为,x y εε,剪应变为x y γ ,根据应变分析可知,该点任一方向 α的线应变计算公式为: 1 cos 2sin 22 2 2 x y x y xy αεεεεεαγα+-= + - (3) 将α分别用-45o ,0o ,45o 代替,可得到x,y 方向的应变方程 组: 0454504545x y xy εεεεεεγεε--?=? =+-?? =-?o o o o o o (4) 由此,可得到解出每点-45εo 、0εo 、45εo 值的公式: 0454522 x x y xy x y xy εεεεγεεεγε-? =?? +-? =?? ++?=??o o o (5) 另外,根据2中的分析,利用材料力学相关公式,可得,x y εε, x y γ的理论计算公式为: ()21x y x xy E G E σεεμεμττγ?= ??? =-?? +?==?? (6) 这样,将(1)(2)(6)式代入到(5)式中,即可求解每点 -45εo 、0εo 、45εo 的理论值。 4. 将计算得到的理论值直接与测试仪上显示的数据进行对比,分析 误差。 四. 实验步骤

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

弯扭组合变形的主应力测定

实验八 弯扭组合变形的主应力测定 一、实验目的 1.测定平面应力状态下主应力的大小及方向。 2.掌握电阻应变花的使用。 二、实验设备 1.弯扭组合实验装置。 2.静态电阻应变仪。 三、实验原理 平面应力状态下任一点的主应力方向无法判断时,应力测量常采用电阻应变花。应变花是把几个敏感栅制成特殊夹角形式,组合在同一基片上,如图8-1所示。如果已知三个方向的应变a ε、b ε及c ε,根据这三个应变值可以计算出主应变1ε及3ε的大小和方向,因而主应力的方向亦可确定(与主应变方向重合)。主应力的大小可由各向同性材料的广义胡克定律求得: (8-1) 式中,E 、μ分别为材料的弹性模量和泊松比。 图8-2为045直角应变花,所测得的应变分别为00ε、045ε及090ε,由下式计算出主应变1ε及3ε的大小和方向: 2 904524509003,100000 02 22 )()(εεεεεεε-+-± += (8-2)(8-3)

00 0090090045022an εεεεεα---=t (8-3) 图8-1 图8-2 图 8-3 本实验以图8-3所示空心圆轴为测量对象,该空心圆轴一端固定,另一端固结一横杆,轴与杆的轴线彼此垂直,并且位于水平平面内。今在横杆自由端加砝码,使空心圆轴发生扭转与弯曲的组合变形。在A -A 截面的上表面A 点采用045直角应变花,如图8-4所示,如果测得三个应变值00ε、045ε和090ε,即可确定A 点处主应力的大小及方向的实验值。 图 8-4 图 8-5 另由扭—弯组合理论可知,A -A 截面的上表面A 点的应力状态如图8-5

5薄壁圆管弯扭组合变形测定_实验报告

薄壁圆管弯扭组合变形测定实验 实验日期 姓名 班级 学号 实验组别 同组成员 指导教师(签字) 一、实验目的 二、实验设备名称及型号 三、实验数据记录与处理 1.基本数据 材料常数: 弹性模量 E = 70 GPa 泊松比 33.0=μ 装置尺寸: 圆筒外径 D = 39mm 圆筒内径 d = 34mm 加载臂长 h = 250 mm 测点位置 L I-I =140 mm 2.计算方法 (1)指定点的主应力和主方向测定 实验值:主应力大小:()()()?? ?? ??-+--± ++-= --2 45 02 45 45 45 2 3 1 2 12 11ε εεεμ ε εμ μ σ σE 主应力方向:()() 45 45 045 450 2εεε εεεα ----=--tg 理论值:主应力大小:2 2 3 1 22 T M M τσσ σ σ+?? ? ??± = ;主应力方向:M T tg σ τα220 - = (2)指定截面上的弯矩、扭矩和剪力所分别引起的应力的测定 a.弯矩M 引起的正应力的测定 实验值:2 di M E εσ = 实 理论值:()32 /14 3 απσ -= -D FL I I M 理 ,其中:D d /=α b. 扭矩T 引起的切应力的测定 实验值:)1(4μετ+=di T E 实 理论值:()16 /14 3α πτ-= D Fh T 理 c. 剪力F Q 引起的切应力的测定 实验值:) 1(4μετ+= di F E Q 实 理论值:z max Z 2FS I τδ = 剪,12 3 3 max z d D S -= 3.实验数据 1.指定点的主应力和主方向测定(表1、表2) 2.指定截面上的弯矩、扭矩和剪力所引起的应力测定(表3)

弯扭组合变形实验报告

创作编号: BG7531400019813488897SX 创作者:别如克* 薄壁圆管弯扭组合变形应变测定实验 一.实验目的 1.用电测法测定平面应力状态下主应力的大小及方向; 2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。 二.实验仪器和设备 1.弯扭组合实验装置; 2.YJ-4501A/SZ静态数字电阻应变仪。 三.实验原理 薄壁圆管受力简图如图1所示。薄壁圆 管在P力作用下产生弯扭组合变形。 薄壁圆管材料为铝合金,其弹性模量E 为722 GN, 泊松比μ为0.33。薄壁圆管截图1 m 面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。Ⅰ-Ⅰ截面现有A、B、C、D四个测点,其应力状态如图3所示。每点处已按–450、00、+450方向粘贴一枚三轴450应变花,如图4所

示。 图2 图3 图4 四.实验内容及方法 1. 指定点的主应力大小和方向的测定 薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 ()()()?? ? ???-+--±++-=--24502 04545 45231212 11εεεεμ εεμμσσE 主应力方向计算公式为 ()() 04545045 452εεεεεεα----= --tg 或 () 4545045 4522εεεεεα+--- =--tg 2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定 只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2 Md M εε= 然后由虎克定律可求得弯矩M 引起的正应力 2 Md M M E E εεσ= = b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路, 可测得扭矩M n 在450方向所引起的线应变 4 nd n εε= 由广义虎克定律可求得剪力 M n 引起的剪应力 ()2 14nd nd n G E εμετ= += c. 剪力Q 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

空心圆管在弯扭组合变形下主应力测定

实验二 空心圆管在弯扭组合变形下主应力测定 一、实验目的 1. 用电测法测定平面应力状态下主应力的大小及方向,并与理论值进行比较 2. 测定空心圆管在弯扭组合变形作用下的弯曲正应力和扭转剪应力 3. 进一步掌握电测法 二、实验仪器设备和工具 1. 弯扭组合实验装置 2. A XL 2118系列静态电阻应变仪 3. 游标卡尺、钢板尺 三、实验原理和方法 1. 测定主应力大小和方向 空心圆管受弯扭组合作用,使圆筒发生组合变形,圆筒的'-m m 截面处应变片位置及平面应力状态(如图1)。在B 点单元体上作用有由弯矩引起的正应力σx ,由扭矩引起的剪应力τn ,主应力是一对拉应力σ1和一对压应力σ3,单元体上的正应力σx 和剪应力τn 可按下式计算 W σz x M = W M T n n =τ 式中 M — 弯矩,L P M ?= M n — 扭矩,a P M n ?= W z — 抗弯截面模量,对空心圆筒: ? ?????????? ??-= D d D W Z 4 3132π W T — 抗扭截面模量,对空心圆筒: ??? ??? ????? ??-= D d D W T 4 3116π 由二向应力状态分析可得到主应力及其方向 τσσσσ22 2213n x x +?? ? ??±= σταx n tg 220-= 图1 圆筒的'-m m 截面应变片位置及B 点应力状态 本实验装置采用450直角应变花,在A 、B 、C 、D 点各贴一组应变花(如图2所示),B 点或D 点应变花上三个应变片的α角分别为45-0、00、450,该点主应变和主方向 () ()()εεεεεεεε0450******* 02 2 2 220 13----+±+= 加载臂 固定端 300 B C D A B σ 1 σ 3 σ 3 σ 1 τ n τ n

实验四 薄壁圆筒在弯扭组合变形下主应力测定

实验四 薄壁圆筒在弯扭组合变形下主应力测定 实验内容: 构件在弯扭组合作用下,根据强度理论,其强度条件是[]r σσ≤。计算当量应力r σ,首先要确定主应力,而主应力的方向是未知的,所以不能直接测量主应力。通过测定三个不同方向的应变,计算主应变,最后计算出主应力的大小和方向。本实验测定应变的三个方向分别是-45°、0°和45°。 实验目的与要求: 1、用电法测定平面应力状态下一点的主应力的大小和方向 2、进一步熟悉电阻应变仪的使用,学会1/4桥法测应变的实验方法 设计思路: 为了测量圆管的应力大小和方向,在圆管某一截面的管顶B 点、管底D 点各粘贴一个45°应变花,测得圆管顶B 点的-45°、0°和45°三个方向的线应变45ε-、 0ε、45ε。 应变花的粘贴示意图 实验装置示意图 关键技术分析: 由材料力学公式: 得 从以上三式解得 主应变

根据广义胡克定律 1、实验得主应力 大小 ___ ___ ___145452()2(1)E σεεσμ-+?= ± ?-?实实方向 _________ ___ 04545 45452( )/(2) tg αεεεεε-- =+ --实 2、理论计算主应力 3、误差 实验过程 1.测量试件尺寸、力臂长度和测点距力臂的距离,确定试件有关参数。附表1 2.拟定加载方案。先选取适当的初载荷P 0(一般取P o =lO %P max 左右)。估算P max (该实验载荷范围P max <400N),分4~6级加载。 3.根据加载方案,调整好实验加载装置。 4.加载。均匀缓慢加载至初载荷P o ,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值,直到最终载荷。实验至少重复两次。 5.作完试验后,卸掉载荷,关闭电源, 整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 6.实验装置中,圆筒的管壁很薄,为避免损坏装置,注意切勿超载,不能用力扳动圆筒的自由端和力臂。

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

中文ASTM D 648塑料热变形温度

ASTM D 648-07 塑料侧立式弯曲负荷下变形温度的标准测试方法 1 范围 1.1本试验方法适用于测试在特定的条件下试样发生特定变形时的温度。 1.2 本试验方法适用于测试在常温下刚性或者半刚性的,厚度在3mm[1/8in]或以上的模具成型或者薄片的试样。 注1:薄片厚度少于3mm [0.125in]但大于1mm [0.040in]可以用几片薄片复合试样来测试,但最小厚度为3mm。一种制备复合试样的方式是用砂纸把薄片的面打磨平,用胶水粘合。施加载荷的方向需垂直于每个薄片的边缘。 1.3 在SI的单位的评估值将视为标准。给定值仅提供一些信息。 1.4 本标准无意涉及所有使用过程中的安全问题。本标准是帮助用户建立适当的安全标准和卫生管理办法,并且在规定的期限内使用。 注2:这个测试方法描述为本测试办法的B方法,在技术上,方法Ae和Be分别与ISO 75-1 和ISO 75-2,1993,等价。 2 参考文献 2.1 ASTM标准D 618 测试用塑料调质实施规范。 D 883 塑料相关术语。 D 1898 塑料抽样实施规范。 D 5947 固体塑料试样外形尺寸测试方法。 E1 在液体中的玻璃温度计ASTM说明。 E77 温度计的检查和检验测试方法。 E608/E608M 矿物隔热,金属屏蔽的基体金属热电偶。 E691 为测定试验方法精密度开展的实验室间研究的实施规范。 E1137/E1137M 工业用铂阻尼式温度计。 2.2 ISO标准ISO 75-1 塑料-负荷变形温度的测定-第1部分:通用试验方法。 ISO 75-2 塑料-负荷变形温度的测定-第2部分:塑料和硬橡胶。 2.3 NIST文件NBS特别出版250-22。 3 术语 3.1 通常-本测试方法定义的塑料是跟D 883 中标准一样,除非另外说明。 4 检测方法简介 4.1 将矩形截面的试样按侧立式方式,放在载荷作用在中间的简支梁上,载荷的最大压力为0.455Mpa [66psi] 或1.82Mpa [264psi](注3)。将试样在有载荷的作用下,浸入升温速度为2 士0.2℃/min的传热介质中。测试试样的变形量为0.25mm [0.010in]时介质的温度。记录下试样在弯曲载荷作用下的温度作为变形温度。

岩层实验报告

中国矿业大学矿业工程学院实验报告

《岩层控制》实验报告 实验一矿山岩体力学实验 注:包括岩石抗拉、抗压、抗剪三个内容。 岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 二、实验仪器 (1)钻石机或车床,锯石机,磨石机或磨床。 (2)劈裂法实验夹具,或直径2.0mm钢丝数根。 (3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。(4)材料实验机。 三、实验原理 图3-1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χy r/R 0.5 -0.5x σyσx y 压缩拉伸应力值/MPa 160120804040 图3-1 劈裂实验应力分布示意图四、实验内容

(1) 了解试件的加工机具、检测机具,规程对精度的要求及检测方法; (2) 学会材料实验机的操作方法及拉压夹具的使用方法; (3) 学会间接测试岩石抗压强度及数据处理方法。 五、 实验步骤 (1) 测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风 化程度、含水状态机加工过程中出现的问题进行描述,并填入记录表1-1内。 (2) 检查试件加工精度,测量试件尺寸,填入记录表内。 (3) 选择材料实验机度盘时,一般应满足下式:0.2 P 0< P max <0.8P 0 (4) 通过试件直径两端,沿轴线方向画两条互相平行的线作为加载基线。把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径2.0mm 的钢丝放在加载基线上,钢丝间用橡皮筋固定。 (5) 把夹好试件的夹具或夹好钢丝的试件放入材料实验机的上、下承压板之间,使试件的中心线和材料实验机的中心线在一条直线上。 (6)开动材料实验机,施加数百牛载荷后,松开夹具两侧夹持螺钉,然后以0.03~0.05MPa/s 的速度加载,直至试件破坏。 (7)记录破坏载荷,对破坏后的试件进行摄影或描述。 六、 注意事项 (1) 记录试件的完整状态, (2) 选择合适的材料实验机及合适的实验机度盘值, (3) 夹具对试件的加载方向要与试件的轴线在一平面上, (4) 选择合适的加载速率。 七、 数据处理 表1-1 计算试件单向抗拉强度: R 1= 102?DL P π=5.98MPa 式中 R 1—试件的抗拉强度,MPa ; P —试件破坏载荷,kN; D —试件直径,cm; L —试件厚度,cm 。 八、误差分析 (1)试件自身各方面的影响; (2)系统误差;

实验四 弯扭组合变形时的应力测定

实验四弯扭组合变形时的应力测定 一、实验目的 1.用电测法测定平面应力状态下的主应力大小及其方向,并与理论值进行比较。 2.测定弯扭组合变形杆件中的弯矩和扭矩分别引起的应变,并确定内力分量弯矩和扭矩的实验值。 3.进一步掌握电测法和电阻应变仪的使用。 了解半桥单臂,半桥双臂和全桥的接线方法。 二、实验仪器 1.弯扭组合实验装置。 2.YJ-28-P10R静态数字应变仪, 或者YJ-31电阻应变仪。 三、实验原理和方法 弯扭组合变形实验装置如图5-1所示,它由薄壁管1、扇臂2、钢索3、手轮4、加 图4-1 弯扭组合实验装置

载支座5、加载螺杆6、载荷传感器7、钢索接头8、底座9、电子秤10和固定支架11组成。钢索一端固定在扇臂端,另一端通过加载螺杆、载荷传感器与钢索接头固定,实验时转动手轮,加载螺杆和载荷传感器都向下移动,钢索受拉,载荷传感器就有电信号输出,此时电子秤数字显示出作用在扇臂的载荷值,扇臂端的作用力传递到薄壁管上,使管产生弯扭组合变形。 薄壁圆管材料为铝,其弹性模量E=70GPa、泊松比μ=0.33,管的平均直径D0=37mm,壁厚t=3mm。 Ⅰ-Ⅰ 图4-2 图4-3 A、B、C、D点应力状态

薄壁圆管弯扭组合变形受力如简图4-2所示。Ⅰ-Ⅰ截面为被测位置,该截面上的内力有弯矩和扭矩。取其前、后、上、下的A 、B 、C 、D 为被测的四个点,其应力状态见图4-3(截面Ⅰ-Ⅰ的展开图)。每点处按-450 、0、+450 方向粘贴一片450 的应变花,将截面Ⅰ-Ⅰ展开如图4-4(a )所示。 四、 实验内容和方法 1.确定主应力大小及方向: 弯扭组合变形薄壁圆管表面上的点处于平面应力状态,用应变花测出三个方向的线应变后,可算出主应变的大小和方向,再应用广义胡克定律即可求出主应力的大小和方向。 主应力 ()()()?? ?? ??-+--±++-= ?+?-?+?-24502045454522.12 1211εεεεμεεμ μσE (1) 主方向 ()() 0454*******a εεεεεεα----= ?+?-? -?+n t (2) 式中:045-ε、0ε、045+ε分别表示与管轴线成045-ε、0ε、045+ε方向的线应变 2. 单一内力分量或该内力分量引起的应变测定: (1)弯矩M 及其所引起的应变测定 (a )弯矩引起正应变的测定: 用上、下(即B 、D 两点)两测点两片方向的应变片组成图8-4b 所示半桥测量线路,测得B 、D 两处由于弯矩引起的正应变 2 ds M εε= (3) 式中:ds ε——应变仪的读数应变 M ε——由弯矩引起的轴线方向的应变 (b)弯矩M 的测定:

相关文档
最新文档