【免费下载】ansys中荷载步的讲解

【免费下载】ansys中荷载步的讲解
【免费下载】ansys中荷载步的讲解

1.荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。

①对施加在几何模型上的荷载(如 fk,sfa 等):到当前荷载步所保留的荷载都有效。如果

前面 荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如 果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。

② 对施加在有限元模型上的荷载(如 f,sf,sfe,sfbeam 等):ansys 缺省的荷载处理是替代方式, 可用 fcum,sfcum 命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。当采用缺 省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于 不是同一自由度的荷载(包括集中或分布荷载), 前面的和本步的都有效。 当采用累加方式时, 施加的所有荷载都在本步有效。 特别注意的是,fcum 只对在有限元模型上施加的荷载有效。

2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,

而其处理与上述是相同 的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此 似乎可有两种理解。

①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意

求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对 应的是你的约束和荷载情况,与前后荷载步均无关! (事实上,你本步可能施加了一点荷载, 而前步的荷载继续有效,形成你本步的荷载情况)

② 后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步 没有删除前面荷载步的荷载, 你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同 作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys 是怎样求解的,得不到证实。是每次对 每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢? 或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第 N 步的位移和应力的基础上,施加第 N+1 步的荷载,如何?对线性 分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用 线性分析)。 总之,线性分析是可以理解为后续步是在前步的基础上计算的(当然都基于初始构形)。

3.非线性分析时的荷载步 如下两点是要明确的: ①对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关。 ②后续荷载步计算是在前步的基础上(以前步的构形和应力为基础)计算的。 关于①:设置荷载步,并顺序求解;设置荷载步,直接求解荷载步 2;不用荷载步,直接同 时施加所有荷载;使用重启动,不设荷载步,顺序求解;使用生死单元等方法,其求解结果 相同。 通过计算证明了荷载顺序不影响最终结果, 从这里也证明了保守系统的计算结果与荷 载路径无关。 关于②:虽然从 file.snn 比较看,除了非线性分析的设置外,几乎与线性分析的荷载步文件 没有什么差别, 但如果顺序求解,则后续荷载步中用于每个子步计算的荷载=前步荷载不变+本步新施加的 荷载按子步内插值。而不是在本步有效的所有荷载点点施加。

举例 1:重力和预应力分为两个荷载步,在求预应力作用时,重力不变,而将预应力按子步要求施加; 所以这样计算即为考虑了重力的先作用, 而预应力则在重力作用的基础上计 算的。即第二荷载步中的每个子步所对应的荷载=重力+预应力总荷载/nsubst ,而不是=(重力 +预应力总荷载)/nsubst.

举例 2:设一悬臂梁,先在 1/2 处作用 2000 为第一荷载步,且设 nsubst=10,time=1;然后 悬臂端再作用 3000,且 nsubst=20,time=2,为第二荷载步。顺序求解,则 3000 即在 2000 先 作用的基础上计算的, 即当 time=1.6 时, 这时子步的荷载=2000+3000/20*(1.6-1.0)*20=3800, 而不是(2000+3000) *0.6=3000。

但小弟还有一点疑问,“对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历 断习题电源,线缆敷设完毕,要进出具高中资料试卷试验报告与相关部电源高中资料试卷切除从而采用

史、或加载路径)无关”,几乎所有的书上都是这么说的。就结构工程上而言,如果在小变形、弹性状态下,那么没有疑问,确实如此!但如果在大变形的情况下(即使仍在弹性状态)呢?最后结果还与加载顺序无关吗?小弟捉摸不定!比如一根刚性杆左端铰接并加转动弹簧约束,现在有一个来在支座左上方的拉力和一个垂直向下的压力作用在右端,拉力较小,压力很大。分两种加载次序:1)如果拉力先作用,拉动弹簧逆时针转动了90 度以上,然后压力作用,如果不改变压力的作用点,则杆躲过了压力的作用。拉杆保持那个大于90 度的角度。(如果让压力的作用跟随右端点位置的变化,ansys好像是这样做的,这样同下一个加载顺序2)比改变了加载条件,姑且也讨论一下:这样弹簧会继续转动,最终右端转到左端。)2)压力先作用,然后拉力作用。由于压力很大,拉力较小,杆件几乎不会转动,保持原位。这个例子无疑是一个保守系统,机械能没有耗散!但由于加载顺序不同,就出现了最终位形的大大不同。这是不是说如果出现了大变形,即使是在保守系统中,加载顺序是会影响最终的作用结果呢?

1.你的问题不是杠题,是很好的问题!实际上你说的那种情形不对,例如先斜拉,则转动过90 度,然后施压,要注意在施压时必定先抵消你的向上的拉,则结构应该回来了,故不会出现仍大于90 度的状态。所以与你先施压的效果是一样的。如果我理解的不对,请你将图放上来讨论。

2.下面是一个悬臂梁的问题,有点类似于你的问题。即先用M 将其转动大于90 度,然后施加向下的荷载,其最后结果与加载路径无关。下面是简图和命令流。

3.对于非线性分析(保守系统),因为分析是建立在结构变形后基础上的,其荷载的作用会随构形不同而变化,但最终的平衡位置是惟一的。越跃失稳在极值点是临界的,大于极值点越跃到另外的平衡位置,小于则在越跃前的平衡位置。因我不属于力学高手,有些问题可能说的不够准确,见谅。finish

/clear

l0=1000

b0=10

h0=20

/prep7

k,1

k,2,l0

l,1,2

et,1,

beam3

mp,ex,1,2.0e5

mp,prxy,1,0.3

r,1,b0*h0,b0*h0*h0*h0/12,h0

lesize,all,,,20

lmesh,all

dk,1,all

/solu

outres,all,all

nlgeom,on

autots,off

time,1

nsubst,10

fk,2,mz,5000000

lswrite,1

time,2

fk,2,fy,-3000

nsubst,20

lswrite,2

lssolve,1,2,1

finish

/post1

1.保守系统和非保守系统:如果输入系统的总能量在载荷移去后复原,则为保守系统;如

果能量被系统消耗,则是非保守系统。一个保守系统的分析是与过程无关的。(In help: If all energy put into a system by external loads is recovered when the loads are removed, the system is said to be conservative. If energy is dissipated by the system, the system is said to be nonconservative. An analysis of a conservative system is path independent.) 也就是说,不论过去的历史如何,只要积累到当前的变形,结构应力相同;并且在卸载后,结构将恢复到初始状态。考虑到弹性的定义,故对于弹性(线弹和非线弹)分析结构的最终变形和应力与加载次序无关。而几何非线性属于弹性范围,是故也是一样的。

2.对于真诚先生“打绳结”问题,次序对结果确是有影响的。但打结后是不能自动恢复的,恐

怕这个例子不属于保守系统的范围。似乎是拓扑问题,而不是结构分析问题,呵呵。

3. 真诚先生“ANSYS可以用重启动来实现无论是静力还是动力的增量分析”一句,也对,是可以用该方法实现增量分析,但似乎重启动的真正目的不在此。因为ansys荷载步的分析就能实现“增量分析”,却为何用重启动呢?疑有杀鸡用宰牛刀之嫌。所以我还是认为“保守系统的最终结果与加载历史无关”,并且“后续荷载步计算是在前步的基础上计算的”。如有不当,请继续指正!

1.荷载步中的荷载处理方式如上,同一自由度处的荷载(包括荷载作用点和方向呀)可替代、

累加等。

2.后续荷载步是在前荷载步的基础上进行计算的,而不仅仅是荷载子步,从上述举例中可

以看出来。现在看你的例子,假如就是替代方式的50 和100,不管你在荷载步文件中看到是什么,则求解时第二荷载步时,50 是基础,即其后的每个子步是50+(100-50)划分的增量。

To wendy:

1.对仅仅是约束不断变化的结构,其求解使用简单的荷载步是不能解决的;

2.使用初应力也不理想,因为施加上初应力后变形不符或变形相符但应力又不符了;

对于结构不变而改变约束和荷载的处理,建议如下:

1.不使用荷载步,使用系列solve 求解,并且通过time 识别,且不要离开solu 层;

2.当你计算完第一工况后,删除原有部分约束(保证结构几何不变),将原有部分约束处的反

力施加在结构上(通过*get 得到),求解之;

3.增加新的约束,施加新的荷载,求解之;

4.最后通过post1 得到结果,则每个time 整时,就是当前的累加效应。上述对于线性分析和非线性分析都是可行的。当然对于线性分析因为叠加原理可用,可采用多种方法实现这种分析,例如可各自独立求解,然后叠加,或用荷载工况处理等。

其他: 1.通过荷载步、初应力、restart 等简单的做法(指不处理约束反力等)是不行的; 2.对新帖的内容不甚明白,故无法解释。VOFFST

ANSYS APDL命令流学习参数化建模

第一天 目标:熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> V olumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface Force on nodes 表面载荷 bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 第二天 目标:了解命令流的整体结构,掌握每个模块的标识 !文件说明段 /BATCH /TITILE,test analysis !定义工作标题/FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识!定义单元,材料属性,实常数段 ET,1,SHELL63 !指定单元类型 ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度 R,1,0.001 !指定壳单元实常数-厚度...... !建立模型 K,1,0,0,, !定义关键点 K,2,50,0,, K,3,50,10,, K,4,10,10,, K,5,10,50,, K,6,0,50,, A,1,2,3,4,5,6, !由关键点生成面...... !划分网格 ESIZE,1,0, AMESH,1 ...... FINISH !前处理结束标识

【免费下载】ansys中荷载步的讲解

1.荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。 ①对施加在几何模型上的荷载(如 fk,sfa 等):到当前荷载步所保留的荷载都有效。如果 前面 荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如 果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。 ② 对施加在有限元模型上的荷载(如 f,sf,sfe,sfbeam 等):ansys 缺省的荷载处理是替代方式, 可用 fcum,sfcum 命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。当采用缺 省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于 不是同一自由度的荷载(包括集中或分布荷载), 前面的和本步的都有效。 当采用累加方式时, 施加的所有荷载都在本步有效。 特别注意的是,fcum 只对在有限元模型上施加的荷载有效。 2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况, 而其处理与上述是相同 的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此 似乎可有两种理解。 ①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意 求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对 应的是你的约束和荷载情况,与前后荷载步均无关! (事实上,你本步可能施加了一点荷载, 而前步的荷载继续有效,形成你本步的荷载情况) ② 后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步 没有删除前面荷载步的荷载, 你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同 作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys 是怎样求解的,得不到证实。是每次对 每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢? 或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第 N 步的位移和应力的基础上,施加第 N+1 步的荷载,如何?对线性 分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用 线性分析)。 总之,线性分析是可以理解为后续步是在前步的基础上计算的(当然都基于初始构形)。 3.非线性分析时的荷载步 如下两点是要明确的: ①对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关。 ②后续荷载步计算是在前步的基础上(以前步的构形和应力为基础)计算的。 关于①:设置荷载步,并顺序求解;设置荷载步,直接求解荷载步 2;不用荷载步,直接同 时施加所有荷载;使用重启动,不设荷载步,顺序求解;使用生死单元等方法,其求解结果 相同。 通过计算证明了荷载顺序不影响最终结果, 从这里也证明了保守系统的计算结果与荷 载路径无关。 关于②:虽然从 file.snn 比较看,除了非线性分析的设置外,几乎与线性分析的荷载步文件 没有什么差别, 但如果顺序求解,则后续荷载步中用于每个子步计算的荷载=前步荷载不变+本步新施加的 荷载按子步内插值。而不是在本步有效的所有荷载点点施加。 举例 1:重力和预应力分为两个荷载步,在求预应力作用时,重力不变,而将预应力按子步要求施加; 所以这样计算即为考虑了重力的先作用, 而预应力则在重力作用的基础上计 算的。即第二荷载步中的每个子步所对应的荷载=重力+预应力总荷载/nsubst ,而不是=(重力 +预应力总荷载)/nsubst. 举例 2:设一悬臂梁,先在 1/2 处作用 2000 为第一荷载步,且设 nsubst=10,time=1;然后 悬臂端再作用 3000,且 nsubst=20,time=2,为第二荷载步。顺序求解,则 3000 即在 2000 先 作用的基础上计算的, 即当 time=1.6 时, 这时子步的荷载=2000+3000/20*(1.6-1.0)*20=3800, 而不是(2000+3000) *0.6=3000。 但小弟还有一点疑问,“对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历 断习题电源,线缆敷设完毕,要进出具高中资料试卷试验报告与相关部电源高中资料试卷切除从而采用

ansys载荷步

实际工况=载荷步(时间步)+载荷步(时间步)+...... 载荷步=载荷子步(时间增量)+载荷子步(时间增量)+...... 实体加载和有限元模型加载的区别: 实体加载是不能利用叠加,所以实体加载要手工叠加。对实体是覆盖,有限元模型加载是可以设置的。有限元加载可以利用fcum进行叠加。 比如, 第一个荷载步,对关键点1施加10kn,第二荷载步也对关键点1施加10kn,则这两个荷载步结果是完全一致的。 第一个荷载步,对节点1施加10kn,第二荷载步也对节点1施加10kn,而且用命令fcum,add则第二荷载步是20kn的结果。 加载与载荷步、子步及平衡迭代次数的说明 加载与载荷步、子步及平衡迭代次数的说明: 一、加载方式的区别 实体加载和有限元模型加载的区别: 实体加载是不能利用叠加,所以实体加载要手工叠加。对实体是覆盖,有限元模型加载是可以设置的。有限元加载可以利用fcum进行叠加。 比如, 第一个荷载步,对关键点1施加10kn,第二荷载步也对关键点1施加10kn,则这两个荷载步结果是完全一致的。 第一个荷载步,对节点1施加10kn,第二荷载步也对节点1施加10kn,而且用命令fcum,add则第二荷载步是20kn的结果。 实体加载方法的优点: a、几何模型加载独立于有限元网格,重新划分网格或局部网格修改不影响载荷; b、加载的操作更加容易,尤其是在图形中直接拾取时;无论采取何种加载方式,ANSYS求解前都将载荷转化到有限元模型,因此加载到实体的载荷将自动转化到其所属的节点或单元上; 二、载荷步及子步 这些概念主要用于非线性分析或载荷随时间变化的问题。根据问题的特点,可以

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

Ansys多载荷步的理解

关于多载荷步的理解 1. 荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。 ①对施加在几何模型上的荷载(如fk,sfa等):到当前荷载步所保留 的荷载都有效。 如果前面荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。 ②对施加在有限元模型上的荷载(如f,sf,sfe,sfbeam等):ansys缺 省的荷载处理是替代方式,可用fcum,sfcum命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。 当采用缺省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于不是同一自由度的荷载(包括集中或分布荷载),前面的和本步的都有效。当采用累加方式时,施加的所有荷载都在本步有效。 特别注意的是,fcum只对在有限元模型上施加的荷载有效。

2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,而其处理与上述是相同的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此似乎可有两种理解。 1、每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对应的是你的约束和荷载情况,与前后荷载步均无关!(事实上,你本步可能施加了一点荷载,而前步的荷载继续有效,形成你本步的荷载情况) 2、后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步没有删除前面荷载步的荷载,你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys是怎样求解的,得不到证实。是每次对每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢?或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第N步的位移和应力的基础上,施加第N+1步的荷载,如何?对线性分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用线性分析)。

个人总结ansys命令流

Q235 属性:弹性模量E=2.1e5 N/mm2 密度=7.85e-6kg/mm3 泊松比=0.3 mp,ex,1,2.1e5 mp,prxy,1,0.3 mp,dens,1,7.85e-6 1,ksymm 镜像点 2,arsym 镜像面 3,kgen 复制点 4.adele删除面 6,kdist,k1,k2 测量两关键点的距离 7,adele,a,,,1 删除area and below 8,创建圆柱面: circle 创建圆 然后创建直线 然(轴线) 利用拉伸命令创建圆柱面creat__areas__by Lines adrag 线拉伸成面modeling>operate>extrude>lines>>along lines VDRAG 面拉伸成体modeling>operate>extrude>areas>>along lines !创建空心圆柱体 这个命令 CYLIND, RAD1, RAD2, Z1, Z2, THETA1, THETA2 Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>By Dimensions Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Cylinder>By Dimensions 9,aptn 分割面 10,asbw 用工作平面切割面 11.wpoffs 12.wprota

https://www.360docs.net/doc/1b14232954.html,ng 过圆外一点做圆的切线(0°或180°) 14,nummrg 将重复的点消除 15,asba 面减去面 16,两个圆柱面的相贯线作法:做出两个相穿的圆柱面,利用APTN命令 17,选择面,不选择一部分面 asel,u,loc,z,kz(735) 18.在工作平面上生成一个矩形面 RECTING,X1,X2,Y1,Y2 X1,X2——矩形在工作平面X方向坐标值的变化范围 Y1,Y2——矩形在工作平面Y方向坐标值的变化范围 18,圆阵列 建立工作平面与圆柱的横截面平行,在工作平面情况下建立局部坐标系(柱坐标系),然后利用agen命令复制。 19,转换成局部柱坐标系 20,kfill 在两个关键点之间生成一个或多个关键点 21.网格划分 aatt,1,14,1, !aatt,mat,real,type,esys,secn aesize,all,1000 !aesize,anum,size, 单元尺寸 mshape,0,2d !mshape,key,dimension 指定划分单元形状amesh,all k,1,24000,33000,2230 k,2,24000,33000,-2230 k,3,-24000,33000,-2230 k,4,-24000,33000,2230 kfill,2,3,23,5,1,1 kfill,1,4,23,28,1,1 *do,i,5,26 l,i,i+1 *enddo

ansys中荷载步的讲解

1.荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。 ①对施加在几何模型上的荷载(如fk,sfa等):到当前荷载步所保留的荷载都有效。如果前面荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。 ②对施加在有限元模型上的荷载(如f,sf,sfe,sfbeam等):ansys缺省的荷载处理是替代方式,可用fcum,sfcum命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。当采用缺省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于不是同一自由度的荷载(包括集中或分布荷载),前面的和本步的都有效。当采用累加方式时,施加的所有荷载都在本步有效。 特别注意的是,fcum只对在有限元模型上施加的荷载有效。 2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,而其处理与上述是相同的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此似乎可有两种理解。 ①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对应的是你的约束和荷载情况,与前后荷载步均无关!(事实上,你本步可能施加了一点荷载,而前步的荷载继续有效,形成你本步的荷载情况) ②后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步没有删除前面荷载步的荷载,你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys是怎样求解的,得不到证实。是每次对每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢?或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第N步的位移和应力的基础上,施加第N+1步的荷载,如何?对线性分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用线性分析)。 总之,线性分析是可以理解为后续步是在前步的基础上计算的(当然都基于初始构形)。 3.非线性分析时的荷载步 如下两点是要明确的: ①对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关。 ②后续荷载步计算是在前步的基础上(以前步的构形和应力为基础)计算的。 关于①:设置荷载步,并顺序求解;设置荷载步,直接求解荷载步2;不用荷载步,直接同时施加所有荷载;使用重启动,不设荷载步,顺序求解;使用生死单元等方法,其求解结果相同。通过计算证明了荷载顺序不影响最终结果,从这里也证明了保守系统的计算结果与荷载路径无关。 关于②:虽然从file.snn比较看,除了非线性分析的设置外,几乎与线性分析的荷载步文件没有什么差别, 但如果顺序求解,则后续荷载步中用于每个子步计算的荷载=前步荷载不变+本步新施加的荷载按子步内插值。而不是在本步有效的所有荷载点点施加。 举例1:重力和预应力分为两个荷载步,在求预应力作用时,重力不变,而将预应力按

ANSYS APDL命令流建模及模态分析实例相关内容

本文介绍了轮毂的ANSYS APDL命令流建模及模态分析实例相关内容。 ANSYS命令流及注释 五个辐条的轮毂 ! !初始化ANSYS环境 ! FINISH /CLEAR !清空内存 /FILNAM,WHEEL5 !文件名 /TITILE,WHEEL5 PARAMETER MODELING !工作名 ! !定义几何尺寸参数 ! R1=180 R2=157 R3=75 R4=75 R5=30 R6=28 R7=20 R8=90 R9=60 S_HOLE=5 TH1=48 TH2=23 TH3=11 TH4=180 TH5=40 TH6=45 TH7=105

TH8=25 TH9=15 TH10=25 TH11=13 /VIEW,1,1,1,1 !改变视图/ANG,1 /PNUM,LINE,1 /PNUM,AREA,1 /PNUM,VOLU,1 /NUMBER,1 ! !关键点 ! /PREP7 k,1,r5,r7,0 k,2,r4-ky(1),ky(1),0 k,3,r4,0,0 k,4,r1,0,0 k,5,kx(4),th5-th9,0 k,6,r1-th8,ky(5),0 k,7,kx(6),th4/2,0 k,8,kx(7)+th11,ky(7)+th10,0 k,9,kx(8),th4-th3,0 k,10,kx(4),ky(9),0 k,11,kx(4),th4,0 k,12,r2,ky(11),0 k,13,kx(12),ky(8),0 k,14,kx(7)-th3,ky(7),0 k,15,kx(14),th5,0 k,16,r3+r6,ky(15),0

ANSYS的基本使用

2ANSYS的基本使用;2.1ANSYS环境简介;ANSYS有两种模式:一种是交互模式(Inter;运行该程序一般采用Interactive进入,这;进入系统后会有6个窗口,提供使用者与软件之间的交;各窗口的功能如下:;1.应用命令菜单(UtilityMenu):包含;设定(WorkPlane)、参数化设计(Para;及辅助说明(Help)等;2.主菜单(M 2 ANSYS 的基本使用 2.1 ANSYS环境简介 ANSYS有两种模式:一种是交互模式(Interactive Mode),另一个是非交互模式(Batch Mode)。交互模式是初学者和大多数使用者所采用,包括建模、保存文件、打印图形及结果分析等,一般无特别原因皆用交互模式。但若分析的问题要很长时间,如一、两天等,可把分析问题的命令做成文件,利用它的非交互模式进行分析。 运行该程序一般采用 Interactive 进入,这样可以定义工作名称,并且存放到指定的工作目录中。若使用 Run Interactive Now 进入还需使用命令定义工作文件名或使用默认的文件名,使用该方式进入一般是为恢复上一次中断的分析。所以在开始分析一个问题时,建议使用 Interactive 进入交互模式。 进入系统后会有6个窗口,提供使用者与软件之间的交流,凭借这6个窗口可以非常容易的输入命令、检查模型的的建立、观察分析结果及图形输出与打印。整个窗口系统称为GUI(Graphical User Interface).如图2-1所示。 各窗口的功能如下: 1. 应用命令菜单(Utility Menu):包含各种应用命令,如文件控制(Fi le)、对象选择(Select)、资料列式(List)、图形显示(Pplot)、图形控制(PlotCtrls)、工作界面

ansys命令流

第一天目标: 熟悉ANSYS基本关键字的含义k --> Keypoints关键点l --> Lines线a --> Area 面v --> Volumes体e --> Elements单元n --> Nodes节点cm --> component组元et --> element type单元类型mp --> material property材料属性r --> real constant实常数d --> DOF constraint约束f --> Force Load集中力sf --> Surface load on nodes 表面载荷bf --> Body Force on Nodes体载荷ic --> Initial Conditions初始条件第二天目标: 了解命令流的整体结构,掌握每个模块的标识!文件说明段/BATCH/TILE,test analysis!定义工作标题/FILENAME,test!定义工作文件名/PREP7!进入前处理模块标识!定义单元,材料属性,实常数段ET,1,SHELL63!指定单元类型ET,2,SOLID45!指定体单元MP,EX,1,2E8!指定弹性模量MP,PRXY,1, 0.3!输入泊松比MP,DENS,1, 7.8E3!输入材料密度R,1, 0.001!指定壳单元实常数-厚度......!建立模型K,1,0,0,,!定义关键点 K,2,50,0,,K,3,50,10,,K,4,10,10,,K,5,10,50,,K,6,0,50,,A,1,2,3,4,5,6,!由关键点生成面......!划分网格ESIZE,1,0,AMESH, 1......FINISH!前处理结束标识/SOLU!进入求解模块标识!施加约束和载荷DL,5,,ALLSFL,3,PRES,1000SFL,2,PRES, 1000......SOLVE!求解标识FINISH!求解模块结束标识/POST1!进入通用后处理器标识....../POST26!进入时间历程后处理器……/EXIT,SAVE!退出并存盘以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助/ANGLE!指定绕轴旋转视图/DIST!说明对视图进行缩放/DEVICE!设置图例的显示,如: 风格,字体等/REPLOT!重新显示当前图例/RESET!恢复缺省的图形设置/VIEW!设置观察方向/ZOOM!对图形显示窗口的某一区域进行缩放第三天生成关键点和线部分 1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:

ANSYS在荷载步之间改变材料属性例子

ANSYS在荷载步之间改变材料属性例子 ! Example of modify material between load steps in ANSYS ! 材料泊松比随荷载增加而逐步增大 ! 作者:陆新征清华大学土木系 ! Author: Lu Xinzheng Dept. Civil Engrg. of Tsinghua University FINISH /CLEAR /PREP7 FORCE=1. !初始荷载 FC=30. !极限荷载 NSTEP=30 !加载步数 EMU0=0.2 !初始泊松比为0.2 EMUU=0.499 !最终泊松比为0.499 SVM=0. !VON MISES应力 !* ET,1,SOLID45 !* !* MP,EX,1,30E3 MP,NUXY,1,EMU0 !建立模型 BLC4,0,0,100,100,100 ESIZE,100,0, VMESH,ALL /SOLU !输出RESTART文件 RESCONTRL,DEFINE,ALL,-1,1 NLGEOM,1 D,2,ALL D,4,UY D,5,UY D,6,UY D,5,UX FINISH SAVE !分步加载 *DO,I,1,NSTEP FINISH /SOLU !使用重启动功能 *IF,I,GT,1,THEN ANTYPE,,REST,

PARRES, CHANGE , PARAM, TXT, *ENDIF ! 如果荷载超过强度的50%,则线性提高泊松比 *IF,SVM,GE,FC*0.5,THEN MP,EX,1,30E3 MP,NUXY,1,EMU0+(EMUU-EMU0)*(SVM/FC-0.5)/0.5 *ENDIF !得到下一步荷载 FORCE=FORCE+1 !加载 SFE,ALL,4,PRES, , FORCE, , , SOLVE FINISH /POST1 !得到VON MISES应力 *GET,SVM,ELEM,1,NMISC, 4 PARSAV, ALL, PARAM, TXT, FINISH *ENDDO

ANSYS带轮建模命令流

Finish$/clear$/prep7 Dd=200$fai=38$b=13$z=4 S=14$ha=3 Hf=9$e=15$f=10 Ks=8$r1=0.5$r2=1.0 R3=1.5$dta=6 C1=2$c2=2 Pd=25$d0=24 D1=1.9*d0 S1=1.5*s S2=0.5*s L=2*d0 Da=dd+2*ha Ub=(z-1)*e+2*f Rk1=dd/2-hf-dta-0.5*(ub-s)/pd-s2 Rk2=d1/2+0.5*(l-s)/pd+s1 Rk=(rk1-rk2)/2 Dk=rk1+rk2 *afun,deg$y0=hf+ha B0=b-2*tan(fai/2)*y0 Local,12,0,-ub/2,dd/2-hf K,,0,y0$k,,f-b/2,y0$k,,f-b0/2 *do,i,1,z-1 X0=f+(i-1)*e$k,,x0+b0/2 K,,x0+b/2,y0$k,,x0+e-b/2,yo K,,x0+e-b0/2$*enddo K,,ub-f+b0/2$k,,ub-f+b/2,y0 K,,ub,y0 *get,kp1,kp,0,num,max *do,i,1,kp1-1$l,i,i+1$*enddo

*get,l1,line,0,num,max *do,i,1,z$j=4*i Lfillt,j,j+1,r1$Lfillt,j+1,j+2,r2 Lfillt,j+3,j+4,r2$*enddo Lfillt,3,4,r2 Csdele,12$ksll,s Ksel,inve$kdele,all Allsel Numcmp,all Cm,l1cm,line *get,kp1,kp,0,num,max Y0=dd/2-hf-dta$k,,-ub/2,y0+c1-c1/pd$k,,-ub/2+c1,y0-c1/pd K,,-s/2,y0-0.5*(ub-s)/pd$k,,-s/2,d1/2+0.5*(l-s)/pd K,,-l/2,d1/2$k,,-l/2,d0/2+c2$k,,-l/2+c2,d0/2$l,1,kp1+1 *do,i,kp1+1,kp1+6$l,i,i+1$*enddo Lsel,s,loc,y,y0-c1/pd,d1/2+0.5*(l-s)/pd$*get,l1,line,0,num,min L2=lsnext(l1)$lfillt,l1,l2,r3$lsel,all$lfillt,l2,l2+1,r3 Cmsel,u,l1cm Lsymm,x,all$ksel,s,loc,y,d0/2$*get,kp1,kp,0,num,min Kp2=kpnext(kp1)$l,kp1,kp2$allsel Nummrg,all$numcmp,all Al,all *get,kp1,kp,0,num,max K,kp1+10,-ub/2$k,kp1+20,ub/2 Vrotat,all,,,,,,kp1+10,kp1+20,,ks Kdele,kp1+10,kp1+20,10 !chouchou

Ansys钢平台-多载荷步动力分析练习

一个瞬态分析练习 练习目的:多载荷步分析瞬态动力过程 瞬态(FULL)完全法分析板-梁结构实例 如图所示板-梁结构,板件上表面施加随时间变化的均布压力,计算在下列已知条件下结构的瞬态响应情况。 全部采用A3钢材料,特性: 杨氏模量=2e112 N泊松比=0.3 密度=7.8e33 /m Kg /m 板壳:厚度=0.02m 四条腿(梁)的几何特性: 截面面积=2e-42 m宽度=0.01m高度=0.02m m惯性矩=2e-84 压力载荷与时间的关系曲线见下图所示。 图质量梁-板结构及载荷示意图 5000 0 1 2 4 6 时间(s) 图板上压力-时间关系 分析过程 第1步:设置分析标题 1.选取菜单途径Utility Menu>File>Change Title。 2.输入“The Transient Analysis of the structure”,然后单击OK。 第2步:定义分析参数 1.选取菜单途径Utility Menu>Paramenters>Scalar Parameters,弹出Scalar Parameters窗 口,在Selection输入行输入:width=1,单击Accept。 2.依次在Selection输入行输入:length=2、high=-1和mass_hig=0.1,每次单击Accept。 3.单击Close,关闭Scalar Parameters窗口。 第3步:定义单元类型(省略) 第4步:定义单元实常数(省略) 第5步:定义材料特性(省略)

第6步:建立有限元分析模型(有限元网格模型,省略) 第7步:瞬态动力分析 1.选择分析类型为Transient。 2.定义阻尼,Main Menu>Solution>-Load Step Opts-Time/Frequenc> Damping,弹出 Damping Specifications窗口。在Mass matrix multiplier处输入5。单击OK。 3.约束接地节点“All DOF”(单击一次使其高亮度显示,确保其它选项未被高亮度显 示)。 4.选取菜单途径Main Menu>Solution>-Load Step Opts-Output Ctrls>DB/Results File,弹 出Controls for Database and Results File Writing窗口。 5.在Item to be controlled滚动窗中选择All items。单击OK。 6.选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time –Time Step,弹出Time – Time Step Options窗口。 7.在Time at end of load step处输入1;在Time step size处输入0.2;在Stepped or ramped b.c处单击ramped;单击Automatic time stepping为on;在Minimum time step size 处输入0.05;在Maximum time step size处输入0.5。单击OK。 8.施加第一载荷步的荷载值: Apply PRES on Areas对话框。在pressure value处输入10000。 写载荷步文件:选取菜单途径Main menu>Solution>Write LS File,弹出Write Load Step File 对话框。在Load step file number n处输入1,单击OK。 9.施加第2载荷步的荷载值:选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time – Time Step,弹出Time – Time Step Options窗口。 10.在Time at end of load step处输入2。单击单击OK。 11.选取菜单途径Main Menu>Solution>-Loads-Apply>-Structure-Pressure>On Areas。弹出 Apply PRES on Areas拾取窗口。 12.单击Pick All,弹出Apply PRES on Areas对话框。 13.在pressure value处输入0。单击OK 14.选取菜单途径Main menu>Solution>Write LS File,弹出Write Load Step File 对话框。 15.在Load step file number n处输入2,单击OK。 16.选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time –Time Step,弹出Time – Time Step Options窗口。 17.在Time at end of load step处输入4;在Stepped or ramped b.c处单击Stepped。单击 OK。 18.选取菜单途径Main Menu>Solution>-Loads-Apply>-Structure-Pressure>On Areas。弹出 Apply PRES on Areas拾取窗口。 19.单击Pick All,弹出Apply PRES on Areas对话框。 20.在pressure value处输入5000。单击OK 21.选取菜单途径Main menu>Solution>Write LS File,弹出Write Load Step File 对话框。 22.在Load step file number n处输入3,单击OK。 23.选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time –Time Step,弹出Time – Time Step Options窗口。 24.在Time at end of load step处输入6。单击单击OK。

ANSYS软件APDL命令流建模的体会

ANSYS软件APDL命令流建模的体会ANSYS软件APDL命令流建模的体会首先申明,本人学习ANSYS基本上是靠自己一点一点琢磨出来的,由于本人喜欢用APDL命令流,故总结出来的几点经验也就比较适合用APDL命令的朋友。 1、多看help,ANSYS的help为我们提供了很强大的功能,我最喜欢的是其中对各个命令有关参数的说明和解释部分,不管是建模、加载、后处理等,都可以通过apdl命令来实现。只要你知道命令,如“aatt ”,在help搜索栏输入“aatt”,回车,弹出aatt的有关页码,一般其中有一个只有“aatt”的一项,确认,即可看到你要查询的aatt命令的有关参数意义,本人常用的命令有: et---定义单元类型 mp---定义材料属性 k----建关键点, l----建线条 a---由关键点建立面 al---由线建立面 v----由关键点建立体 vl---由线建立体 va--由面建立体 lsel---在很多很多线中选择你需要的目标线,数量可以无限多…… asel---在很多很多面中选择你需要的目标面,数量也可以无限多…… vsel---在很多很多体中选择你需要的目标体,数量也可以无限多…… latt----给选中的线按材料编号赋属性(前提是首先已定义好材料) aatt---给选中的面按材料编号赋属性

vatt-----给选中的体按材料编号赋属性 acel---按坐标轴赋体积力, lmesh,amesh,vmesh---对线、面、体进行剖分 d---在节点上加约束边界 dl---在线上加载约束边界 da----在面上加载约束边界 2、以上只是列出了常见的几个命令,但是ansys提供的命令是很多的,我们不可能都记得,计算记得,也不知道其有关参数是如何定义的,那不要紧,我们可以与界面操作结合起来学习。我们先利用界面操作实现,然后在保存路径里面找到文件“file.log”,在该文件里有该操作等价的apdl命令,那以后我们就可以使用了。 3、复合命令,很多命令是复合命令,通过几个命令的组合以实现一定的目标,如FITEM、FLST等。这里不予以详述,大家可在学习中慢慢体会。 4、ansys提供的apdl语言可像fortain、c语言一样,可以编程,有条件语句、逻辑语句、文件读写等,但是这些语句语法有个特点,就是在相应的语句前要加“*”,以示其与以上apdl命令的区别。 以上只是一点小小的总结,希望对大家有帮助。 K, NPT, X, Y, Z Defines a keypoint. Npt: Reference number for keypoint. If zero, the lowest available number is assigned X,y,z: Keypoint location in the active coordinate system (may be R, θ, Z or R, θ, Φ). If X = P, gra phical picking is enabled and all other fields (including NPT) are ignored (valid only in the GUI).

(完整版)ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 5.1.2优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0,,0min ,g x x v g x x v f x v ?=??≤???? && 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数;v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 5.2基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

ansys命令流最全详细介绍一

ansys命令流最全详细介绍 一熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> Volumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface load on nodes 表面载荷 bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 二 目标:了解命令流的整体结构,掌握每个模块的标识

!文件说明段 /BATCH /TITILE,test analysis !定义工作标题/FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识 !定义单元,材料属性,实常数段ET,1,SHELL63 !指定单元类型ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度R,1,0.001 !指定壳单元实常数-厚度...... !建立模型 K,1,0,0,, !定义关键点 K,2,50,0,, K,3,50,10,, K,4,10,10,, K,5,10,50,, K,6,0,50,, A,1,2,3,4,5,6, !由关键点生成面

相关文档
最新文档