光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析
光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析

网状隐裂原因

1.电池片在焊接或搬运过程中受外力造成.

2.电池片在低温下没有经过预热在短时间内突然受到高

温后出现膨胀造成隐裂现象

影响:

1.网状隐裂会影响组件功率衰减.

2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能

预防措施:

1.在生产过程中避免电池片过于受到外力碰撞.

2.在焊接过程中电池片要提前保温(手焊)烙铁温度要

符合要求.

3.EL测试要严格要求检验.

网状隐裂

EVA脱层原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成

2.EVA、玻璃、背板等原材料表面有异物造成.

3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层

4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层

组件影响:

1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废

预防措施:

1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。

2.加强原材料供应商的改善及原材检验.

3. 加强制程过程中成品外观检验

4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm

硅胶不良导致分层&电池片交叉隐裂纹原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成

2.EVA、玻璃、背板等原材料表面有异物造成.

3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层

4.电池片或组件受外力造成隐裂

组件影响:

1.分层会导致组件内部进水使组件内部短路造成组件报废

2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能

预防措施:

1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。

2.加强原材料供应商的改善及原材检验.

3. 加强制程过程中成品外观检验

4.总装打胶严格要求操作手法,硅胶需要完全密封

5. 抬放组件时避免受外力碰撞

组件烧坏原因

1.汇流条与焊带接触面积较小或虚焊出现电阻加大发热造成组件烧毁

组件影响:

1.短时间内对组件无影响,组件在外界发电系统上长时间工作会被烧坏最终导致报废

预防措施:

1.在汇流条焊接和组件修复工序需要严格按照作业指导书要求进行焊接,避免在焊接过程中出现焊接面积过小.

2.焊接完成后需要目视一下是否焊接ok.

3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s

组件接线盒起火原因

1.引线在卡槽内没有被卡紧出现打火起火.

2.引线和接线盒焊点焊接面积过小出现电阻过大造成着火.

3.引线过长接触接线盒塑胶件长时间受热会造成起火

组件影响:

1.起火直接造成组件报废,严重可能一起火灾.

预防措施:

1.严格按照sop作业将引出线完全插入卡槽内

2.引出线和接线盒焊点焊接面积至少大于20平方毫米.

3.严格控制引出线长度符合图纸要求,按照sop作业.

避免引出线接触接线盒塑胶件.

电池裂片原因

1.焊接过程中操作不当造成裂片

2.人员抬放时手法不正确造成组件裂片

3.层压机故障出现组件类片

组件影响:

1.裂片部分失效影响组件功率衰减,

2.单片电池片功率衰减或完全失效影响组件功率衰减

预防措施:

1.汇流条焊接和返工区域严格按照sop手法进行操作

2.人员抬放组件时严格按照工艺要求手法进行抬放组件.

3.确保层压机定期的保养.每做过设备的配件更换都要严格做好首件确认ok后在生产.

4.EL测试严格把关检验,禁止不良漏失.

电池助焊剂用量过多原因

1.焊接机调整助焊剂喷射量过大造成

2.人员在返修时涂抹助焊剂过多导致

组件影响:

1.影响组件主栅线位置EVA脱层,

2.组件在发电系统上长时间后出现闪电纹黑斑,影响组件功率衰减使组件寿命减少或造成报废

预防措施:

1.调整焊接机助焊剂喷射量.定时检查.

2.返修区域在更换电池片时请使用指定的助焊笔,禁止用大头毛刷涂抹助焊剂

虚焊、过焊原因

1.焊接温度过多或助焊剂涂抹过少或速度过快会导致虚焊

2.焊接温度过高或焊接时间过长会导致过焊现象.

组件影响:

1.虚焊在短时间出现焊带与电池片脱层,影响组件功率衰减或失效,

2.过焊导致电池片内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废预防措施:

1.确保焊接机温度、助焊剂喷射量和焊接时间的参数设定. 并要定期检查,

2.返修区域要确保烙铁的温度、焊接时间和使用正确的助焊笔涂抹助焊剂.

3.加强EL检验力度,避免不良漏失下一工序.

焊带偏移或焊接后翘曲破片原因

1.焊接机定位出现异常会造成焊带偏移现象

2.电池片原材主栅线偏移会造成焊接后焊带与主栅线偏移

3.温度过高焊带弯曲硬度过大导致焊接完后电池片弯曲

组件影响:

1.偏移会导致焊带与电池面积接触减少,出现脱层或影响功率衰减

2.过焊导致电池片内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废

3.焊接后弯曲造成电池片碎片

预防措施:

1.定期检查焊接机的定位系统.

2.加强电池片和焊带原材料的来料检验,

组件钢化玻璃爆和接线盒导线断裂原因

1.组件在搬运过程中受到严重外力碰撞造成玻璃爆破

2.玻璃原材有杂质出现原材自爆.

3.导线没有按照规定位置放置导致导线背压坏.

组件影响:

1.玻璃爆破组件直接报废,

2.导线损坏导致组件功率失效或出现漏电连电危险事故

预防措施:

1.组件在抬放过程中要轻拿轻放.避免受外力碰撞.

2.加强玻璃原材检验测试,

3.导线一定要严格按照要求盘放.避免零散在组件上

气泡产生原因

1.层压机抽真空温度时间过短,温度设定过低或过高会出现气泡

2.内部不干净有异物会出现气泡.

3.上手绝缘小条尺寸过大或过小会导致气泡.

组件影响:

1.组件气泡会影响脱层.严重会导致报废

预防措施:

1.层压机抽真空时间温度参数设定要严格按照工艺要求设定.

2.焊接和层叠工序要注意工序5s清洁,

3.绝缘小条裁切尺寸严格要求进行裁切和检查.

气泡产生原因

1.层压机抽真空温度时间过短,温度设定过低或过高会出现气泡

2.内部不干净有异物会出现气泡.

3.上手绝缘小条尺寸过大或过小会导致气泡.

组件影响:

1.组件气泡会影响脱层.严重会导致报废

预防措施:

1.层压机抽真空时间温度参数设定要严格按照工艺要求设定.

2.焊接和层叠工序要注意工序5s清洁,

3.绝缘小条裁切尺寸严格要求进行裁切和检查.

EVA脱层原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成

2.EVA、玻璃、背板等原材料表面有异物造成.

3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层

组件影响:

1.脱层会导致组件内部进水使组件内部短路造成组件失效至报废

预防措施:

1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。确保交联度符合要求85%±5%.

2.加强原材料供应商的改善及原材检验.

3. 加强制程过程中成品外观检验

低效原因

1.低档次电池片混放到高档次组件内,(原材混料/ 或制程中混料)

组件影响:

1.影响组件整体功率变低,组件功率在短时间内衰减幅度较大

2.低效片区域会产生热班会烧毁组件

预防措施:

1.产线在投放电池片时不同档次电池片做好区分,避免混用,返修区域的电池片档次也要做好标识,避免误用.

2.EL测试人员要严格检验,避免低效片漏失.

硅胶气泡和缝隙原因

1.硅胶气泡和缝隙主要是硅胶原材内有气泡或气枪气压不稳造成,

2.缝隙主要原因是员工手法打胶不标准造成

组件影响:

1.有缝隙的地方会有雨水进入,雨水进入后组件工作时发热会造成分层现象. 预防措施:

1.请原材料厂商改善,IQC检验加强检验.

2.人员打胶手法要规范,

3.打完胶后人员做自己动作.清洗人员严格检验.

漏打胶原因:

1.人员作业不认真,造成漏打胶,

2.产线组件放置不规范,人员拉错产品流入下一工序.

组件影响:

1.未打胶会进入雨水或湿气造成连电组件起火现象.

预防措施:

1.加强人员技能培训,增强自检意识.

2.产线严格按照产品三定原则摆放,避免误用.

3.清洗组件和包装处严格检验,避免不良漏失。

引线虚焊原因:

1.人员作业手法不规范或不认真,造成漏焊,

2.烙铁温度过低、过高或焊接时间过短造成虚焊,.

组件影响:

1.组件功率过低.

2.连接不良出现电阻加大,打火造成组件烧毁.

预防措施:

1.严格要求操作人员执行SOP操作,规范作用手法.

2.按时点检烙铁温度,规范焊接时间.

接线盒硅胶不固化原因:

1.硅胶配比不符合工艺要求造成硅胶不固化,

2.出胶孔A或B胶孔堵住未出胶造成不固化.

组件影响:

1.硅胶不固化胶会从线盒缝隙边缘流出,盒内引线会暴露在空气中遇雨水或湿气会造成连电使组件起火现象.

预防措施:

1.严格按照规定每小时确认硅胶表干动作.

2.定时确认硅胶配比是否符合工艺要求。

3.清洗工序要严格把关确保硅胶100%固化ok

EVA小条变黄原因:

1.EVA小条长时间暴露在空气中,变异造成,

2.EVA受助焊剂、酒精等污染造成变异.

3.与不同厂商EVA搭配使用发生化学反应

组件影响:

1.外观不良客户不接受.

2.可能会造成脱层现象

预防措施:

1.EVA开封后严格按照工艺要求在12h内用完,避免长时间暴露在空气中.

2.注意料件放置区域的5s清洁,避免在加工过程中受污染.

3.避免与非同厂家家的EVA搭配使用

异物和玻璃表面红笔印原因:

1.层叠和玻璃上料处5S不清洁造成异物被压在组件内,

2.人员发现不良做好标记评审完后未及时清理直接包装.

组件影响:

1.影响组件整体外观.造成投诉预防措施:

1.对层叠和玻璃上料工序做好5S清洁,避免异物出现.

2.发现不良后禁止在组件上做标记,直接在流程卡上记录不良位置.

3.产线产品摆放严格执行“三定”原则标识摆放

组件色差原因:

1.组件色差为原材料加工时镀膜不均匀造成,

2.焊接机在投放电池片未按照颜色区分投放造成

3.返修区域未做颜色区分确认造成混片色差

组件影响:

1.影响组件整体外观.造成投诉

预防措施:

1.反馈给原材料改善.并对来料做严格检验卡管.

2.焊接机在投料时严格要求做颜色区分投放避免混片.

3.返修区域做好电池片颜色等级的标识,返工时和返工后做自己动作,避免用错片子造成色差

质量问题综合分析报告

页脚内容5 五月生产二厂质量问题综合分析报告 为有效控制生产二厂批量质量问题,提高产品质量和效率,现针对五月份生产过程质量问题(批量性)进行统计分析,具体如下: 一、生产过程存在问题概况: 1、概况:五月生产二厂工艺员记录的生产过程存在问题共157批,其中原材料90批,占总批次不良的57.32%;人为31批,占总批次不良19.75 %;技术设计25批,占总批次不良的15.92%;文件问题11批,占总批次不良的7.01 %;具体见下表: 2、人为不良方面:生产中心批量质量问题共157 13批/次、预装5批/次、领料4批/总装13批质量问题里面,员工用错物料有8个批次,占61.54%;员工装配不到位有4个批次,占30.77%;

条形码打印错误有1个批次,占7.69%。 通过上述表格可以发现,塑料厂、纸箱厂与电子公司、诚丰、东丽不良批次占了整个原材料不良批次的79.31%,其中塑料厂问题主要为底座、中框不良,纸箱厂问题主要为纸箱印刷不良,电子公司问题主要为遥控器混送(出现4批)、电控板不良等,诚丰、东丽问题主要为底座、面板不良。 4、设计开发文件方面:设计开发不良共13批次,其中订单BOM:8个批次,对照表4个批次。具体如下:

5、原材料问题点分布 1216台。具体如下表所示: 通过上述表格可以发现底座不良达612台占总和的50.33%,中框不良达189台占总和的15.54%,面板不良达133块占总和的10.94%

通过上述表格看出纸箱不良达1928台占总和的44.33%,电加热绝缘座不良达1000台占总和的22.99%,遥控器不良达809台占总和的18.60% 6、质量工艺反馈方面: 05月份生产二厂共提交外部门质量反馈61份,其中《工艺/质量问题反馈单》16份,《原材料质量问题反馈单》 从以上反馈单整改统计来看,原材料质量反馈单整改完成率仅20%,仍有80%的问题未得到及时整改,其中因散点问题(不合格比例未达到5%,不符合批量问题定义)驳回占28.89%,不整改比例为13.33%,未处理比例为37.78%。 页脚内容5

光伏组件常见三大质量问题与安装要点

光伏组件常见的质量问题有热斑、隐裂和功率衰减。由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。上海德威时是通过技术研发生产为您提供光伏电池组件检测及 电站检测维护的完整解决方案: EL检测仪,EL测试仪,便携式组件EL 测试仪,EL缺陷检测仪,电池片测试仪 热斑形成原因及检测方法 光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。 隐裂形成原因及检测方法

隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。光伏组件在出厂前会进行EL成 像检测,所使用的仪器为EL检测仪。该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。EL检测仪 能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。 功率衰减分类及检测方法 光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。光伏组件功率衰减测试可通过光伏组件I-V特性曲线测试仪完成。EL测试常见缺陷分析也与时俱进在这里德威时将全面讲解组件检测全部流程,以及 光伏电站组件EL检测检测方式说明。 光伏电站安装前的电池组件一般需要两个流程的检测检查 EL测 试的过程即晶体硅太阳电池外加正向偏置电压,直流电源向晶体硅太阳电池注入大量非平衡载流子,太阳电池依靠从扩散区注入的大量非平衡载流子不断地复合发 光,放出光子,也就是光伏效应的逆过程;再利用ccd相机捕捉到这

组件常见质量问题分析

组件常见质量问题分析 目的:了解组件生产中常见的质量问题,对批量生产,提高效率和节约成本达到预防。 1、分选 1、色差:影响组件整体外观 1)分选失误 2)其他工序换片时造成 2、电池片崩边缺角:影响组件整体外观、使用寿命及电性能 1)标准不明确 2)焊接收尾打折太深或离电池片太近 3、电池片栅线印刷不良:影响组件外观及电性能 1)主栅线缺失 2)细删线缺失 3)栅线重复印刷 4、电池片表面脏:影响组件使用寿命 1)裸手接触原材料,残留汗液 2)电池片表面水纹:电池片制作过程没有清洗干净 3)工作台有污染物,粘在电池片上 2、焊接 1、虚焊:影响组件电性能及使用寿命 1)烙铁头不良,易造成虚焊 2)电烙铁温度不均匀 3)电烙铁焊接温度低 4)焊接力度轻、焊接速度快 5)电池片主栅线氧化 6)涂锡带或助焊剂可焊性不好 7)涂锡带、电池片或助焊剂储存过期 8)涂锡带锡层薄 9)环境温度低或环境湿度大 2、过焊:影响组件电性能及使用寿命 1)电烙铁焊接温度过高 2)焊接力度重或焊接速度慢 3)重复焊接 4)材料可焊性不好 5)电烙铁温差大 3、侧焊:影响组件电性能及使用寿命 1)焊接手势不对 2)烙铁头不平 3)涂锡带厚度不均匀 4、堆锡:影响组件层压质量,易造成组件破片 1)焊接力度太重 2)焊接收尾处没有将焊锡带走 3)涂锡带表面锡层熔化速度过快

5、焊花:影响组件外观 1)串焊力度太重 2)串焊时烙铁温度过高 3)串焊模版槽深不够 6、焊接偏移:影响组件外观、电性能及使用寿命1)互联条太软 2)互联条扭曲变形 3)焊接手势不对 4)互联条出现蛇形弯曲 5)互联条出现镰刀弯曲 7、脱焊:影响组件电性能及使用寿命 1)焊接手势太轻或速度太快 2)烙铁焊接温度太低 3)没有浸泡助焊剂 4)电池片或涂锡带可焊性不够 8、焊接后电池片翘曲 1)电池片拉应力不够 2)互联条收缩率大 3)电池片热胀冷缩变化大 9、焊接破片:影响组件外观、电性能及使用寿命1)电池片自身隐裂 2)互联条太硬 3)焊接手势太重 4)电烙铁温度过高 5)堆锡 6)电池片焊好后积压过多 7)焊接收尾处打折太深或离电池片太近 10、电池片氧化:影响组件外观、使用寿命及电性能1)裸露空气中时间过长 2)加助焊剂焊接后没有清洗,导致氧化 3)电池片来料时间太长,保存条件不符合要求 4)空气中湿度大 3、层压 1、异物:影响组件整体外观、电性能及使用寿命1)生产现场控制不当、工作台面不整洁 2)员工在车间整理头发 3)工作时必须戴工作帽、穿工作服 4)工作的责任心不够 5)戴围巾进入操作场所 6)人员随便进出车间 2、EV A未溶:影响组件外观、电性能及使用寿命1)EV A自身问题交联剂过高 2)层压机问题温度不均衡 3)EV A熔点过高

分布式户用光伏电站维护及故障分析

分布式户用光伏电站使用手册

目录 一、注意事项 (3) 二、日常维护 (3) 三、常见问题 (4) 四、紧急处理措施 (6) 附典型故障分析及解决办法

本手册主要针对5kWp以下分布式电站用户日常维护之用,请用户严格遵守。 一、注意事项 1、配电装置上如有此种标识位置,请勿触摸,以免发生触电危险。 2、用户切勿拆卸设备及配电装置,以免发生危险。 3、当紧急情况发生或者家用电网检修改造时,应先断开空气开关,再断开断路器;当紧急情况解决或者检修改造完成后,先闭合断路器,再闭合空气开关。图示如下: 4、切勿在光伏组件上或阵列南面(前面)晾晒衣服和其他物品,以免造成触电危险或火宅,且阴影遮挡会影响发电量,降低自身发电收益。 5、及时清理光伏组件表面脏污,如遇下雪天,雪后要及时清理光伏组件覆盖的大雪,以便提高发电量,增加发电收益。 6、看管好家中的小朋友,切勿在光伏阵列附近玩耍,以免造成危险。 7、切勿敲打钢架、光伏组件、设备等发电设施,禁止在组件的玻璃和边框上打孔,以免造成发电系统损坏,影响发电量,降低自身发电收益。 8、请勿在组件及支架周围倾倒、泼洒有毒、有害及腐蚀性物品。 二、日常维护

1、建议定期(至少一周)对电站进行例行巡视检查,如发现下面问题,请及时联系电站管理人员: 1)光伏组件有破损、灼烧痕迹、明显的颜色变化、气泡、电池片碎裂、玻璃碎裂, 边框破损等情况; 2)支架有歪斜、松动,防腐涂层出现开裂、脱落等现象; 3)逆变器红色(故障)指示灯常亮,则设备出现故障; 4)逆变器运行时有较大震动和异常噪声等; 5)电缆有膨胀、龟裂、破损等现象。 2、上午6:00(夏)、7:00(冬)前,用干净潮湿柔软棉布或海绵清理光伏组件上的灰尘及污垢,严禁使用含碱,酸的清洁剂清洗组件。中午温度高时严禁使用冷水泼洒光伏组件,以免造成光伏组件热胀冷缩而导致损坏,清洗的频率取决于污垢积累的速度。在正常情况下,雨水会对组件的表面进行清洁,这样能减少清洗的频率。 3、勿将抽油烟机、排风扇装置安装在发电系统附近,以免造成系统损坏或影响发电量。 三、常见问题 1、分布式光伏发电系统的常见故障有哪些?系统各部件可能出现哪些典型问题? 系统问题主要是由于电压未达到启动电压,造成逆变器无法工作、无法启动,由于组件或逆变器原因造成发电量低等,系统部件可能出现的典型问题有接线盒烧毁、组件局部烧毁。 2、如何处理分布式光伏发电系统的常见故障? 系统在质保期内出现问题时可先电话联系最近的专业维护人员,将系统发生问题进行说明,由专业维护人员进行解答,必要时,前往现场进行解决。如还是无法排除故障,请及时联系安装商或运营商解决。 3、系统后期维护怎么处理,多久维护一次?怎样维护? 根据产品投标人的使用说明书对需要定期检查的部件进行维护,系统主要的维护工作是擦拭组件,降水量较大较频繁的地区一般不需要人工擦拭,非雨季节建议一般每周清洁一次,风沙或降尘量较大的地区可以增加清洁的次数,降雪量较大的地区及时将厚重积雪去除,避免影响发电量和雪融后吸收阳光不均匀,及时清理遮挡的树木或杂物。

光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析 网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高 温后出现膨胀造成隐裂现象 影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 2.在焊接过程中电池片要提前保温(手焊)烙铁温度要 符合要求. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm

硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.总装打胶严格要求操作手法,硅胶需要完全密封 5. 抬放组件时避免受外力碰撞 组件烧坏原因 1.汇流条与焊带接触面积较小或虚焊出现电阻加大发热造成组件烧毁 组件影响: 1.短时间内对组件无影响,组件在外界发电系统上长时间工作会被烧坏最终导致报废 预防措施: 1.在汇流条焊接和组件修复工序需要严格按照作业指导书要求进行焊接,避免在焊接过程中出现焊接面积过小. 2.焊接完成后需要目视一下是否焊接ok. 3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法 关键词: 光伏电站光伏发电光伏运维 第一章影响光伏电站发电量的因素 光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。 1.1、太阳辐射量 太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如 PV-SYS、RETScreen得到。 1.2、太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下: A、纬度0°~25°,倾斜角等于纬度 B、纬度26°~40°,倾角等于纬度加5°~10° C、纬度41°~55°,倾角等于纬度加10°~15° 1.3、系统损失 和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。 1.3.1组合损失

现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。 1.3.3温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。 1.3.4线路、变压器损失 系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。 1.3.5逆变器效率 逆变器由于有电感、变压器和IGBT、MOSFET 等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。 1.3.6阴影、积雪遮挡

太阳能光伏组件接线盒测试常见分题分析

太阳能光伏组件接线盒测试常见问题分析 摘要:本文阐述了户外组件使用中因接线盒问题引起的故障,以及 TUV、UL 认证测试过程中因接线盒问题而出现的失败项,从技术角度对接线盒的质量进行初步分析和探讨。 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组)件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准: VDE0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的检测和质量分析,获得了大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼热丝试验。 接线盒测试常见失败项目统计图:

注:每种测试按照100% 考虑一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁

光伏电站事故处理规程

徒光伏电站事故处理规程2015年12月

目录 一、主题内容与适用范围 (3) 二、事故处理一般原则 (3) 三、各岗位人员间的相互关系 (4) 四、事故处理细则 (6) 4、1光伏组件故障处理 (6) 4.2集电设备故障处理 (6) 4.4箱式生涯变压器故障处理 (9) 4.5SVG无功补偿装置故障处理 (10) 4.6主系统故障处理 (12) 4.7自动装置故障处理 (14) 4.8直流故障处理 (16)

一、主题内容与适用范围 为了保证天堂抽水蓄能电站各生产岗位领导人员、地调值班人员及参与事故处理的有关人员,在事故处理过程中有章可循,以便尽快采取限制事故扩大,消除事故根源的措施。特制定本规程。 本规程中的事故处理指导,仅供值长、值班员在事故处理中参考。值长在指挥事故处理时,必须按当时的运行方式和事故征象等实际情况进行处理,不得仅以本规程指导的内容作为处理依据。 本规程规定了事故处理的一般原则及事故处理时各生产岗位人员间的相互配合关系,并提出了一些典型事故的处理技术指导。 本规程适用于天堂抽水蓄能电站的事故处理。 二、事故处理一般原则 2.1事故处理的主要任务 2.1.1迅速限制事故发展,消除事故根源,解除对人身和设备的威胁。 2.1.2用一切可能的方法保持设备连续运行,以保证正常发电、抽水和设备 的安全。 2.1.3尽快对已停电的用户和设备恢复供电。 2.1.4调整厂用电系统的运行方式,确保对重要厂用负荷(如直流浮充电源) 的供电。 2.2值长与值班人员应严守岗位,发生事故时,首先应迅速解除对人身和设 备的威胁,查找事故的原因,消除故障。同时要注意维持非事故设备的正常运行。 2.3一般情况下,在事故处理过程中值长应始终留守在中央控制室,以便控 制全厂,指挥事故处理。 值长在下列情况下可以离开控制室: a)解除了对人身和设备的危险; b)接到总工程师(站长)的命令,且发令人代为指挥事故处理或指定 了事故处理的临时指挥人。 2.4有关领导人和专业技术人员,在听到事故报告后,必须立即赶到控制室 或事故地点,并接受值长的指挥,参加事故处理。 2.5如果在交接班时发生事故,应遵循下列原则进行处理: 2.5.1交接班的签字手续尚未完成时,交班人员应坚守在岗位上进行事故处 理,接班人员义务协助交班值长进行事故处理,并接受交班值长的指

太阳能光伏发电系统的运行维护与故障排除

太阳能光伏发电系统的运行维护与故障排除 一、太阳能光伏发电系统的运行维护 1、太阳能光伏发电系统的日常检查和定期维护 太阳能光伏发电系统的运行维护分为日常检查和定期维护,其运行和管理人员都要有一定 的专业知识、高度的责任心和认真负责的态度,每天检查光伏发电系统的整体运行状况,观察 设备仪表、计量检测仪以及监控检测系统的显示数据,定时巡回检查,做好检查记录。 1、光伏发电系统的日常检测 在光伏发电系统的正常运行期间,日常检查是必不可少的,一般对大于20KW容量的系统应当配备专人巡检,容量20KW以内的系统可由用户自行检查。日常检查一般每天或每班进行一次。 日常检查的主要内容如下。 观察电池方阵表面是否清洁,及时清除灰尘和污垢,用清水清洗或用干净抹布擦拭,但不得使 用化学试剂清洗。 (1)注意观察所有设备的外观锈蚀、损坏等情况,用手背触碰设备外壳检查有无温度异常,检查外露的导线有无绝缘老化、机械性损坏,箱体内有无进水等情况。检查有无小动 物并立即采取有效措施,予以解决。若发现严重异常情况,除了立即切断电源,并采 取有效措施外,还要报告有关人员,同时做好记录。 (2)观察蓄电池的外壳有无变形或开裂,有无液体渗漏;充放电状态是否良好,充电电流是否适当;环境温度及通风是否良好,室内是否清洁,蓄电池外部是否有污垢或灰尘 等。 2、光伏发电系统的定期维护 光伏发电系统除了日常巡检外,还需要专业人员定期检查和维护,定期维护一般每月或半月进 行一次,内容如下。 (1)检查、了解运行记录,分析光伏发电系统的运行情况,对于光伏发电系统的运行状态做出判断,如果发现问题,立即进行专业的维护和指导。 (2)设备外观检查和内部的检查,主要涉及活动和链接部分导线,特别是大电流密度导线、功率器件、容易腐蚀的地方等。 (3)对于逆变器应定期清洁冷却风扇宾检查是否正常,定期清除机内的灰尘,检查各端子螺钉是否紧固,检查有无过热后留下的痕迹及算坏的器件,检查电线是否老化。 (4)定期检查和保持蓄电池电解液相对密度,及时更换损坏的蓄电池。 (5)有条件时可采用红外探测的方法对光伏发电方阵、线路和电气设备进行检查,召出异常发热原因和故障点,并及时解决。

产品质量问题分析报告两篇汇总

产品质量问题分析报告两篇 主体是分析报告的主要部分,一般是写调查分析的主要情况、做法、经验或问题。下面职场范文网的就给大家分享下关于产品质量问题分析报告,欢迎阅读! 产品质量问题分析报告篇一 一、中国葡萄酒质量现状 新中国成立以来,葡萄酒产业经历了几起几落的发展阶段,呈螺旋式上升的趋势。自上世纪九十年代中后期,中国又迎来了新一轮的葡萄酒产业发展期,十多年来,中国葡萄酒的产量有了大幅度提高,质量有了很大的改观,产品结构有了根本的调整,原料基地已初具规模,管理体系已逐步形成,消费群体不断扩大,这些都为葡萄酒产业的健康发展奠定了坚实的基础。 1、外部环境的优化,力促葡萄酒产业发展和质量的提高随着国家产业政策的调整,重点发展葡萄酒、水果酒,限制粮食酒等措施的落实,为葡萄酒产业的发展提供了有利的契机;《中国葡萄酿酒技术规范》的颁布实施,葡萄酒质量安全市场准入制的实施,新的《葡萄酒》国家标准的颁布实施,都为葡萄酒质量的提高、行业健康有序的发展提供了有力的保障。 2、重视基地建设,为提高葡萄酒质量提供了保障目前许多新建企业,首先

建基地,然后建工厂,企业对原料质量有了完全自主的掌控权,这种经营理念的改变、经营模式的改变都为葡萄酒质量的提高提供了可靠的保障,这也是近年来中国葡萄酒质量不断提高的重要原因之一。 3、国家监督抽查,对葡萄酒质量的提高起到了巨大的推动作用自1997年至2006年,连续十年国家监督抽查的结果表明,中国葡萄酒的质量有了质的飞跃,产品结构发生了根本的变化。通过抽查,反映出行业存在的带倾向性的问题,然后进行集中整治,使违反质量规定的行为得到了及时的纠正,同时,生产者也越来越自觉地重视产品质量,自我监控的意识加强,对葡萄酒质量的提高起到了巨大的推动作用。 二、中国葡萄酒质量存在的主要问题: 1、原料基地建设仍然薄弱,导致产品质量得不到有效控制。 2、生产技术水平不高,质量同质化现象突出。 3、生产者缺少诚信理念,随意进行虚假宣传。 三、中国葡萄酒质量提升的措施 1、抓好基地建设是质量提升的必备基础

EL测试光伏组件常见质量问题分析与检测方法

EL测试光伏组件常见质量问题分析与检测方法 据苏州莱科斯公司检测光伏电站的经验得出光伏组件安装过程管控不到位造成光伏组件热斑、隐裂、人为破损等质量问题的大面积出现,影响了光伏电站整体高效稳定运行。本文结合国家相关规范要求及光伏组件安装实际情况,对光伏组件常见质量问题进行分析,对光伏组件安装质量控制进行总结,旨在从管理层面系统梳理光伏电站组件安装质量控制有效措施,保证光伏电站高效稳定运行。那常见的问题有哪些以下几点? 光伏组件常见质量问题 光伏组件常见的质量问题有热斑、隐裂和功率衰减。由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。 热斑形成原因及检测方法 光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。 热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。 隐裂形成原因及检测方法 隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。光伏组件在出厂前会进行EL成像检测,所使用的仪器为EL检测仪。该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。EL检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。功率衰减分类及检测方法 光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。第二类、第三类是光伏组件生产过程中亟需解决的工艺问题,在此不再赘述。光伏组件功率衰减测试可通过光伏组件I-V特性曲线测试仪完成。

光伏电站运维方案

光伏电站日常维护 一、汇流箱 汇流箱就是汇集电流的一个设备,主要是用在大中型光伏系统中,光伏阵列中组件串数量多,输出多,必须需要一个设备把这些输出集中起来,使之可以直接连在逆变器上。在太阳能光伏发电系统中,为了减少太阳能光伏电池阵列与逆变器之间的连线,可以将一定数量、规格相同的光伏电池串联起来,组成一个个光伏串列,然后再将若干个光伏串列并联接入光伏汇流防雷箱,在光伏防雷汇流箱内汇流后,通过直流断路器输出,与光伏逆变器配套使用从而构成完整的光伏发电系统,实现并网。 可同时接入多路太阳能光伏阵列,每路额定电流可达10A,最大15A,能满足不同用户需求。每路输入独立配有太阳能光伏直流高压防雷电路,具备多级防雷功能,确保雷击不影响光伏阵列正常输出。输出端配有光伏直流高压防雷模块,可耐受最大80kA的雷电流。采用高压断路器,直流耐压值不低于DC1000V,安全可靠。具有雷电记录功能,方便了解雷电灾害的侵入情况。具有电流、电压、电量的实时显示功能,便于观察工作状况。防护等级达IP65,满足室外安装的使用要求。具有远程监控功能。汇流箱大概的结构主要有保险管、防雷器、直流断路器(隔离刀闸)、正(负)极接线板、电流传感器,计量采样板、通讯板等。 光伏防雷汇流箱里配置了光伏专用直流防雷模块、直流熔断器和断路器等,并设置了工作状态指示灯、雷电计数器。为方便用户及时准确的掌握光伏电池的工作情况,配备远方通讯监测装置保证太阳能光伏发电系统发挥最大功效。 (1)汇流箱的主要故障有以下几点: 1.正负极熔断器烧损;造成的主要原因是: a.由于熔断器的额定电流小于接入光伏组串的电流。 b.接入汇流箱的电缆正负极短路或电缆接地。 c.熔断器的质量不合格造成的熔断器烧损。 d.光伏组件串接数量超出设计标准范围。 e.光伏组件连接线和接线端子接触不良。 f. MC4头与组件接触不良。 2.通讯中断、数码液晶管无显示;造成的主要原因是: a.通讯线接地、短路或断路。 b.通讯板烧损。 c.无通讯电源。

质量问题分析报告

年产2亿平米光学薄膜项目(426)4号 聚酯膜厂房二期 设备基础质量问题调查、分析、处理报告 山东滕建建设集团有限公司 张家港康得新项目部 2015-10-27

一、质量问题发生时间 2015年10月26日下午17时 二、质量问题发生部位及情况 年产2亿平米光学薄膜项目(426)4号聚酯膜厂房二期工程20轴至21轴间设备基础混凝土浇筑过程中,混凝土施工人员误将地面混凝土(C25)浇入设备基础(C30)范围内。经项目监理部发现后及时叫停,并将设备基础范围内C25混凝土全部清除。 三、原因分析 1、由于现场混操作人员浇筑混凝土时责任心不强,并未按照操作规程、技术交底要求施工。 2、现场技术管理人员技术交底后施工过程质量控制不到位,未认真按技术交底要求落实。 3、质检人员在施工过程中控制频率不够,在设备基础混凝土施工时未能进行跟踪旁站监督。 由于以上原因造成质量问题的发生。 四、质量问题损失 企业信誉受到损害,同时造成项目节点延误工期,并造成人工、材料、机械浪费。 五、质量问题责任处理意见 1、由于李元龙施工队操作人员对浇筑基础混凝土

质量重视不够,操作人员责任心不强、操作水平差,是造成质量事故的主要原因,并造成人工、材料、机械浪费。根据项目部的有关规定对李元龙施工队处以5000元罚款,操作工人罚款500元,现场返工所用人工、材料、机械费用全部由李元龙施工队自负。并对不符合现场施工质量要求的人员在2015年10月27日前一律清退出场。 2、项目部现场管理人员因现场管理不到位,未严格执行项目质量管理制度,根据公司及项目部的有关文件对相关人员处罚如下:何正强因质量管理不到,负主要责任罚款200元;刘真锋因未按技术交底要求组织施工,是导致质量事故的直接责任人,负组织不力责任罚款200元、宋斌负技术交底及技术指导不到位责任罚款100元、刘尹贤负现场施工过程旁站监督不到位责任罚款100元。 3、通过此次事件的发生,项目部将引以为戒,进一步加强内部的各项管理工作,加强对项目管理人员及所有施工人员的质量、安全、文明施工的教育工作,提高大家的意识,杜绝类似事件的再次发生。 六、事故技术处理措施 对于20轴至21轴间设备基础混凝土全部清除,返工处理。施工前须经建设单位专业工程师重新检查验收合格后方可进行下一道工序施工。

光伏组件质量问题总结分析

网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高温后出现膨胀造成隐裂现象 组件影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4.助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施:

1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。 2.加强原材料供应商的改善及原材检验. 3.加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm 硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验. 3.加强制程过程中成品外观检验 4.总装打胶严格要求操作手法,硅胶需要完全密封 5.抬放组件时避免受外力碰撞硅胶不电池交 良分层叉隐裂纹 组件烧坏原因 1.汇流条与焊带接触面积较小或虚焊出现电阻加大发热造成组件烧毁

全面总结光伏电站运维常见故障及解决方法

现如今国内投资光伏电站的人士越来越多,光伏电站出现故障的事件也是层出不穷,有感于此,下面广东太阳库技术人员分享光伏电站日常运行中可能会出现的常见故障以及解决方法,以便为项目开发人员或业主提供参考。 1.1、故障现象:逆变器屏幕没有显示 故障分析:没有直流输入,逆变器LCD是由直流供电的。 可能原因: (1)组件电压不够。逆变器工作电压是100V到500V,低于100V 时,逆变器不工作。组件电压和太阳能辐照度有关。 (2)PV输入端子接反,PV端子有正负两极,要互相对应,不能和别的组串接反。 (3)直流开关没有合上。 (4)组件串联时,某一个接头没有接好。 (5)有一组件短路,造成其它组串也不能工作。 解决办法:用万用表电压档测量逆变器直流输入电压。电压正常时,总电压是各组件电压之和。如果没有电压,依次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。

如果逆变器是使用一段时间,没有发现原因,则是逆变器硬件电路发生故障,请联系我公司售后。 1.2、故障现象:逆变器不并网。 故障分析:逆变器和电网没有连接。 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是否断开。 1.3、PV过压: 故障分析:直流电压过高报警 可能原因:组件串联数量过多,造成电压超过逆变器的电压。 解决办法:因为组件的温度特性,温度越低,电压越高。单相组串式逆变器输入电压范围是100-500V,建议组串后电压在350-400V 之间,三相组串式逆变器输入电压范围是250-800V,建议组串后电

光伏组件常见质量问题与安装要点

光伏组件常见质量问题与安装要点 光伏组件常见的质量问题有热斑、隐裂和功率衰减。由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。 热斑形成原因及检测方法 光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。 热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。 隐裂形成原因及检测方法 隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。光伏组件在出厂前会进行EL 成像检测,所使用的仪器为EL 检测仪。该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。EL 检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。 功率衰减分类及检测方法 光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。光伏组件功率衰减测试可通过光伏组件I-V 特性曲线测试仪完成。 光伏组件安装质量控制 光伏组件安装质量控制是对光伏组件卸车、倒运、安装全过程的管控,通过科学的管理有效降低组件人为损坏概率,减少隐裂发生的风险。 光伏组件卸车 组件运输车辆抵达指定卸车地点后,首先需确认箱件数量与货单是否一致,检查组件外包装有无变形、碰撞、损坏、划痕等,并做好相关记录。卸车前对卸车人员进行安全交底,并检查卸车人员精神状态是否良好,劳保用品(安全帽、反光背心、劳保手套等)是否配备齐全;检查起重机械是否工作正常; 检查吊带、钢丝绳有无损伤,并严禁使用承载力不满足要求或出现损伤的吊带和钢丝绳。光伏组件卸车讲究“慢”和“稳”,组件宜放置在平坦、坚实的地面上,严禁歪斜,防止倾倒,且光伏组件放置区域不影响道路交通。 光伏组件倒运 光伏组件倒运是指通过机械设备或运输车辆将整箱光伏组件由光伏组件集中放置区域运输至组件安装地点。光伏组件倒运需将车速控制在5km/h 之内,防止组件因颠簸、碰撞出现碎裂。组件宜放置在靠近光伏支架侧的平整地面上,并方便道路畅通、车辆通行。施工现场已开箱光伏组件需保证正面朝上平放,底部垫有木制托盘或电池板包装物,严禁斜放或悬空,严禁将电池板引出线及插头挤压扯拽,严禁将组件背面直接暴露在太阳光下。 光伏组件安装

太阳能光伏组件常见重大质量问题解析

太阳能光伏组件常见重大质量问题解析 网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高 温后出现膨胀造成隐裂现象 组件影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 2.在焊接过程中电池片要提前保温(手焊)烙铁温度要 符合要求. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施:

2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm 硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.总装打胶严格要求操作手法,硅胶需要完全密封 5. 抬放组件时避免受外力碰撞 硅胶不电池交

光伏电站运维常见故障及解决方法

常见的故障及解决方法 国内投资光伏电站的人士越来越多,光伏电站出现故障的事件也是层出不穷,有感于此,下面广东太阳库技术人员分享光伏电站日常运行中可能会出现的常见故障以及解决方法,以便为项目开发人员或业主提供参考。 1.1 、故障现象:逆变器屏幕没有显示 故障分析:没有直流输入,逆变器LCD是由直流供电的。 可能原因: (1)组件电压不够。逆变器工作电压是100V到500V,低于100V 时,逆变器不工作。组件电压和太阳能辐照度有关。 (2)PV输入端子接反,PV端子有正负两极,要互相对应,不能和别的组串接反。 (3)直流开关没有合上。 (4)组件串联时,某一个接头没有接好。 (5)有一组件短路,造成其它组串也不能工作。 解决办法:用万用表电压档测量逆变器直流输入电压。电压正常 时,总电压是各组件电压之和。如果没有电压,依次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。

如果逆变器是使用一段时间,没有发现原因,则是逆变器硬件电路发生故障,请联系我公司售后。 1.2 、故障现象:逆变器不并网。 故障分析:逆变器和电网没有连接。 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是否断开。 1.3、PV过压: 故障分析:直流电压过高报警 可能原因:组件串联数量过多,造成电压超过逆变器的电压 解决办法:因为组件的温度特性,温度越低,电压越高。单相组串式逆变器输入电压范围是100-500V,建议组串后电压在350-400V 之间,三相组串式逆变器输入电压范围是250-800V,建议组串后电压在600-650V之间。

质量问题综合分析报告

五月生产二厂质量问题综合分析报告 为有效控制生产二厂批量质量问题,提高产品质量和效率,现针对五月份生产过程质量问题(批量性)进行统计分析,具体如下: 一、生产过程存在问题概况: 1、概况:五月生产二厂工艺员记录的生产过程存在问题共157批,其中原材料90批,占总批次不良的57.32%;人为31批,占总批次不良19.75 %;技术设计25批,占总批次不良的15.92%;文件问题11批,占总批次不良的7.01 %;具体见下表: 2、人为不良方面:生产中心批量质量问题共157

总装13批质量问题里面,员工用错物料有8个批次,占61.54%;员工装配不到位有4个批次,占30.77%;条形码打印错误有1个批次,占7.69%。 通过上述表格可以发现,塑料厂、纸箱厂与电子公司、诚丰、东丽不良批次占了整个原材料不良批次的79.31%,其中塑料厂问题主要为底座、中框不良,纸箱厂问题主要为纸箱印刷不良,电子公司问题主要为遥控器混送(出现4批)、电控板不良等,诚丰、东丽问题主要为底座、面板不良。 4、设计开发文件方面:设计开发不良共13批次,其中订单BOM :8个批次,对照表4个批次。具体如下:

5、原材料问题点分布 1216台。具体如下表所示: 通过上述表格可以发现底座不良达612台占总和的50.33%,中框不良达189台占总和的15.54%,面板不良达133块占总和的10.94%

通过上述表格看出纸箱不良达1928台占总和的44.33%,电加热绝缘座不良达1000台占总和的22.99%, 遥控器

不良达809台占总和的18.60% 6、质量工艺反馈方面: 05月份生产二厂共提交外部门质量反馈61份,其中《工艺/质量问题反馈单》16份,《原材料质量问题反馈 因散点问题(不合格比例未达到5%,不符合批量问题定义)驳回占28.89%,不整改比例为13.33%,未处理比例为37.78%。

相关文档
最新文档