定积分高考试题

定积分高考试题
定积分高考试题

定积分与微积分

一、知识回顾:

1.用定义求定积分的一般方法是:

①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:

1

()n

i i b a

f n ξ=-∑; ④取极限:

()

1

()lim n

b

i a

n i b a

f x dx f n

ξ→∞

=-=∑?

2.曲边图形面积:()b

a

S f x dx =?;

变速运动路程2

1

()t t S v t dt =?

变力做功 ()b

a

W F r dr =

?

.

3.定积分有如下性质: 性质1 =?b

a

dx 1

性质2 =?

b

a

dx x kf )( (其中k 是不为0的常数) (定积分的线性性质)

性质3

?=±b

a

dx x f

x f )]()([2

1

(定积分的线性性质)

性质4

???

+=c

a

b

c

b

a

dx x f dx x f dx x f )()()( 其中(b c a <<)

4.定积分的计算(微积分基本定理)

(1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有

二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( )

A 、

B 、1

C 、

D 、

2.由曲线y=x 2

,y=x 3

围成的封闭图形面积为( )

A 、

B 、

C 、

D 、

?

-==b

a

b a a F b F x F dx x f )

()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( )

A 、

B 、4

C 、

D 、6

4. ?

+1

)2(dx x e x

等于( )

A 、1

B 、e ﹣1

C 、e

D 、e 2

+1

5. ?

4

2

1

dx x

dx 等于( ) A 、﹣2ln2

B 、2ln2

C 、﹣ln2

D 、ln2

6. dx x ?--2

2

)cos 1(π

π等于( )

A 、π

B 、2

C 、π﹣2

D 、π+2

7. 已知则?

-=

a a

xdx 2

1

cos (a >0),则?a xdx 0cos =( )

A 、2

B 、1

C 、

D 、

8. 下列计算错误的是( ) A 、

?-

π

0sin xdx

B 、

?

=

1

32dx x

C 、

??

-=22

2

cos 2cos π

ππ

xdx xdx

D 、

?-

π0sin

2

xdx

9 计算dx x ?

-2

24的结果是( )

A 、4π

B 、2π

C 、π

D 、

10. 若

0)32(0

2=-?

dx x x k

,则k 等于( )

A 、0

B 、1

C 、0或1

D 、以上均不对 11.下列结论中成立的个数是( )

①∑?=?=

n

i n n i dx x 133

1

031;②∑?=?-=n i n n i dx x 131031)1(

;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3

12.根据定积分的定义,?202

dx x =( )

A . ∑=?-n

i n n i 1

21)1(

B . ∑=∞→?-n i n n n i 121)1(lim

C . ∑=?n i n n

i 122)2( D . ∑=∞→?n i n n n i 122

)2(lim

13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为

( )

A .

?

1

)(t dt t v

B .dt t v s t ?

+

1

0)( C .00

1

)(s dt t v t -? D .dt t v s t ?-1

0)(

二填空题 15.由曲线

和直线y=x ﹣4,x=1,x=2围成的曲边梯形的面积是___________.

16. 设函数f (x )=ax 2

+c (a≠0),若?

≤≤=1

0010),()(x x f dx x f ,

0≤x 0≤1,则x 0的值为 ____. 17.

=?

dx x T

29,则T=_______.

18.若dx x S ?

=

2

1

2

1,dx x

S ?

=2

1

21

,dx e S x ?=213,则S 1,S 2,S 3的大小关系是__________.

19.给出下列定积分:

①20

sin xdx π

?

②0

2

sin xdx π-?

③2

3

xdx -?

④2

31

x dx -?

其中为负值的有 。

20.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为______. 三解答题

21..求由两抛物线28x y -=,2x y =所围成的图形的面积.

22.求定积分:(1)?--31

2)4(dx x x ;(2)?-2

1

5)1(dx x ;

(3)dx x x ?+20

)sin (π;(4)dx x ?-22

2cos π

π;

23.已知c bx ax x f ++=2)(,且2)1(=-f ,0)0('=f ,?1

0)(dx x f = – 2,求,,a b c 的值。

24.已知自由落体的运动速度为gt v =,求在时间区间[0,t]内物体下落的距离。

不定积分单元测试题

不定积分单元测试题https://www.360docs.net/doc/1a5723820.html,work Information Technology Company.2020YEAR

不定积分单元测试题 一、选择题(本大题共 10 小题,每小题2分,总计 20 分 ) 1、设12(),()F x F x 是区间I 内连续函数()f x 的两个不同的原函数,且()0f x ≠,则在区间I 内必有( ) (A )12()()F x F x C -=; (B )12()()F x F x C ?=; (C )12()()F x CF x =; (D )12()()F x F x C += 2、若()(),F x f x '=则()dF x ?=( ) (A )()f x ; (B )()F x ; (C )()f x C +; (D )()F x C + 3、()f x 在某区间内具备了条件( )就可保证它的原函数一定存在 (A )有极限存在; (B )连续; (C )有界; (D )有有限个间断点 4、函数2()(||)f x x x =+的一个原函数()F x = ( ) (A )343 x ; (B )243x x ; (C)222()3x x x +; (D )22()3 x x x + 5、已知一个函数的导数为2y x '=,12x y ==且时,这个函数是( ) (A )2;y x C =+ (B )2 1;y x =+ (C )2 2x y C =+; (D )1y x =+. 6、下列积分能用初等函数表出的是( ) (A ) 2x e dx -?; (B ) (C )1ln dx x ?; (D )ln x dx x ?. 7、2ln x dx x =?( ) (A )11ln x C x x ++; (B )11ln x C x x --+;

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

定积分习题及讲解

第四部分 定积分 [选择题] 容易题1—36,中等题37—86,难题87—117。 1.积分中值定理?-=b a a b f dx x f ))(()(ξ,其中( ) 。 (A) ξ是],[b a 内任一点; (B). ξ是],[b a 内必定存在的某一点; (C). ξ是],[b a 内唯一的某一点; (D). ξ是],[b a 的中点。 答B 2.???????=≠?=0 ,0,)()(2 x c x x dt t tf x F x ,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( ) 。 (A).0=c ; (B).1=c ; (C).c 不存在; (D).1-=c . 答A 3.a dx x x I a n n n (,1sin lim ?=+∞→为常数)由积分中值定理得?=+a n n a dx x x ξξ1sin 1sin ,则 =I ( )。 (A)a a a a a n 1 sin 1 sin lim 1 sin lim 2==→∞ →ξ ξξ ξξ; (B).01 sin lim 0 =→ξ ξa ;

(C).a a =∞ →ξ ξξ1 sin lim ; (D).∞=∞ →ξ ξξ1 sin lim a . 答C 4.设)(x f 在],[b a 连续,?=x a dt t f x )()(?,则( ) 。 (A).)(x ?是)(x f 在],[b a 上的一个原函数; (B). )(x f 是)(x ?的一个原函数; (C). )(x ?是)(x f 在],[b a 上唯一的原函数; (D).)(x f 是)(x ?在],[b a 上唯一的原函数. 答A 5.设0)(=?b a dx x f 且)(x f 在],[b a 连续,则( ) 。 (A).0)(≡x f ; (B).必存在x 使0)(=x f ; (C).存在唯一的一点x 使0)(=x f ; (D).不一定存在点x 使 0)(=x f 。 答B 6.设?=a dx x f x I 023)( (0.>a ), 则( )。 (A).?=2 0)(a dx x xf I ; (B).?=a dx x xf I 0)(; (C).?=2 0)(21a dx x xf I ; (D).?=a dx x xf I 0)(21. 答 C 7.=-+?-11 21)1(dx x x ( )

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln22 D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的 阴影部分的面积,用定积分可表示为( ) A. ???-3 3f (x )d x B.??13f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f(x)在区间[-2,-1]上是增函数; ②x=-1是f(x)的极小值点; ③f(x)在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x=2是f(x)的极小值点. 其中,所有正确判断的序号是() A.①②B.②③C.③④D.①②③④ 7.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是() A.0≤a≤21 B.a=0或a=7 C.a<0或a>21 D.a=0或a=21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q=8 300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)() A.30元B.60元C.28 000元D.23 000元 9.函数f(x)=-x e x(a

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

定积分练习题.doc

定积分练习题 一.选择题、填空题 1 p 2 p 3 p ....... n p 1.将和式的极限 lim P 1 ( p 0) 表示成定积分 n n 1 1 1 p dx 1 1 p dx 1 x p dx A . dx B . x C . ( ) D . () x 1 1 0 1 0 x 0 n 2.将和式 lim ( ......... ) 表示为定积分 n n 1 n 2 2n 3.下列等于 1 的积分是 1 xdx B . 1 1)dx 1 1dx 1 1 A . ( x C . D . dx 2 4. 1 4 | dx = | x 2 A . 21 B . 22 C . 23 D . 25 3 3 3 3 5.曲线 y cos x, x [0, 3 ] 与坐标周围成的面积 2 C . 5 A . 4 B . 2 D . 3 2 1 e x )dx = 6. (e x A . e 1 B . 2e 2 D . e 1 e C . e e 7. 若 m 1 e x dx , n e 1 dx ,则 m 与 n 的大小关系是( ) 1 x ( ) . ( ) ( ) ( ) ( ) A . m n B . m n C . m n D .无法确定 8. 9.由曲线 y x 2 1 和 x 轴围成图形的面积等于 S .给出下列结果: 1 1 x 2 )dx ;③ 2 1 (1 x 2 )dx . ① ( x 2 1)dx ;② (1 (x 2 1)dx ;④ 2 1 1 1 则 S 等于( ) A .①③ B .③④ C .②③ D .②④ y x 10. (sin t cost sin t )dt ,则 y 的最大值是( ) A . 1 B . 2 C . 7 D . 0 2 17 f ( x) 11. 1 f ( x) dx 1 2 若 f ( x) 是一次函数,且 5, xf ( x)dx ,那么 dx 的值是 6 1 x . 15.设 f (x ) sin x x f (x) cos2 xdx ( ) 3 ,则 其余

高等数学11-1第二次单元测验试卷答案201212

重庆大学 高等数学Ⅱ-1-2 课程试卷 juan 2012 ~2013 学年 第 1学期 开课学院: 数学 课程号: 10019565 考试日期: 20121215 考试方式: 考试时间: 120 分钟 一、单项选择题(每小题3分,共15分) 1.若lim ()x f x k →∞ '=,则lim[()()]x f x a f a →∞ +-为【A 】 A .ka B .k C .a D .不存在 2.若()x f x e -=,则(ln ) f x dx x '=? 【A 】 A .1c x + B .1 c x -+ C .x c + D .x c -+ 3.曲线221 x x y x +=-渐近线的条数为【C 】 A .0 B .1 C .2 D .3 4.极限2 lim ln ()() x x x x a x b →+∞=-+【C 】 A . 0 B .1 C .a b - D .b a - 5.设曲线2 x y e -=,则其拐点的个数为【B 】 A .1 B .2 C .3 D .4 二、填空题(每小题3分,共15分) 1.设ln sin y x =,在5[ ,]66 ππ 上满足罗尔中值定理中的ξ= 2 π 2. = ln(x c ++ 3.若()f x 的一个原函数为 tan x x ,则()xf x dx '=? 2 2t a n s e c x x c x -+ 4.极限011lim ln(1)x x x →??-=? ?+? ? 1 2 5.曲线2 ()sin()f x x =,则(6) (0)f = 120- 解法1:2()sin(),(0)0f x x f == 2()2cos(),(0)0f x x x f ''== 22222()2cos 4sin 2cos 4(),(0)2f x x x x x x f x f ''''=-=-= 222()4sin 8()4()12()4(),(0)0f x x x xf x x f x xf x x f x f ''''''''=---=--= (4)2()12()12()8()4()f x f x xf x xf x x f x ''''=---- 212()20()4()f x xf x x f x '''=--- (5)2()12()20()20()8()4()f x f x f x xf x xf x x f x '''''''''=----- 232()28()4()f x xf x x f x ''''''=--- (6)2(4)()32()28()28()8()4()f x f x f x xf x xf x x f x ''''''''''=----- 2(4)60()36()4()f x xf x x f x '''''=--- .(6) (0)120f =- 解法2:35 11sin 3!5!x x x x =- ++ 2261011 ()sin 3!5! f x x x x x ==-++ (6)1 (0)6!1203! f =-?=- 三、计算题(一)(每小题8分,共24分) 命 题人: 组 题人: 审题人: 命题时间: 教 务处制 学院 专业、班 年级 学号 姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

高中数学选修第一章导数测试题

高中数学选修第一章导 数测试题 Document number:PBGCG-0857-BTDO-0089-PTT1998

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的阴影部分的面积,用定积分可表示为( ) A. ???-33 f (x )d x f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f (x )在区间[-2,-1]上是增函数; ②x =-1是f (x )的极小值点; ③f (x )在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f (x )的极小值点. 其中,所有正确判断的序号是( ) A .①② B .②③ C .③④ D .①②③④ 7.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P 元,销售量为Q ,则销量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元 D .23 000元 9.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )大小关系不能确定 10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在? ? ???-∞,-13内

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

导数与定积分单元测试

导数与定积分测试卷 一、 选择题(共10小题,每小题5分,共50分) 1.曲线2)(3 -+=x x x f 在点P 处的切线平行于直线14-=x y ,则点P 的坐标为( ) )0,1.(A )8,2.(B )0,1.(C 和)4,1(-- )8,2.(D 和)4,1(-- 2.若2)(0'-=x f ,则=--+→h h x f h x f h ) ()(000 lim ( ) 2.-A 4.-B 6.-C 8.-D 3.函数13)(3 +-=x x x f 在]0,3[-上的最大、最小值分别是( ) 1,1.-A 17,1.-B 17,3.-C 19,3.-D 4.若函数b bx x x f 33)(3 +-=在)1,0(内有极小值,则b 的取值范围是( ) 10.<b C 2 1.< b D 5.由曲线x x f = )(和3 )(x x g =所围成图形的面积可用定积分表示为( ) dx x dx x A ? ? + 1 3 1 . dx x dx x B ? ?- 1 1 03 . dx x dx x C ? ? - - 1 1 3 . dx x dx x D ? ? - 1 3 1 . 6.设))(()(),...,()(),()(,sin )('1'12'010N n x f x f x f x f x f x f x x f n n ∈====+,则=)(2011x f ( ) x A sin . x B sin .- x C cos . x D cos .- 7.设653 1)(2 3+++= x ax x x f 在区间]3,1[上为单调函数,则实数a 的取值范围为( ) ),5.[+∞- A ]3,.(--∞ B ),5[]3,.(+∞- ?--∞C ]5, 5.[- D 8.已知函数2 2 3 )(a bx ax x x f +++=在1=x 处有极值10,则b a +的值为( ) 07.或-A 16-.或B 0.C 7.-D 9.设)100)...(3)(2)(1()(----=x x x x x f ,则=)1(' f ( ) 99.-A ! 100.-B ! 100.C ! 0.D 10.由曲线1,2,===y x e y x 围成的区域的面积为( ) e e A -2 . 1.2 --e e B 3.2 -e C e D -3.

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

定积分单元测试题

定积分单元测试题 一、填空题 1、 dx x ? +4 1 1=___________。 2、广义积分43 x dx - +∞ =? 3、________1 1 02=+?dx x x 。 4、()________1202 =-?dx x 。 5、设 ()32 1 2-=? -x dt t f x ,则()=2f 。6、=+? 3 1 ln 1e x x dx 。 7、()=?? ????++++??-dx x x x x x π πcos 113sin 222 4 。8、x dt t x x ?→0 20cos lim =____________ 9、12 12|| 1x x dx x -+=+? 。 10、= -?dx x 201. 11、2 22sin 1cos x x dx xdx π π-+=+? 12、已知()2 cos ,x F x t dt =?则()F x '= 13、已知()2 x t x F x te dt -=?,则()F x '= 二、单项选择 1、若连续函数 ()x f 满足关系式()2ln 220+?? ? ??=?x dt t f x f ,则()x f 等于( )。 (A )2ln x e ; (B ) 2ln 2x e ; (C ) 2ln +x e ; (D ) 2ln 2+x e 。 2、设 )(x f 连续,则=-?x dt t x tf dx d 0 22)(( ) (A ))(2x xf ; (B ))(2x xf -; (C ))(22x xf ; (D ))(22x xf -。 3、设 )(x f 是连续函数,且?+=10 )(2)(dt t f x x f ,则)(x f =( ) (A )1-x ; (B )1+x ; (C)1+-x ; (D )1--x 。 4、设()()x a x F x f t dt x a = -?,其中()f x 为连续函数,则lim ()x a F x →=( ) (A )a (B ))(a af (C ))(a f (D )0 5、 =?dt e dx d b x t 2( ) (A)2x e (B)2x e - (C)22x b e e - (D)2 2x xe - 6、=-+?→x dt t x x cos 1)1ln(lim 2sin 0 ( ) (A)8 (B)4 (C)2 (D)1 7、反常积分收敛的是( )

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

相关文档
最新文档