基于PLC的智能温室控制系统设计

基于PLC的智能温室控制系统设计
基于PLC的智能温室控制系统设计

毕业设计(论文)任务书

题目基于PLC的智能温室控制系统设计

学生姓名班级学号

题目类型工程指导教师系主任

一、毕业设计(论文)的技术背景和设计依据

温室产业及相关技术在国内外的发展速度很快。高水平大型温室的环境控制系统能够根据传感器采集室温、叶湿、地湿、室内温度、土壤含水量、溶液浓度、二氧化碳浓度、风速、风向、以及植物作物生长状态等有关参数,结合作物生长所需最佳条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

(1)根据外界环境对植物影响因素,选择作物环境条件的实时检测系统、智能温室控制系统两个部分。自动检测包括:温室、湿度、光照、二氧化碳、土壤水分等传感器与变送器。智能控制系统包括:双向天窗角度开闭驱动,遮阳网驱动,通风机,喷灌滴灌控制,节能加温、降温控制等。

(2)开发智能温室组态监控界面。

二、毕业设计(论文)的任务

1.熟悉题目要求,查阅相关科技文献

2.方案设计(包括方案论证与确定、技术经济分析等内容)

3.硬件和软件设计(其中还包括理论分析、设计计算、实验及数据处理、设备及元器件选择等)

4.撰写设计说明书(毕业论文),绘制图纸

5.指定内容的外文资料翻译

6.其它

三、毕业设计(论文)的主要内容、功能及技术指标

1、毕业设计(论文)的主要内容

(1)智能温室控制系统硬件设计

(2)智能温室控制系统程序设计

2、功能与技术指标

(1)介绍所使用PIC及控制系统所涉及其它设备的基本情况

(2)系统软件设计主要包括PIC控制程序和上位机组态软件

3、其它需要说明的问题

四、毕业设计(论文)提交的成果

1、开题报告(不少于3000字)

2、设计说明书(约3万字左右),或毕业论文(约2万字左右)

3、图纸(2#图纸至少三张,图纸数量根据论文情况自定)

4、中、英文摘要(中文摘要约200字,3—5个关键词)

5、论文简介

6、外文资料翻译(约5000汉字)

五、毕业设计(论文)的主要参考文献和技术资料

1、参考文献和技术资料

[1] 郁汉琪.可编程控制器原理及应用.中国电力出版社,2004

[2] 努尔哈孜·朱玛力.可编程控制器在电炉温度控制系统中应用的研究.新疆大学学报,2006,13(2):267—268

[3] 黄柱深,黄超麟.基于PLC的高精度温度控制系统.机电工程技术,2006,10(2):123—125

[4] 高钦和.可编程控制器应用技术与设计实例.人民邮电出版社,2004

[5] 赵燕.可编程控制器原理及应用.中国林业出版社,2006

[6] 李方园.人机界面设计及应用.化学工业出版社,2008

[7] 严盈富.触摸屏与PLC入门.人民邮电出版社,2006

[8] 张扬.S7—200PLC原理与应用系统设计.机械工业出版社,2007

[9] 付家才.PLC实验与实践.高等教育出版社,2006

[10] 刘继修.PLC应用系统设计.福建科技出版社,2007

[11] 徐亚飞,刘官敏,高国章.温箱温度PID与预测控制.武汉理工大学学报交通科学与工程版,2004,28(4):554—557

[12] 曾贵娥,邱丽,朱学锋.PID控制器参数整定方法的仿真与实验研究.石油化工自动化,2005,7(4):89—91

[13] 肖宝兴.西门子S7—200PLC的使用经验和技巧.机械工业出版社,2011

六、毕业设计(论文)加选专题部分

毕业设计(论文)选做内容说明

七、毕业设计(论文)各阶段安排

摘要

温室大棚对现在的人们来说,是非常熟悉的一个名词,因为现在我们生活中的很多花卉、蔬菜、水果都是从温室大棚中种植出来的。如何利用自动检测与自动控制系统有效的控制好温室大棚内的各种环境因子,以提高温室大棚环境的控制精度和效果,对我国温室业的发展有着不可估量的重要意义。

本设计采用西门子S7-300系列可编程控制器来实现自动化控制的温室大棚。温度、湿度等环境因子在植物过程中起重要作用,在检测这环境因子的时候考虑到精度,反应速度,方便设备连接等问题,将采用温度传感器,湿度传感器对环境各项指标进行检测,传感器将检测的结果送入PLC中,由PLC将其与设定值进行比较,再发出相应的指令驱动电机﹑卷帘等设备运行或停止来调节室内的温度、湿度,从而达到智能化,自动化控制的目的。

关键词:蔬菜大棚;PLC;温湿度控制;

Abstract

Greenhouse for the people now is a very familiar noun, because now we live in a lot of flowers, vegetables, fruit which from greenhouse shelter of planting out. How to use automatic detection and automatic control system of effective control of greenhouse trellis inside, in order to improve the environmental factor trellis environment control precision of the greenhouse effect and has become the greenhouse industry research in China at present.

This design USES the Siemens s7-300 PLC to realize the automation control greenhouse trellis. Temperature, humidity environment factors in the process of plants plays an important role in detecting the environmental factor, when considering the accuracy, the reaction speed, convenient device connected by such issues, will the temperature sensor,humidity sensors detect the indicators of environment, the sensor will test results by PLC sent PLC compare it with setting, then sends out the corresponding order-driven heating element,, the fan, ventilation window, filling light equipment, sunshade shade equipment operation or stop to adjust indoor temperature, light, humidity, so as to achieve the purpose of intelligent, automation control. Discuss PLC control system application in plants greenhouse canopy,

Keywords: Vegetables greenhouse;PLC system;Temperature and humidity control

目录

1 绪论............................................. 错误!未定义书签。

1.1概述........................................ 错误!未定义书签。

1.2研究背景.................................... 错误!未定义书签。

1.2.1国外状况.............................. 错误!未定义书签。

1.2.2国内状况.............................. 错误!未定义书签。

1.3研究意义.................................... 错误!未定义书签。

1.4我国温室存在的主要问题...................... 错误!未定义书签。

1.5温室环境控制技术的发展趋势.................. 错误!未定义书签。

2 研究方案的设计................................... 错误!未定义书签。

2.1温室大棚内重要参数的调节与控制.............. 错误!未定义书签。

2.1.1温度的调节与控制...................... 错误!未定义书签。

2.1.2湿度的调节与控制...................... 错误!未定义书签。

2.1.3温度、湿度之间的耦合.................. 错误!未定义书签。

2.1.4光照的调节与控制...................... 错误!未定义书签。

2.1.5二氧化碳含量的调节与控制.............. 错误!未定义书签。

2.2温室环境的特点.............................. 错误!未定义书签。

2.3温室的控制对象.............................. 错误!未定义书签。

2.3.1温度.................................. 错误!未定义书签。

2.3.2湿度.................................. 错误!未定义书签。

2.3.3光照强度.............................. 错误!未定义书签。

2.3.4二氧化碳.............................. 错误!未定义书签。

2.3.5土壤含水量............................ 错误!未定义书签。

3 PLC概述......................................... 错误!未定义书签。

3.1 PLC简介.................................... 错误!未定义书签。

3.1.1 PLC的产生和定义...................... 错误!未定义书签。

3.1.2 PLC的发展现状........................ 错误!未定义书签。

3.1.3 PLC的发展趋势........................ 错误!未定义书签。

3.1.4 PLC的分类............................ 错误!未定义书签。

3.1.5 PLC的特点............................ 错误!未定义书签。

3.1.6 PLC的应用............................ 错误!未定义书签。

3.2 PLC的组成和工作原理........................ 错误!未定义书签。

3.2.1 PLC的组成............................ 错误!未定义书签。

3.2.2 PLC的工作原理........................ 错误!未定义书签。

3.3 PLC控制系统设计的基本原则、主要内容及步骤.. 错误!未定义书签。

3.3.1 PLC控制系统设计的基本原则............ 错误!未定义书签。

3.3.2 PLC控制系统设计的主要内容............ 错误!未定义书签。

3.3.3 PLC控制系统设计的步骤................ 错误!未定义书签。

4 控制系统的总体设计方案........................... 错误!未定义书签。

4.1系统的设计任务.............................. 错误!未定义书签。

4.2系统的控制方案.............................. 错误!未定义书签。

4.3系统的工作原理.............................. 错误!未定义书签。

5 控制系统的硬件设计............................... 错误!未定义书签。

5.1电气控制系统设计............................ 错误!未定义书签。

5.1.1系统主电路设计........................ 错误!未定义书签。

5.1.2系统控制电路设计...................... 错误!未定义书签。

5.2 PLC硬件电路的设计.......................... 错误!未定义书签。

5.2.1 PLC型号选择.......................... 错误!未定义书签。

5.2.2 PLC I/O地址分配...................... 错误!未定义书签。

5.2.3硬件接线图设计........................ 错误!未定义书签。

5.3 PLC的硬件配置.............................. 错误!未定义书签。

5.3.1传感器................................ 错误!未定义书签。

5.3.2 S7-300各个模块....................... 错误!未定义书签。

6 控制系统的软件设计............................... 错误!未定义书签。

6.1 PLC程序设计的方法.......................... 错误!未定义书签。

6.2编程软件STEP7概述.......................... 错误!未定义书签。

6.3控制系统的程序设计.......................... 错误!未定义书签。

6.3.1程序的设计思路........................ 错误!未定义书签。

6.3.2控制程序流程图........................ 错误!未定义书签。

6.3.3控制程序设计及分析.................... 错误!未定义书签。

6.4 STEP7软件介绍.............................. 错误!未定义书签。

7 结论............................................. 错误!未定义书签。

参考文献........................................... 错误!未定义书签。致谢............................................. 错误!未定义书签。

1 绪论

1.1概述

传统温室是指具有防寒、加温和透光等设施,供冬季或极寒地区培育喜温植物或作物的房间。而智能温室也称作自动化温室,是指配备了由计算机控制的可移动天窗、遮阳系统、保温系统、升温系统、湿帘窗/风扇降温系统、喷滴灌系统或滴灌系统、移动苗床等自动化设施,基于农业温室环境的高科技智能温室。智能温室的控制一般由信号采集系统、中心计算机、控制系统三大部分组成。本文主要讨论关于智能温室控制系统这一部分。

智能温室控制系统是近年来逐步发展起来的一种资源节约型高效的农业设施,其是以传统的日照温室为基础,配以计算机自控技术,智能传感技术等高尖端技术发展起来的新型农业基础设施。自上世纪90年代,我国农业工程技术研究人员在吸收了发达国家的高科技温室技术上,加以针对我国农业环境,传统日照式温室的温度、湿度、日照时长及二氧化碳浓度研发出了适应我国农业环境的智能温室控制系统。

1.2研究背景

1.2.1国外状况

世界发达国家如荷兰、美国、以色列等大力发展集约化的温室产业,温室内温度、光照、水、气、肥实现了计算机调控,从品种选择、栽培管理到采收包装形成了一整套完整的规范化技术体系。

美国是最早发明计算机的国家,也是将计算机应用于温室控制和管理最早、最多的国家之一。美国有发达的设施栽培技术,综合环境控制技术水平非常高。环境控制计算机主要用来对温室环境(气象环境和栽培环境)进行监测和控制。以花卉温室为例,温室内监控项目包括:室内气温、水温、土壤温度、锅炉温度、管道温度、相对空气湿度、保温幕状况、通窗状况、泵的工作状况、二氧化碳浓度、EC调节池和回流管数值、pH调节池和回流管数值;室外监控项目包括:大气温度、太阳辐射强度、风向风速、相对湿度等。温室专家系统的应用给种植者带来了一定的经济效益,提高了决策水平,减轻了技术管理工作量,同时也为种植带来了很大方便。

以园艺业著称的荷兰从20世纪80年代以来就开始全面开发温室计算机自动控制系统,并不断地开发模拟控制软件。目前,荷兰自动化智能玻璃温室制造水平处于世界先进水平,拥有玻璃温室1.2万多平方米,占世界1/4以上,有85%

的温室用户使用计算机控制温室环境。荷兰开发的温室计算机控制系统是通过人机交互界面进行参数设置和必要的信息显示,可绘制出设定参数曲线、修正值曲线以及测量的数据曲线,可以从数据库内调出设定的时间段内参数以便于必要的数据查询,并能直接对计算机串行口进行操作,完成上位机与下位机之间的通信。上位机软件集参数设置、信息显示、控制等功能于一体,同时还能够很好地完成温室灌溉和气候的控制和管理。

此外,国外温室业正致力于向高科技方向发展。遥测技术、网络技术、控制局域网已逐渐应用于温室的管理与控制中。控制要求能在远离温室的计算机控制室就能完成,即远程控制。另外该网络还连接有几个通讯平台,用户可以在遥远的地方通过形象、直观的图形化界面与这种分布式的控制系统对话,就像在现场操作一样,给人以身临其境之感。

1.2.2国内状况

我国农业计算机的应用开始于20世纪70年代,80年代开始应用于温室控制与管理领域。20世纪90年代初期,中国农业科学院农业气象研究所和作物花卉研究所,研制开发了温室控制与管理系统,并开发了基于Windows操作系统的控制软件;90年代中后期,江苏理工大学毛罕平等人研制开发了温室软硬件控制系统,能对营养液系统、温度、光照、二氧化碳、施肥等进行综合控制,是目前国产化温室计算机控制系统较为典型的研究成果。在此期间,中国科学院石家庄现代化研究所、中国农业大学、中国科学院上海植物生理研究所等单位也都侧重不同领域,研究温室设施的计算机控制与管理技术。“九五”期间,国家科技攻关项目和国家自然科学基金均首次增设了工厂化农业(设施农业)研究项目,并且在项目中加大了计算机应用研究的力度,其中“九五”国家重大科技产业工程“工厂化高效农业示范工程”中,直接设置了“智能型连栋塑料温室结构及调控设施的优化设计及实施”的专题。

20世纪90年代末,河北职业技术师范学院的闫忠文研制了作物大棚温湿度测量系统,能对大棚内的温湿度进行实时测量与控制。中科院合肥智能机械研究所研制了“农业专家系统开发环境—DET系列软件”和智能温室自动控制系统,能够有效地提高作物产量、缩短生长期、减少人工操作的盲目性。北京农业大学研制成功“WJG-1”温室环境监控计算机管理系统,采用了分布式控制系统。河南省农科院自动化控制中心研制了“GCS—I型智能化温室自动控制系统”,采用上位机加PLC的集散式控制方法,软件采用智能化模糊算法。中国农业大学设

计研制的“山东省济宁大型育苗温室计算机分布式控制系统”,实现了计算机分布式控制。

1.3研究意义

温室大棚近年来在农业生产上占的比重越来越大,而相对来说,温室大棚的控制系统也随着科技的进步不断的发展进步、提升。目前常见的是自动化控制系统,正在向智能控制系统方向发展。

温室大棚智能控制系统是其管理的智能化系统,因为21世纪互联网和传感器的快速发展和普及而逐渐应用到蔬菜大棚上。主要监测参数和指标是:棚内的温度、含湿量、光照强度、二氧化碳含量、土壤的温度和含湿量等。一方面我们需要先向计算机内输入植物生长过程中的最适合生长的环境参数,另一方面在温室大棚各处合理地安排检测设备和传感设备,通过实时监测相应参数指标,并实时传递给计算机系统,系统通过比对,检测到不适宜条件,发出指令指挥棚内的自动系统进行施肥、升温、加水等正确操作,保持棚内环境,保证系统正常运行,使植物在最适宜情况下生长。智能控制系统将信息技术与计算机结合起来,在农业上加以应用,实现了农业发展的变革,也是未来农业发展的具体方向。

智能控制系统在应用上有很大的方便和优势。首先是,智能控制系统控制的精准性和及时性。它的基本功能是对环境的检测,加上一些传感器和智能机器的应用,加强了人们对于作物生长环境的深层了解,实现了科学精准的控制,而且可以根据传感器数据给出相应的反馈和操作,反应及时,给植物营造出最适应的生长环境,温室大棚能够种植出高质量、高产量的绿色蔬菜。其次是,可实现远程控制。目前比较常用的是浙江大学研发的托普物联网技术,这种系统可以再距离较远时通过电脑控制棚内的操作,一方面减少了操作人员的工作量,提高了工作效率,另一方面,可以使得操作人员无论在任何地方都能监察整个大棚的状况,实现了科技的有利性。

从发展前景上里说,温室大棚采用智能控制系统是未来农业发展的趋势和方向,它会将人们从繁杂的工作中解放出来,利用科技的手段得到最完美的效果,还会帮助降低成本,是农业走向高质量、高效率、高收益的道路。

1.4我国温室存在的主要问题

1)科技含量和总体发展水平较低。我国设施栽培起步晚、基础差,没有将其作为整体工程问题研究。从设施装备到栽培技术的生产管理不配套,生产不规范,难以形成大规模商品生产。

2)我国现有的温室控制系统仍以控制一个温室为主,没有基于温室群的控制系统。这样降低了生产管理的效率。

3)温室测控系统的通信仍然采用有线方式。我国温室测控系统的通信主要有485总线以及CAN总线等有线方式。这些有线通信方式不仅使得温室内的信号线和动力线错综复杂,而且导致系统的可靠性降低,安装维护工作量变大,同时也不利于农业机器人等移动设备的作业,难以达到温室生产的“工厂化农业”水平。

4)缺少基于农业专家知识的上位机管理系统。我国目前的温室控制系统中,一些上位机只限于存储采集的历史数据,没有根据农业专家知识的实时控制管理系统。

5)设施水平低,抵御自然灾害的能力差。我国目前部分温室的建筑材料主要是钢材和玻璃。但没有形成国家统一的标准和工厂系列的产品,且应用率仅占设施栽培面积的10%,而绝大部分由农民自行建造的塑料日光温室也只能起到一定的保温作用,根本不能实现对温度、湿度、光照等环境因子的调控。

6)机械化水平低,调控能力差,作业主要依靠人力。生产管理主要靠经验和单因子定性调控。

1.5温室环境控制技术的发展趋势

1.智能化:随着计算机技术、传感技术和自动控制技术的不断发展,温室计算机环境控制系统的应用将由简单的以数据采集处理和监测为主,逐步转向以知识处理和应用为主。因此软件系统的研制开发将不断深入完善,其中以专家系统为主的智能管理系统已取得了不少研究成果,而且应用前景非常广阔。因此近几年来神经网络、遗传算法、模糊推理等人工智能技术在温室栽培中得到了不同程度的发展和应用。

2.网络化:目前,网络技术己成为当前世界最有活力、发展最快的高科技领域。网络通信技术的发展促进了信息传播。因此,设施农业产业化程度的提高成为可能。我国幅员辽阔,气候复杂,劳动者整体素质低,利用网络进行在线和离线服务,可以对不同区域进行监测、比较,不仅给管理带来很大的方便,而且可以提高劳动生产率。

3.分布式:分布式系统通常可分为上、下两层。上层主要用作系统管理,其它各种功能如测量与控制任务等,主要由下层完成。下层由许多各自独立的功能单元组成,每个单元只完成一部分工作。面向对象的分布式系统,每一个功能单元针对一个对象、每一根进线、每一根出线、每个传感器、接触器等都可作为对

象。

4.综合环境调控:所谓综合环境调节,就是以实现作物的增产稳产为目标,把影响作物生长的多种环境参数,如光照、温度、湿度、二氧化碳浓度等,都保持在适宜作物生长的状态,并尽可能使用最少量的环境调节装置,既省时又节能,还能使劳动者愉快地从事生产劳动。

5.变动的坏境控制系统:当前,主要使用精确的计算机坏境控制程序根据设定值对温室中的环境进行调控,但研究发现,这并不能使温室内的作物达到最佳产量。如作物的生长和发育并不取决于某一时刻某个特定温度,而主要取决于在一个时间段中的平均温度水平。这导致控制系统向“自由设置”系统的方向发展,如综合温度控制系统的研制,在该系统中并不设置一个固定的温度值,温室中的温度在最高和最低温度范围内可进行变动,以求在一个较长的时间段内达到理想的平均温度。这样计算机可以根据室外的气候,在使用最低能耗、最佳的利用温室中现有设备的情况下自由进行调节。可变动的环境控制系统目前主要侧重于温度、光照、相对湿度、二氧化碳浓度等方面的研究,在温室作物产量上已表现出比较满意的效果。

6.蓝牙技术:蓝牙技术是近年发展起来的新型低成本、短距离的无线网络传输技术。运用这种技术把温室环境自动检测与控制系统中的各个电子检测装置和执行机构无线地连接起来,以达到便捷地对温室环境参数进行自动检测,灵活地对温室环境参数进行自动控制的目的。便携式环境参数采集器内部装有温度、湿度、光照等各种传感器,并嵌入了蓝牙芯片,因此,这种参数采集器具有无线通信功能,可以便捷地放置在温室内的不同位置。控制器同样嵌入了蓝牙芯片,它一方面与便携式环境参数采集器无线连接,另一方面通过RS-485通信总线与温室内的计算机控制装置相连接。

2 研究方案的设计

2.1温室大棚内重要参数的调节与控制

2.1.1温度的调节与控制

与其他环境因子比较,温度是设施栽培中相对容易调节控制的环境因子。温室内温度的调节和控制包括保温、加温和降温3种。温度调控要求达到能维持适宜于作物生育的设定温度。温度的空间分布均匀,时间变化平缓。(1)保温,为了提高大棚的保温能力,常采用各种保温覆盖。具体方法就是增加保温覆盖的层数,采用隔热性能好的保温覆盖材料,以提高设施的气密性。(2)加温,我国传统的单屋面温室,大多采用炉灶煤火加温,近年来也有采用锅炉水暖加温或地热水暖加温的。大型连栋温室和花卉温室,则多采用集中供暖方式的水暖加温,也有部分采用热水或蒸汽转换成热风的采暖方式。(3)降温,保护设施内降温最简单的途径是通风,但在温度过高,依靠自然通风不能满足作物生育要求时,必须进行人工降温。降温包括遮光降温法、屋面流水降温法、蒸发冷却法及强制通风法。遮光降温法是一种在室外与温室屋顶部相距40cm处张挂遮光幕,对温室降温很有效。另一种在室内挂遮光幕,降温效果比挂在室外差;屋面流水降温法采用时须考虑安装成本,清除玻璃表面的水垢污染问题;蒸发冷却法使空气先经过水的蒸发冷却降温后再送入室内,达到降温目的。蒸发冷却法有湿帘——风机降温法、细雾降温法、屋顶喷雾法。

2.1.2湿度的调节与控制

土壤湿度要与空气相对湿度协调一致才能达到温室湿度的有效控制,湿度调控范围一般在60%RH-80%RH,精度为±5%。湿度的调控影响温度,要求湿度与温度的调控需按一定的程序进行。常用的湿度调节方式是加湿和去湿。(1)加湿,一般常用的方法是水喷雾法和蒸汽加湿。水喷雾法采用双位或多位控制来实现;蒸汽加湿则采用电极加湿器或浇蒸加湿器实现。(2)去湿,在温室中去湿常用以下三种方式:加热控制法、吸附法-化学除湿器、排湿换气。在湿度的调节系统中,温室内的加湿和去湿则由温室内的调节部件完成,这些部件有天窗、侧窗、湿帘、风机等。

2.1.3温度、湿度之间的耦合

温度与湿度之间有一定的耦合关系,对一个因子的控制常会带来另一个因子的变化。在冬季温室环境控制中,默认为温度控制优先的原则,在温度条件满足后,再来满足湿度条件。如温度过低、湿度过大的情况下,以加温为主导,只有

当温度上升到一定值后,才能通风降湿,另一方面,温度提高本身可以使相对湿度降低。在夏季降温加湿的过程中,采用以湿度优先的原则。当湿度过小时,开启蒸发降温加湿装置。而当温度过高需要启动蒸发降温执行机构时,必须先检测室内的相对湿度,只有湿度低于某一设定范围时,才能启动蒸发装置。

2.1.4光照的调节与控制

在温室内光照强度调节中通常选用改变温室大棚的硬件环境方法,人工调节大棚外部设施的方法来改变温室内的光照强度。调节方法一般有以下四种:(1)改善设施的透光率;(2)应用反光幕;(3)人工补光;(4)遮光。

2.1.5二氧化碳含量的调节与控制

大气中二氧化碳平均浓度一般为0.03%,变幅较小。在冬春设施蔬菜生产中,为了保温,设施经常处于密闭状态,缺少内外气体交换,二氧化碳浓度变幅较大,中午设施内由于光合作用,二氧化碳浓度下降,接近甚至低于补偿点,二氧化碳处于亏缺状态应当及时的补充二氧化碳。补充二氧化碳的方法很多,常用的主要有三种:(1)燃烧法;(2)化学反应法(目前在我国的设施栽培中运用较多);(3)施用颗粒有机生物气肥法。

2.2温室环境的特点

因为温室中有多种环境因素,温室环境是多因子的、相互影响性的、非线性的、有延时性的和亲合性的复杂系统。如下所示:

(1)相互影响性:温室中有多种环境因子,它们之间是有影响的,例如升高温室中的温度,其湿度必定相应降低,对温室进行通风降温还会影响其二氧化碳的浓度。所以,温室内的环境都是相互影响的;

(2)非线性:温室内的各个环境因素没有一个是稳定不变的,温室或多或少还是会受到外界影响。而且温室中农作物自身不停的进行化学变化,也会影响环境因素,因此该环境因素都是非线性的;

(3)延时性:当我们调控温室环境时,各个环境不是瞬时就能改变的,这需要一个过程,而且传感器采集到数据后,传送到相应的控制器,控制器处理数据判断数据,做出控制调整还需要一个过程。通常改变温室内的某个环境因素是慢慢扩散的一种现象,例如对温室内加温,温度变化就是扩散的过程;对温室内补充二氧化碳,二氧化碳浓度的变化也是扩散过程,这就是温室环境的延时性;

(4)亲合性:温室系统包含了多种的环境因素,各因素之间不是相互独立互不干扰的,各个因素的控制过程是彼此耦合在一起的,当我们对其中一个变量

进行调控,会影响其他变量发生相应的改变。

综上四个特点可知,温室系统是复杂的,具有多种环境影响因子的,对温室系统提出的控制要求并不是一成不变的,要根据不同作物相应调整,因此想要建立精准控制模型几乎无法实现。通常温室控制中我们往往采取区间化控制,例如某作物只要求环境温度控制在一定的区间内就能良好的生长,我们在设计温室控制系统时只要保证温室内部温度调控在某一区间即可,完全没必要对温度或其他环境因素进行精准控制。

2.3温室的控制对象

影响农作物生长发育的因素主要有两个,其一是由农作物自身的遗传特性决定的,即所谓的品种。如果想通过改变农作物的遗传特性达到促进农作物生长发育的目的需要大量的人力财力投入,而且会形成转基因食品;其二是农作物所在的生长环境,智能温室内部就是一个小生态,在目前的科学技术帮助下,完全通过调控智能温室内的环境因子的方式有效的提高农业产量。

2.3.1温度

温度是否适宜,是农作物生长过程中非常重要的因素之一,温度可以影响农作物体内在的化学变化。每种农作物对温度都有其独特的要求,拥有最适宜温度以及最高最低温度。当农作物在极限温度下,虽然还能维持生存,但已经极大的影响其生长发育;只有生长在最适温度下,农作物才能迅速健康生长,达到最佳状态。因此,对温室内的环境温度进行范围内的调控可以提高农作物的产量,较为常见的温控设备包括加热设备和通风风机,同时在温室中通过安装温度传感器获取温室内温度,将采集的数值与农作物最适宜温度对比,执行相应升降温操作,启动相应控制设备。

2.3.2湿度

农作物对空气湿度也有不同的要求,如果更加细致的分析,同一种农作物在它整个生命周期中的不同阶段以及一天中的不同时段对空气湿度也有不同的需求。针对温室中所种植不同类别的作物的不同特性,温室控制系统应当控制温室保持相应的湿度环境,保证当前农作物快速健康生长。同时湿度调控与温度调控还存在一定的耦合关系,对其中一个因子调控常会带来另外一个因子的变动,而且影响较大。因此,在温室环境控制中要综合的考虑这两个因素之间的耦合性。

2.3.3光照强度

阳光是农作物生长必不可少的,没有阳光,农作物或植物就无法进行光合作

用,进而农作物无法生长发育。阳光是作物光合作用非常重要的条件,同时它又是控制农作物光周期的因素。充足的光照可以促进光合作用,使农作物合成更多的有机物,从而提高农作物的产量与质量。如果光照不足或光照强度过强,都会极大的影响农作物正常的光合作用,还会减退叶片的同化作用,造成植株脆弱,引发病虫害,导致落花落果,产量低,质量差等问题。在温室中,内部的光照强度与外部的光照强度有着明显的相关性,但是与室外相比室内的光照强度明显较低。当温室内光照强度不能满足农作物生长需求时,需要补光灯进行补光。2.3.4二氧化碳

二氧化碳也是农作物进行光合作用必不可少的,光合作用就是植物合成有机物的过程,而二氧化碳就是为这个过程提供了碳源,但是二氧化碳浓度过高和不足都影响作物的生长,在一定程度上会降低产量。一定量的提高二氧化碳浓度可以让农作物的物候期提前,提高农作物体内有机物含量。大部分农作物的产量随二氧化碳浓度升高而升高,并且还可以影响某些农作物的蛋白质、氨基酸和淀粉的含量。同时二氧化碳的充足还能保证作物幼苗期的质量,促进其快速生长,抑制或减轻疾病的发生。

2.3.5土壤含水量

土壤中总有一定间隙的,而占据了间隙的是水与空气。当水分含量太少时,植物根系吸收的水分不充足,而植物的蒸腾作用又使植物失去大量水分,从而导致植物失水萎蔫。同时土壤缺乏水分时,造成土壤板结、裂缝的产生会将植物根系拉断,严重时直接导致植物死亡。当含水量过多时,土壤缝隙中空气所占的比例就很小,导致植物根系有氧呼吸大大减弱,植物根系被迫转向无氧呼吸。无氧呼吸会生成酒精伤害作物根部,导致根部溃烂。严重时同样致使植物枯萎死亡。

3 PLC概述

3.1 PLC简介

3.1.1 PLC的产生和定义

在PLC诞生之前,继电器控制系统已广泛应用于工业生产的各个领域,起着不可替代的作用。随着生产规模的逐步扩大,继电器控制系统已越来越难以适应现代化工业生产的要求。继电器控制系统通常是针对某一固定的动作顺序或生产工艺而设计,他的控制功能也局限于逻辑控制、定时、计数等一些简单的控制,一旦动作顺序或生产工艺发生变化,就必须重新进行设计、布线、装配和调试,造成时间和资金的严重浪费。继电器控制系统体积大、耗电多、可靠性差、寿命短、运行速度慢、适应性差。为了改变这一现状,1968年美国最大的汽车制造商通用汽车公司(GM),为了适应汽车型号不断更新的需求,并能在竞争激烈的汽车工业中占有优势,提出要研制一种新型的工业控制装置来取代继电器控制装置,为此,拟定了10项公开招标的技术要求,即:

1、编程简单,可在现场修改程序;

2、维护方便,最好是插件式;

3、可靠性高于继电器控制柜;

4、体积小于继电器控制柜;

5、可将数据直接送入管理计算机;

6、在成本上可与继电器控制柜竞争;

7、输入可以是交流115V;

8、输出可以是交流115V、2A以上,可直接驱动电磁阀等;

9、在扩展时,原有系统只要很小变更;

10、用户程序存储器容量至少能扩展到4KB;

根据招标的技术要求,第二年,美国数字设备公司(DEC)研制出了世界上第一台PLC,并在通用汽车公司自动装配线上试用成功。这种新型的工控装置,以其体积小、可变性好、可靠性高、使用寿命长、简单易懂、操作维护方便等一系列优点,很快就在美国的许多行业里得到推广应用,也受到了世界上许多国家的高度重视。1971年,日本从美国引进了这项新技术,很快研制出了他们的第1台PLC。1973年,西欧国家也研制出他们的第1台PLC。我国从1974年开始研制,到1977年开始应用于工控领域。在这一时期,PLC虽然采用了计算机的设计思想,但实际上PLC只能完成顺序控制,仅有逻辑运算等简单功能,所以人们

将它称为可编程逻辑控制器(Programmable Logic Controller)简称为PLC。

20世纪70年代末至80年代初期,微处理器日趋成熟,使PLC的处理速度大大提高,增加了许多功能。在软件方面,除了保持原有的逻缉运算、计时、计数等功能以外,还增加了算术运算、数据处理、网络通信、自诊断等功能。在硬件方面,除了保持原有的开关模块以外,还增加了模拟量模块、远程I/O模块、各种特殊功能模块,并扩大了存储器的容量,而且还提供一定数量的数据寄存器。为此,美国电气制造协会将可编程序逻辑控制器,正式命名为编程序控制器(Programmable Controller),简称PC。但由于PC容易和个人计算机PC (Personal Computer)混淆,故人们仍习惯地用PLC作为可编程序控制器的简称。

1985年,国际电工委员会(IEC)对PLC作出如下定义:可编程序控制器是一种数字运算操作电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字的,模拟的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关的外围设备,都应按易于与工业控制系统形成一个整体、易于扩充其功能的原则设计。

由该定义可知:PLC是一种由“事先存贮的程序”来确定控制功能的工控类计算机。

PLC它是按照成熟而有效的继电器控制概念和设计思想,利用不断发展的新技术、新电子器件,逐步形成了具有特色的各种系列产品,是一种数字运算操作的专用电子计算机。它是将逻辑运算,顺序控制,时序和计数以及算术运算等控制程序,用一串指令的形式存放到存储器中,然后根据存储的控制内容,经过模拟,数字等输入输出部件,对生产设备和生产过程进行控制的装置。

3.1.2 PLC的发展现状

目前,随着大规模和超大规模集成电路等微电子技术的发展,PLC已由最初一位机发展到现在的以16位和32位微处理器构成的微机化PC,而且实现了多处理器的多通道处理。如今,PLC技术已非常成熟,不仅控制功能增强,功耗和体积减小,成本下降,可靠性提高,编程和故障检测更为灵活方便,而且随着远程I/O和通信网络、数据处理以及图象显示的发展,使PLC向用于连续生产过程控制的方向发展,成为实现工业生产自动化的一大支柱。

现在,世界上有200多家PLC生产厂家,400多品种的PLC产品,按地域可

分成美国、欧洲、和日本等三个流派产品,各流派PLC产品都各具特色。其中,美国是PLC生产大国,有100多家PLC厂商,著名的有A-B公司、通用电气(GE)公司、莫迪康(MODICON)公司。欧洲PLC产品主要制造商有德国的西门子(SIEMENS)公司、AEG公司、法国的TE公司。日本有许多PLC制造商,如三菱、欧姆龙、松下、富士等,韩国的三星(SAMSUNG)、LG等,这些生产厂家的产品占有80%以上的PLC市场份额。

经过多年的发展,国内PLC生产厂家约有三十家,国内PLC应用市场仍然以国外产品为主。国内公司在开展PLC业务时有较大的竞争优势,如:需求优势、产品定制优势、成本优势、服务优势、响应速度优势。

3.1.3 PLC的发展趋势

随着PLC应用领域日益扩大,PLC技术及其产品结构都在不断改进,功能日益强大,性价比越来越高。

(1)在产品规模方面,向两极发展。

一方面,大力发展速度更快、性价比更高的小型和超小型PLC。以适应单机及小型自动控制的需要。另一方面,向高速度、大容量、技术完善的大型PLC

方向发展。随着复杂系统控制的要求越来越高和微处理器与计算机技术的不断发展,人们对PLC的信息处理速度要求也越来越高,要求用户存储器容量也越来越大。

(2)向通信网络化发展

PLC网络控制是当前控制系统和PLC技术发展的潮流。PLC与PLC之间的联网通信、PLC与上位计算机的联网通信已得到广泛应用。目前,PLC制造商都在发展自己专用的通信模块和通信软件以加强PLC的联网能力。各PLC制造商之间也在协商指定通用的通信标准,以构成更大的网络系统。PLC已成为集散控制系统(DCS)不可缺少的组成部分。

(3)向模块化、智能化发展

为满足工业自动化各种控制系统的需要,近年来,PLC厂家先后开发了不少新器件和模块,如智能I/O模块、温度控制模块和专门用于检测PLC外部故障的专用智能模块等,这些模块的开发和应用不仅增强了功能,扩展了PLC的应用范围,还提高了系统的可靠性。

(4)编程语言和编程工具的多样化和标准化

多种编程语言的并存、互补与发展是PLC软件进步的一种趋势。 PLC厂家在使硬件及编程工具换代频繁、丰富多样、功能提高的同时,日益向MAP(制造自动化协议)靠拢,使PLC的基本部件,包括输入输出模块、通信协议、编程语言和编程工具等方面的技术规范化和标准化。

3.1.4 PLC的分类

1)按I/O点数分类

PLC所能接受的输入信号个数和输出信号个数分别称为PLC的输入点数和输出点数。其输入、输出点数的数目之和称为PLC的输入/输出点数,简称I/O点数。I/O点数是选择PLC的重要依据之一。

一般而言,PLC控制系统处理的I/O点数较多时,则控制关系比较复杂,用户要求的程序存储器容量也较大,要求PLC指令及其他功能比较多。按PLC输入、输出点数的多少可将PLC分为以下三类。

(1)小型机

小型PLC输入、输出总点数一般在256点以下,用户程序存储器容量在4K 字左右。小型PLC的功能一般以开关量控制为主,适合单机控制和小型控制系统。

(2)中型机

中型PLC的输入、输出总点数在256~2048点之间,用户程序存储器容量达到8K字左右。中型机适用于组成多机系统和大型控制系统。

(3) 大型机

大型PLC的输入、输出总点数载2084点以上,用户程序存储器容量达到16K 字以上。大型机适用于组成分布式控制系统和整个工厂的集散控制网络。

上述划分没有一个十分严格的界限,随着PLC技术的飞速发展,一些小型PLC也具备中型或大型PLC的功能,这也是PLC的发展趋势。

2)按结构形式分类

按照PLC的结构特点可分为整体式、模块式两大类。

(1)整体式结构

把PLC的CPU、存储器、输入/输出单元、电源等集成在一个基本单元中,其结构紧凑,体积小,成本低,安装方便。基本单元上设有扩展端口,通过电缆与扩展单元相连,可配接特殊功能模块。微型和小型PLC一般为整体式结构,

S7-200系列属整体式结构。

(2)模块式结构

基于PLC的温室控制系统的设计开题报告

郑州科技学院毕业设计(论文)开题报告

年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代代末开始出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化无人化的方向发展。 目前,一些经济发达的国家和地区已经研制并实现计算机自动化控制的现代高科技温室,并形成了令人惊险的植物工厂。而我国的温室系统属于半开放系统,温室内环境控制水平较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 3.温室控制系统研制与开发的意义 温室是植物栽培生产中必不可少的设施之一,温度是影响植物生长发育最重要的因子之一。它的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。 虽然有些温室也安装有各种加热、通风和降温的设备,但其主要操作大多仍是由人工来完成的当温室面积较大或数量较多时,操作人员的劳动强度很大,而且也无法达到对温湿度的准确控制。本文介绍一种基于PLC和数字式温度传感器的温室控制系统。该系统实现了室内温度的自动测量和调节,大大降低了操作人员的劳动强度。 二、主要设计(研究)内容、设计(研究)思想、解决的关键问题、拟采用的技术方案及工作流程 1.研究内容: 温室的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料,它可以在冬季或其他不适宜植物露地生长的季节栽培植物,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。

PLC温室大棚控制系统设计开题报告

滨州学院 毕业设计(论文)开题报告题目基于PLC温室大棚控制系统设计 系(院)自动化系年级2010级 专业电气自动化技术班级4班 学生姓名石瑞学号1023091219 指导教师王国明职称助教 滨州学院教务处 二〇一三年三月 开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用

的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下

智能温室大棚整体控制设计报告

智能温室大棚整体控制设计报告设计人员:

目录 一、智能温室大棚简介 (3) 二、智能温室大棚结构设计 (3) 一、温室结构设计 (3) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (4) 二、温室运行机构 (4) 1.电力系统 (4) 2.降温增湿系统 (4) 3.遮阳系统 (4) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (5) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (6) 4、上位机 (6) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统主要有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统、移动苗床等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选

温室大棚中温室自动化控制系统方案设计

温室大棚中温室自动化控制系统解决方案设计 温室自动化控制系统简介 温室自动控制系统是专门为农业温室、农业环境控制、气象观测开发生产的环境自动控制系统。可测量风向、风速、温度、湿度、光照、气压、雨量、太阳辐射量、太阳紫外线、土壤温湿度等农业环境要素,根据温室植物生长要求,自动控制开窗、卷膜、风机湿帘、生物补光、灌溉施肥等环境控制设备,自动调控温室内环境,达到适宜植物生长的范围,为植物生长提供最佳环境。 智能温室自动化控制系统是根据温室大棚内的温湿度、土壤水分、土壤温度等传感器采集到的信息,接到上位计算机上进行显示,报警,查询。监控中心将收到的采样数据以表格形式显示和存储,然后将其与设定的报警值相比较,若实测值超出设定范围,则通过屏幕显示报警或语音报警,并打印记录。 系统组网络以及通讯协议 (1)系统组网络组成 根据工艺运行的需求,我们做如下的网络系统设计:网络采用以太网络设计。每个站作为一个网络节点。这个网络采用性能可靠的工业以太网。可以将办公网络、自动控制网络无缝结合到该网络环境,实现“多网合一”。 整个系统可承载的数据分成如下的几个部分: 1:工业控制数据 2:采集数据 3:工业标准的MODBUS总线通讯 (2)组网特点 自动化控制系统是开放的控制系统,除了具有良好的网络通讯能力外,还具有与其它控制系统通讯功能和标准的对外通讯接口,以后可以任意扩展控制系统。 整个系统采用多级网络结构,即生产管理网和生产控制网,将过程实时数据、运行操作监视数据信息同非实时信息及共享资源信息分开,分别使用不同的网络。有效地提高了通讯的效率,降低了通讯负荷。 (3)采用的通讯协议

Modbus协议是应用于自动控制器上的一种通用协议。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一种通用工业标准。 现代农业大棚控制系统 (1)控制系统概述 随着社会经济的发展,设施农业作为农业可持续发展的一个重要途径,已经越来越受到世界各国的重视,而设施农业中问世工程的建设与发展是都市型发展的重要组成部分,是设施农业发展的高级阶段。希望通过改变植物生长的自然环境、.创造适合植物最佳的生长条件,避免外界恶劣的气候,达到调节产期,促进生长发育、防治病虫害等目的。 远程大棚监控系统是一种用于家庭、仓库(厂房、花棚和塑料薄膜大棚)内环境温湿度监控及控制的全自动远程智能调节系统。它通过控制加热器及制冷器(通风)对温度进行自动调节,同时通过控制加湿机及除湿机的工作自动调节环境的相对湿度,使环境的温度和湿度达到适宜的范围。 (2)大棚环境特点与调控 大棚因有塑料薄膜覆盖,形成了相对封闭与露地不同的特殊小气候。进行蔬菜大棚栽培,必须掌握大棚内环境的特点,并采取相应的调控措施,满足蔬菜生长发育的条件,从而获得优质高产。 大棚内环境条件: 1、光照 2、温度: 3、空气湿度 4、空气二氧化碳浓度 5、土壤湿度: (3)现代化大棚远程控制工艺 本方案使用腾控系列系列高速32位控制器、高性能温度湿度以及氧气传感器、视频设备等硬件通过目前的高速光纤网络建造一个现代化农业用温室大棚环境监控系统。本系统可自动监测调节农作物环境的温湿度、光照、O2浓度、通风、卷帘升降、滴灌控制、门禁、巡更等参数,通过HMI输出帮助种植者作全面

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

基于PLC的智能温室控制系统设计

毕业设计(论文)任务书 题目基于PLC的智能温室控制系统设计 学生姓名班级学号 题目类型工程指导教师系主任 一、毕业设计(论文)的技术背景和设计依据 温室产业及相关技术在国内外的发展速度很快。高水平大型温室的环境控制系统能够根据传感器采集室温、叶湿、地湿、室内温度、土壤含水量、溶液浓度、二氧化碳浓度、风速、风向、以及植物作物生长状态等有关参数,结合作物生长所需最佳条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。 (1)根据外界环境对植物影响因素,选择作物环境条件的实时检测系统、智能温室控制系统两个部分。自动检测包括:温室、湿度、光照、二氧化碳、土壤水分等传感器与变送器。智能控制系统包括:双向天窗角度开闭驱动,遮阳网驱动,通风机,喷灌滴灌控制,节能加温、降温控制等。 (2)开发智能温室组态监控界面。 二、毕业设计(论文)的任务 1.熟悉题目要求,查阅相关科技文献 2.方案设计(包括方案论证与确定、技术经济分析等内容) 3.硬件和软件设计(其中还包括理论分析、设计计算、实验及数据处理、设备及元器件选择等) 4.撰写设计说明书(毕业论文),绘制图纸 5.指定内容的外文资料翻译 6.其它 三、毕业设计(论文)的主要内容、功能及技术指标 1、毕业设计(论文)的主要内容 (1)智能温室控制系统硬件设计 (2)智能温室控制系统程序设计 2、功能与技术指标 (1)介绍所使用PIC及控制系统所涉及其它设备的基本情况 (2)系统软件设计主要包括PIC控制程序和上位机组态软件 3、其它需要说明的问题 四、毕业设计(论文)提交的成果 1、开题报告(不少于3000字) 2、设计说明书(约3万字左右),或毕业论文(约2万字左右) 3、图纸(2#图纸至少三张,图纸数量根据论文情况自定) 4、中、英文摘要(中文摘要约200字,3—5个关键词) 5、论文简介 6、外文资料翻译(约5000汉字) 五、毕业设计(论文)的主要参考文献和技术资料 1、参考文献和技术资料

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

温室自动控制系统设计方案

(此文档为word格式,下载后您可任意编辑修改!) 参赛题目:温室自动控制系统 队长:朱继田 队员:杨建成 陶文波

温室自动控制系统 摘要:(300字以内) 温度是一种环境参数,温度自动控制在工农业生产中具有非常重要的作用。半导体制冷器(TEC)是一种比较先进的制冷装置,因为其小型化、无噪声、无污染的特点,在各种温度控制领域得到了广泛的应用,因此研究半导体制冷器温度的测量方法和设计灵活精确的温度自动控制系统具有重要的意义。 文章介绍了一种温度自动控制系统,该系统采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,AT89C52低电压、高性能半导体制冷器等元件。单片机通过温度传感器获取当前温度,进而控制半导体制冷器工作。 一、方案设计和论证 本系统由四大部分组成:1、温度检测装置;2、控制系统;3、执行机构; 4、显示同步。在其中2部分控制系统中,由于ATMEL公司的AT89C52单片机具有高密度、非易失性、低电压、高性能等优点,且满足本系统和电子设计大赛的两方面要求,因此采用AT89C52作为微控制器,该部分方案设计将在文章第三、四部分详细介绍。以下主要针对温度检测系统及执行机构两方面的内容进行方案设计和论证。 模块1 温度检测装置方案设计 对于温度的自动控制系统而言,温度检测是整个系统设计的第一步。如何选择温度传感器是这块电路的关键,它是直接影响整个系统的性能与效果的关键因素之一。 方案:选用数字式温度传感器DS18B20 论证: 数字温度传感器DS18B20最大特点之一是采用了单总线的数据传输,直接输出数字信号。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。因此便于单片机处理及控制,节省硬件电路。该系统可以由数字温度计DS18B20和 AT89C52单片机直接构成的温度测量装置。不仅如此,DS18B20最小分辨率为0.0625℃,满足该题温度分辨率为0.1℃的要求,因此温度传感器选用DS18B20。 模块2 执行机构 对于温度的自动控制系统而言,温度执行机构是整个系统设计最核心的一步。温度执行机构的构建直接影响整个控制模块的工作方式和效率。 方案一:可控硅调功器电路 论证 可控硅调控器电路是利用双向可控硅管和加热丝串接在交流220V、50Hz回路。在给定周期T内,AT89C52只要改变可控硅管的接通时间便可改变加热丝功率,以达到调节温度的目的。显然可控硅在给定周期T的100%时间内接通时间的功率最大。显然,对功率的调节从而调节温度达不到制冷效果,即使是通过外加风扇来带走外部热量也达不到,故不用此方案。

温室大棚控制系统-设计报告详解

哈尔滨师范大学 物联网感知综合课程设计报告 题目:温室大棚控制系统 年级: 2013级专业:物联网工程姓名:高英亮袁昊慈指导教师:李世明杜军

温室大棚控制系统 高英亮、袁昊慈 摘要中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。利用物联网的传感器技术实时采集温室环境的空气温湿度、土壤水分和光照度等因素,单片机将数据进行分析处理做出合理的控制决策,控制执行器进行自动喷灌,实现了计算机自动控制,按需、按期和按量喷灌。系统主要由温室环境信息采集模块、单片机模块和控制模块组成,采集模块包括光照度传感器和空气温湿度传感器。该系统采用传感器技术和单片机相结合,由上位机和下位机( 都用单片机实现) 构成,采用接口进行通讯,实现温室大棚自动化控制。本系统环保节能、节水、省力,具有很好的实用性和推广性。 1 引言 中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。 目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

大棚温湿度自动控制系统设计说明

大棚温湿度自动控制系统设计 摘要:本设计是基于STC89C52RC单片机的大棚温湿度自动控制系统,采用SHT10作为温湿度传感器,LCD1602液晶屏进行显示。SHT10使用类似于I2C总线的时序与单片机进行通信,由于它高度集成,已经包括A/D转换电路,所以使用方便,而且准确、耐用。LCD1602能够分两行显示数据,第一行显示温度,第二行显示湿度。这个控制系统能够测量温室大棚中的温度和湿度,将其显示在液晶屏LCD1602上,同时将其与设定值进行对比,如果超出上下限,将进行报警并启动温湿度调节设备。此外,还可以通过独立式键盘对设定的温湿度进行修改。通过设计系统原理图、用Proteus软件进行仿真,证明了该系统的可行性。 关键词:STC89C52RC,SHT10,I2C总线,独立式键盘,温湿度自动控制 Abstract: This design is an automatic temperature and humidity controller for greenhouses, with the STC89C52RC MCU being its main controller. It uses the SHT10 as the temperature and humidity sensor, and the LCD1602 to display the messages. The SHT10 uses a timing sequence much like the I2C to communicate with the micro-controller. Because it’s a highly integrated chip, it already includes an analog to digital converter. Therefore, it’s quite convenient to use, and also accurate and durable. The LCD1602 can display two lines of messages, with the first line for temperature and the second line for humidity. The design can measure the temperature and humidity in a greenhouse, and then display it on a LCD1602. Meanwhile, it compares the data with the set limit. If the limit is exceeded, then the system will send out a warning using a buzzer and activate the temperature and humidity controlling equipment. Besides, the set limit can be modified with the independent keyboard. Through schematic design and Proteus simulation, the feasibility of this design has been proved. Keywords: STC89C52RC, SHT10, I2C bus, independent keyboard, temperature and humidity control

基于单片机的智能温室控制系统的设计

基于单片机的智能温室控制系统的设计 1 引言 设施农业是世界现代农业发展的主要方向之一,我国农业正处于从传统也向高产、优质、高效为目的的现代化农业转化新阶段,设施农业是我国今后比较长的时间内农业发展的一个主要方向。现代大型温室中,室内的温度、湿度、CO2 浓度、营养液养分状况等所有环境因子的监测、传感、调节,都由计算机进行综合管理,实行自动控制。 国内现有的大多数温室系统是从国外引进的, 这些系统一是价格昂贵, 二是存在水土不服的问题。国内在温室的自动控制与智能化方面进行了许多有价值的研究, 但研制的温室环境调控与生产管理设施未完善配套,较多温室环境监测与控制系统硬件与软件依赖国外进口。因此,开发出符合中国国情的自动化温室系统,才是解决问题的关键。 托普物联网研究目标是开发一款基于单片机的温室控制系统,能独立对各个温室模块进行控制。同时也可以和上位机进行通信,接受上位机指令对各个模块进行控制,并把采集的数据传给上位机。 2 系统组成及工作原理 本系统功能由硬件和软件两大部分协调完成,硬件部分主要完成各种传感器信号的采集、转换、各种信息的显示等;软件主要完成信号的处理及控制功能等。

图1 智能温室系统结构图 系统原理结构框图如图1所示,它是一个小型的分布式数据采集与控制系统,是由单片机为核心的下位机和PC机构成的上位机组成的控制系统其中下位机又由相应的传感器(如温度传感器、湿度传感器、CO2浓度传感器、光照度传感器等)、模拟量输入输出通道、开关量输出通道所等部分组成。下位机既可以独立完成各种信息的采集、预处理及存储任务,又可接受从上位机送来的控制参数设置,启动增温降温、加湿除湿、遮阳补光等调控设备,从而按不同要求调控温室的微气候环境。上位机将下位机送来的数据,及时在线地用动态数据、曲线的方式显示起来,并储存在相应的数据库中,一般可以保存一个生长季节的数据,对存储起来的数据,按研究需要,进行分析、统计,可显示、打印成表格或曲线或直方图,同时也向下位机传递控制。 3 硬件构成

大棚自动控制系统设计

摘要 本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词:STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测

目录第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择 §2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.4 RS-485通信设计 §2.5小结 第3章系统软件的设计 §3.1系统主程序 §3.2系统部分子程序 §3.2.1 DS18B20初始化子程序 §3.2.2 DS18B20读子程序 第4章总结 参考文献 附录

第一章绪论 1.1选题背景 在人类的生活环境中,温湿度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度和湿度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温湿度有着密切的联系。在冶金、钢铁、石化、水泥、玻璃、医药等行业,可以说几乎80%的工业部门都不得不考虑着温湿度的因素。温湿度不但对于工业如此重要,在农业生产中温度的监测与控制也有着十分重要的意义。我国人多地少,人均占有耕地面积更少。因此,要改变这种局面,只靠增加耕地面积是不可能实现的,因此我们要另辟蹊径,想办法来提高单位亩产量。温室大棚技术就是其中一个好的方法。温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度对生物生长的约束。而且,温室大棚能克服环境对生物生长的限制,能使不同的农作物在不适合生长的季节产出,使季节对农作物的生长不再产生过度影响,部分或完全摆脱了农作物对自然条件的依赖。由于温室大棚能带来可观的经济效益,所以温室大棚技术越来越普及,并且已成为农民增收的主要手段。 随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温湿度控制便成为一个十分重要的课题。传统的温湿度控制是在温室大棚内部悬挂温度计和湿度计,通过读取温度值和湿度值了解实际温湿度,然后根据现有温湿度与额定温湿度进行比较,看温湿度是否过高或过低,然后进行相应的通风或者洒水。这些操作都是在人工情况下进行的,耗费了大量的人力物力。现在,随着国家经济的快速发展,农业产业规模的不断提高,农产品在大棚中培育的品种越来越多,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。温室大棚的建设对温湿度检测与控制技术也提出了越来越高的要求。 今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。时下,家用电器和办公设备的智能化、遥控化、模糊控制化已成为世界潮流,而这些高性能无一不是靠单片机来实现的。采用单片机来对温湿度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温湿度的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中必不可少且广泛应用的器件,尤其在日常生活中也发挥越来越大的作用。因此,单片机对温湿度的控制问题是一个工农业生产中经常会遇到的问题。因此,本课题围绕基于单片机的温室大棚控制系统展开了应用研究工作。

温室控制系统设计开题报告

毕业设计开题报告 一.选题的依据、意义和理论或实际应用方面的价值 随着农业现代化的发展,设施园艺工程因其涉及学科广、科技含量高、与人民生活关系密切,己越来越受到世界各国的重视。这也为我国大型现代化植物大棚的发展提供了极好的机遇,并产生巨大的推动作用。我国的现代化植物大棚是在引进与自我开发并进的过程中发展起来的。温室大棚是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的理想场所。实现温室大棚环境智能控制的目的是主动地调节温度、湿度、光照和二氧化碳气体浓度等环境因素,以满足作物最佳生长环境的要求。其中,温湿度是最重要的环境因数。目前,我国绝大多数温室大棚设备都比较简陋,温室大棚环境仍然靠人工根据经验来管理。环境因素的自动调节和控制的研究正处于起步阶段,已严重影响了设施农业的大力发展。特别是北方地区因其纬度高,寒冷季节长,四季温差和昼夜温差较大,不利于作物生长,目前应用于温室大棚的温湿度检测系统大多采用传统的温湿度检测。这种温湿度采集系统需要在温室大棚内布置大量的测温电缆和湿度传感器,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大,不利于控制者根据温度变化及时做出决定。在这样的形式下,开发一种实时性高、精度高,能够综合处理多点温度信息的测控系统就很有必要。 二.本课题在国内外的研究现状 我国的现代化温室是在引进与自我开发并进的过程中发展起来的。国外对温室环境控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。目前,一些经济发达的国家和地区已经研制并实现计算机自动控制的现代化高科技温室,并且形成了令人惊羡的植物土厂。而我国的温室系统属于半开放系统,温室内环境控制水平比较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量和产量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 三.课题研究的内容及拟采取的方法 本设计以AT89C51 单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度

农业智能大棚控制溯源系统设计方案

农业智能大棚控制溯源系统设计方案

生态农业智能温室大棚监测、溯源及控制系统 设 计 方 案xxxxxxxx有限公司

目录 背景......................................................................错误!未定义书签。一:客户需求 ......................................................错误!未定义书签。二:系统结构及控制模式 ..................................错误!未定义书签。三:现场数据采集与控制功能...........................错误!未定义书签。四:监测软件数据平台 ......................................错误!未定义书签。五:功能应用 ......................................................错误!未定义书签。六:农产品溯源系统 ..........................................错误!未定义书签。 七、条码仓储管理系统(WMS) ...........................错误!未定义书签。 八、商品盘点 ......................................................错误!未定义书签。

背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可经过串口发射接收设备传送给上位PC 机进行分析处理。 一:客户需求 (1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

温室大棚自动控制系统开题报告

题目:温室大棚自动控制系统的设计学院: 专业: 学生姓名: 学号: 指导教师: 开题时间:

势发展。 参考文献 [1]张友德等.单片机原理应用与实验[M].第一版.上海:复旦大学出版社,2000:63-80 [2]阳宪惠.现场总线技术及其应用[M].第二版.清华大学出版社,1999:26-33 [3]杨恢先,黄辉先.单片机原理及其应用[M].第一版.国防科技大学出版社,2003:60-73 [4]李朝青.单片机原理及接口技术[M].第二版.北京航空航天大学出版社,1996:42-50 [5]阎石.数字电子技术基础[M].第二版.高等教育出版社,1998:10-25 [6]孙传友.测控电路与装置[M].北京:北航出版社,2003:51-60 [7]来清民.传感器与单片机接口及实例[M].北京:航空航天大学出版社,2007:12-23 [8]阿力木·甫拉提.温室大棚温度的调控[N].农业科技,2010(8) [9]胡真明.基于单片机控制的温度环境测控装置的研究[D].西北农林科技大学,2007:15-30 [10]王华祥,张淑英.传感器原理及应用[M].天津:天津大学出版社,2007:22-24 [11]HUMIREL Relative Humidity Measurement using the Humerel HS1101 Sensor 2008 [12]V.Yu.Teplov & A.V. Anisimov.Thermostatting System Using a Single-Chip Microcomputer and Thermoelectric Modules Based on the Peltier Effect[J].2002:10-13 [13]Yeager Brent.How to troubleshoot your electronic scale[J].. Powder and Bulk Engineering.1995:5-12 [14]Meehan Joanne & Muir Lindsey.SCM in Merseyside SMEs:Benefits and barriers[J].. TQM Journal.2008:7-10 [15]Behzad Razavi.Design of Analog CMOS Integrated Circuits[M].2001:8-12

智能大棚控制系统的设计与构想

龙源期刊网 https://www.360docs.net/doc/1a19074377.html, 智能大棚控制系统的设计与构想 作者:赵杨 来源:《乡村科技》2017年第18期 [摘要] 本文介绍一种智能大棚控制系统的设计与构想。其是将智能化控制系统应用到大 棚种植上,利用最先进的生物模拟技术,模拟出最适合棚内植物生长的环境,采用温度、湿度、CO2、光照度传感器等感知大棚的各项环境指标,并通过微机进行数据分析,由微机对棚内的水帘、风机、遮阳板等设施实施监控,从而改变大棚内部的生物生长环境。 [关键词] 智能大棚;控制系统;STC89C52 [中图分类号] TP273.5 [文献标识码] A [文章编号] 1674-7909(2017)18-85-2 1 智能大棚控制系统概述 智能大棚,可以使传统农作物的种植不再受自然环境、地域、气候等多方面不可控因素的影响,对推动农业生产、提高农业生产力有着积极的作用。智能大棚的控制系统是实现这一切自动化、高效化的关键。 相比存在诸多问题的传统人工控制大棚,运用控制系统的智能大棚有着显著的优势,如可以在准确测量大棚温湿度等多种环境数据,并根据所得到的环境数据进行自动调节,达到节省人力物力,提高生产资源的使用效率,降低生产成本等多个目的。而且智能控制系统运行可靠、成本低,有着极强的功能扩展性,其直接结果就是促进农作物的生长,提高产量,在为农民带来良好经济效益的同时带来显著的社会效益。 基于单片机的智能控制系统是通过一种微处理器进行系统控制,以单片机作为控制器以实现控制功能。该系统的特点是小体积、低成本、低功耗、扩展性强及适用范围广。本构想采用目前市场应用最为广泛的STC89C52单片机作为控制器,其被广泛应用于生产生活中,有着良好的口碑和成熟的设计。 2 智能大棚控制系统的优点 ①节省人工成本,降低因人为原因导致减产等不利后果的可能性。 ②采用智能化的控制系统,能够对环境条件的改变作出及时反馈,使得大棚内的环境参数始终处于合理的范围内。 ③提高生产资源的利用效率。 ④提高农作物的产量,增加种植者的收入。

基于PLC的智能温室控制系统的设计

基于PLC的智能温室控制系统的设计

基于PLC的智能温室控制系统的设计 摘要:智能温室控制系统采用三菱FX2N-48MR型可编程序控制器(PLC)作为控制中心,其监控项目包括温度、空气湿度、CO2浓度、光照强度等。操作人员可以通过智能温室中对应的开关对温室内的各种环境因素进行手动控制,还可以由微型自动循迹小车(AGV)采集温室内的各种环境因素,将数据传输给主控PLC。PLC将各项数据分别求平均值后与设定范围做比较,自动做出相应判断,启停相应的环境调控设备,进行智能温室的自动控制。 关键词:PLC 智能温室控制系统 中图分类号:TP273 文献标识码:A 文章编号: 1672-3791(2018)02(a)-0032-02 智能温室是一种现代化的生产技术,其综合了传感器技术、通信技术、控制技术等。在培育经济价值较高且栽培难度大的盆栽作物时,智能温室发挥着至关重要的作用。相比传统温室,智能温室不但能够实现对温度、湿度、CO2浓度等因素的监控,还能对数据进行记录、储存、分析,形成数据库,以便于工作人员改进种植技术[1-3]。 1 PLC的硬件设计 1.1 PLC的选型 1.1.1 PLC输入输出点数的估算

PLC选型时要根据系统的设计要求,统计输入/输出 (I/O)点数,考虑网络功能和扩展功能。系统的I/O点数是根据所设计智能温室监控系统的输入开关点数和输出执 行部件数的实际需要,再加上10%~15%的备用量来确定,方便突发情况或以后增加新功能新设备。系统监控的温室参数有温度、湿度、CO2浓度、光照强度和调控相应环境因素的执行设备。 本系统的开关量输入输出点数统计如表1所示。 1.1.2 用户程序储存容量估算 在PLC选型时,除了对I/O点数进行统计,还要对其程序储存容量进行计算。通常估算程序存储容量的基本公式为:存储容量(字节)=(开关量I/O点数×10+模拟量I/O 通道数×100)×130%。本系统同时采集温度、湿度、CO2 浓度、光照强度4路模拟量和22个开关量输入点,15个继电器输出点,所以存储容量=1001B,再考虑备用量,初步估计需要1200B。 通过上述计算,三菱FX1N-40MR可以满足I/O点数要求,但后期系统升级潜力低,且考虑到网络功能和编程指令的区别,功能更为强大的FX2N-48MR和FX1N-40MR价格上也相差不多。因此,本系统选用三菱FX2N-48MR型PLC,该PLC为交流电源直流输入型,24个输入点数,24个继电器输出点数,完全满足设计需求,不需要扩展单元[4]。

相关文档
最新文档