2SC0535T2Ax-33(concept驱动核)

2SC0535T2Ax-33(concept驱动核)
2SC0535T2Ax-33(concept驱动核)

2SC0535T2Ax-33 Preliminary Datasheet

Dual-Channel Low-Cost SCALE-2 IGBT Driver Core for 3300V IGBTs

Abstract

The low-cost SCALE-2 dual-driver core 2SC0535T2Ax-33 combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0535T2Ax-33 drives all usual high-power IGBT modules up to 3300V. Its embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies involving 1700V IGBTs with higher isolation requirements can also be easily supported by 2SC0535T2Ax-33.

The 2SC0535T2Ax-33 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, advanced active clamping as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and from the other secondary channel.

An output current of 35A and 5W drive power is available per channel, making the 2SC0535T2Ax-33 an ideal driver platform for universal use in medium and high-power applications. The driver provides a gate voltage swing of +15V/-10V. The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level.

Its outstanding EMC allows safe and reliable operation even in hard industrial applications.

Product Highlights Applications

[ Ultra-compact dual-channel driver [ Traction

[ Highly integrated SCALE-2 chipset [ Railroad power supplies

[ Gate current ±35A, 5W output power per channel [ Light rail vehicles

[ +15V/-10V gate driving [ HVDC

[ Blocking voltages up to 3300V [ Flexible AC transmission systems (FACTS) [ Safe isolation to EN 50178 and EN 50124 [ Medium-voltage converters

[ Short delay and low jitter [ Wind-power converters

[ Interface for 3.3V ... 15V logic level [ Industrial drives

[ UL compliant [ Medical applications

Preliminary Data Sheet

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-

voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive

devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the

workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and

important information that apply to this product, please refer to “2SC0535T Description & Application Manual”

on https://www.360docs.net/doc/1c15578319.html,/go/2SC0535T

Absolute Maximum Ratings

Unit

Max Parameter Remarks Min

Supply voltage V DC VDC to GND 0 16 V

Supply voltage V CC VCC to GND 0 16 V

Logic input and output voltages Primary side, to GND -0.5 VCC+0.5 V

SOx current Failure condition, total current 20 mA

+35

A

1 -35

Gate peak current I out Note

External gate resistance Turn-on and turn-off 0.5 ?

Average supply current I DC Notes 2, 3 1250 mA

Output power Ambient temperature <70°C (Notes 4, 5) 7.5 W

Ambient temperature 85°C (Note 4) 5 W

Switching frequency F 100 kHz

Test voltage (50Hz/1min.) Primary to secondary (Note 15) 9100 V AC(eff)

Secondary to secondary (Note 15) 6000 V AC(eff)

|dV/dt| Rate of change of input to output voltage (Note 11) 50 kV/μs

Operating voltage Primary/secondary, secondary/secondary 3300 V peak

Operating temperature Notes 5, 18 -40 +85 °C

Storage temperature Note 18 -40 +90 °C

Preliminary Data Sheet Recommended Operating Conditions

Power Supply Remarks Min Typ Max Unit

Supply voltage V DC VDC to GND, IGBT mode 14.5 15 15.5 V

Supply voltage V CC VCC to GND 14.5 15 15.5 V

Electrical Characteristics (IGBT mode)

All data refer to +25°C and V CC = V DC= 15V unless otherwise specified.

Power supply Remarks Min Typ Max Unit

Supply current I DC Without load 65 mA

Supply current I CC F = 0Hz 22 mA

Supply current I CC F = 100kHz 32 mA

Coupling capacitance C io Primary to output, total 19 pF

Power Supply Monitoring Remarks Min Typ Max Unit

Supply threshold V CC Primary side, clear fault 11.9 12.6 13.3 V

Primary side, set fault (Note 12) 11.3 12.0 12.7 V

Monitoring hysteresis Primary side, set/clear fault 0.35 V

Supply threshold V ISOx-V Ex Secondary side, clear fault 12.1 12.6 13.1 V

Secondary side, set fault (Note 13) 11.5 12.0 12.5 V

Monitoring hysteresis Secondary side, set/clear fault 0.35 V

Supply threshold V Ex-V COMx Secondary side, clear fault 5 5.15 5.3 V

Secondary side, set fault (Note 13) 4.7 4.85 5 V

Monitoring hysteresis Secondary side, set/clear fault 0.15 V

Logic Inputs and Outputs Remarks Min Typ Max Unit

Input bias current V(INx) > 3V 190 μA

threshold V(INx) 2.6 V

Turn-on

threshold V(INx) 1.3 V

Turn-off

SOx output voltage Failure condition, I(SOx)<20mA 0.7 V

Short-Circuit Protection Remarks Min Typ Max Unit

Current through pin REFx R(REFx, VEx)<70k?150

μA Minimum response time Note 9 1.5 μs

Minimum blocking time Note 10 9 μs

Preliminary Data Sheet

Timing Characteristics Remarks Min Typ Max Unit

6 70 ns

Turn-on delay t d(on)Note

6 70 ns

Turn-off delay t d(off)Note

Jitter of turn-on delay Note 17 2 ns

Jitter of turn-off delay Note 17 2 ns

7 20 ns

Output rise time t r(out)Note

7 25 ns

Output fall time t f(out)Note

Transmission delay of fault state Note 14 400 ns

Electrical Isolation Remarks Min Typ Max Unit

Test voltage (50Hz/1s) Primary to secondary side (Note 15) 9100 9150 9200 V eff

Secondary to secondary side (Note 15) 6000 6050 6100 V eff

Partial discharge extinction volt. Primary to secondary side (Note 16) 4125 V peak

Secondary to secondary side (Note 16) 3300 V peak

Creepage distance Primary to secondary side 44 mm

Secondary to secondary side 22 mm

Clearance distance Primary to secondary side 25 mm

Secondary to secondary side 14 mm

Unit

Max Output Remarks Min

Typ

Blocking capacitance VISOx to VEx (Note 8) 9.4 μF

VEx to COMx (Note 8) 9.4 μF

Output voltage swing

The output voltage swing consists of two distinct segments. First, there is the turn-on voltage V GHx between

pins GHx and VEx. V GHx is regulated and maintained at a constant level for all output power values and

frequencies.

The second segment of the output voltage swing is the turn-off voltage V GLx. V GLx is measured between pins

GLx and VEx. It is a negative voltage. It changes with the output power to accommodate the inevitable

voltage drop across the internal DC/DC converter.

Output Voltage Remarks Min Typ Max Unit

Turn-on voltage, V GHx Any load condition 15.0 V

Turn-off voltage, V GLx No load -10.8 V

Turn-off voltage, V GLx5W output power -9 V

Turn-off voltage, V GLx7.5W output power -8.5 V

Preliminary Data Sheet

Footnotes to the Key Data

1)The maximum peak gate current refers to the highest current level occurring during the product

lifetime. It is an absolute value and does also apply for short pulses.

2)The average supply input current is limited for thermal reasons. Higher values than specified by the

absolute maximum rating are permissible (e.g. during power supply start up) if the average remains below the given value, provided the average is taken over a time period which is shorter than the thermal time constants of the driver in the application.

3)There is no means of actively controlling or limiting the input current in the driver. In the case of

start-up with very high blocking capacitor values, or in case of short circuit at the output, the supply input current has to be limited externally.

4)The maximum output power must not be exceeded at any time during operation. The absolute

maximum rating must also be observed for time periods shorter than the thermal time constants of the driver in the application.

5)An extended output power range is specified in the output power section for maximum ambient

temperatures of 70°C. In that case, the absolute maximum rating for the operating temperature changes to (–40°C - 70°C) and the absolute maximum output power rating changes to 7.5W.

6)The delay time is measured between 50% of the input signal and 10% voltage swing of the

corresponding output. The delay time is independent on the output loading.

7)Output rise and fall times are measured between 10% and 90% of the nominal output swing with an

output load of 4.7? and 270nF. The values are given for the driver side of the gate resistors. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.

8)External blocking capacitors should be placed between the VISOx and VEx as well as the VEx and

COMx terminals. Refer to “2SC0535T Description & Application Manual” (paragraph “DC/DC output (VISOx), emitter (VEx) and COMx terminals)” for recommendations. Ceramic capacitors are recommended.

9)The minimum response time given is valid for the circuit given in the description and application

manual (Fig. 6) with the values of table 1 (C a2x=0pF).

10)The blocking time sets a minimum time span between the end of any fault state and the start of

normal operation (remove fault from pin SOx). The value of the blocking time can be adjusted at pin

TB. The specified blocking time is valid if TB is connected to GND.

11)This specification guarantees that the drive information will be transferred reliably even at a high DC-

link voltage and with ultra-fast switching operations.

12)Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below

this limit, a fault is transmitted to both SOx outputs and the power semiconductors are switched off. 13)Undervoltage monitoring of the secondary-side supply voltage (VISOx to VEx and VEx to COMx which

correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding SOx output.

14)Transmission delay of fault state from the secondary side to the corresponding primary status output.

15)HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate

driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than 2330V AC(eff) may lead to insulation degradation. No degradation has been observed over 1min. testing at 9100V AC(eff). Every production sample shipped to customers has undergone 100% testing at the given value for 1s.

16)Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination

specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.

17)Jitter measurements are performed with input signals INx switching between 0V and 5V referred to

GND, with a corresponding rise time and fall time of 15ns.

18)The minimum temperature is limited to -40°C for the first series. This will be extended to -55°C upon

completion of the ongoing qualification program.

Preliminary Data Sheet

Legal Disclaimer

This data sheet specifies devices but cannot promise to deliver any specific characteristics. No warranty or guarantee is given – either expressly or implicitly – regarding delivery, performance or suitability.

CT-Concept Technologie AG reserves the right to make modifications to its technical data and product specifications at any time without prior notice. The general terms and conditions of delivery of CT-Concept Technologie AG apply.

Preliminary Data Sheet Ordering Information

The general terms and conditions of delivery of CT-Concept Technologie AG apply.

Type Designation Description

2SC0535T2A0-33 Dual-channel 3.3kV SCALE-2 driver core

Product home page: https://www.360docs.net/doc/1c15578319.html,/go/2SC0535T

Refer to https://www.360docs.net/doc/1c15578319.html,/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, product documentation, and application support

Please click: https://www.360docs.net/doc/1c15578319.html,

Manufacturer

CT-Concept Technologie AG

Intelligent Power Electronics

Renferstrasse 15

CH-2504 Biel-Bienne

Switzerland

Tel. +41 - 32 - 344 47 47

Fax +41 - 32 - 344 47 40

E-mail Info@https://www.360docs.net/doc/1c15578319.html,

Internet https://www.360docs.net/doc/1c15578319.html,

? 2011…2012 CT-Concept Technologie AG - Switzerland. All rights reserved. We reserve the right to make any technical modifications without prior notice. Version from 2012-03-08

2SC0535T2Ax-33(concept驱动核)

2SC0535T2Ax-33 Preliminary Datasheet Dual-Channel Low-Cost SCALE-2 IGBT Driver Core for 3300V IGBTs Abstract The low-cost SCALE-2 dual-driver core 2SC0535T2Ax-33 combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0535T2Ax-33 drives all usual high-power IGBT modules up to 3300V. Its embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies involving 1700V IGBTs with higher isolation requirements can also be easily supported by 2SC0535T2Ax-33. The 2SC0535T2Ax-33 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, advanced active clamping as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and from the other secondary channel. An output current of 35A and 5W drive power is available per channel, making the 2SC0535T2Ax-33 an ideal driver platform for universal use in medium and high-power applications. The driver provides a gate voltage swing of +15V/-10V. The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level. Its outstanding EMC allows safe and reliable operation even in hard industrial applications. Product Highlights Applications [ Ultra-compact dual-channel driver [ Traction [ Highly integrated SCALE-2 chipset [ Railroad power supplies [ Gate current ±35A, 5W output power per channel [ Light rail vehicles [ +15V/-10V gate driving [ HVDC [ Blocking voltages up to 3300V [ Flexible AC transmission systems (FACTS) [ Safe isolation to EN 50178 and EN 50124 [ Medium-voltage converters [ Short delay and low jitter [ Wind-power converters [ Interface for 3.3V ... 15V logic level [ Industrial drives [ UL compliant [ Medical applications

CONCEPT_AN-0904_SCALE-2 门极驱动核的直接并联

SCALE-2 门极驱动核的直接并联 介绍 传统的IGBT并联方法是由单个驱动器驱动多个IGBT,每个IGBT都有独立的门极和发射极电阻。另一种并联IGBT模块的驱动方法是,每个模块都使用独立的驱动器。图1显示传统的、使用单个驱动核的并联方式与SCALE-2驱动核直接并联方式之间的差异。 图1:传统并联(左)与使用变压器接口的独立SCALE-2门极驱动核直接并联三个IGBT模块(右) 利用CONCEPT的SCALE-2技术能够直接并联门极驱动器,因为带有变压器接口的SCALE-2驱动器,其信号传输延迟(通常为80ns ±4ns)和延迟抖动(通常<±1-3ns)小且公差范围很窄。因此,以下带有变压器接口的SCALE-2驱动核可以直接并联,而不会在并联的IGBT模块之间产生过大的电流不平衡:?2SC0108T ?2SC0435T ?2SC0650P ?1SC2060P 2SD300C17不适合直接并联。 本应用指南将简要描述直接并联的优势,并解释在直接并联应用中如何使用SCALE-2驱动核。

直接并联的优势 与传统并联方式相比,直接并联IGBT驱动器可获得以下优势: ?优化的开关行为,开关损耗最低 ?用户友好、安全而可靠的理念 ?可用开关频率不会随着并联IGBT模块数量的增加而降低。 ?不存在门极间耦合,因此不同IGBT门极之间不会发生相互振荡 ?流过模块基板的容性等效电流不产生影响 ?门极电缆上的电感耦合不产生影响 ?利于设备直接并联及后续扩容 ?IGBT模块的利用率高,降额幅度小 ?设置简单,无混乱的布线 在直接并联中如何使用SCALE-2驱动核 CONCEPT建议在并联应用中使用SCALE-2驱动核时遵循下面的程序: ?所有驱动器都必须采用相同的硬件配置(门极电阻、退饱和保护、有源箝位、支撑电容…) ?所有并联驱动器的电源电压VCC和VDC(如果可用)必须来自同一电压源,以确保驱动器对称地运行(请参考图2)。 ?所有并联驱动器的输入信号INA和INB必须来自同一逻辑缓冲器(驱动器),以确保延迟差异极小(请参考图2)。 ?INA和INB的电压上升率必须足够高(> 0.25V/ns),以确保最大限度地降低延迟抖动。特别是,如果输入到INA和INB的信号经过了RC网络滤波(例如,用于窄脉冲抑制),则必须使用施密特触发缓冲器整形,以使INA和INB的信号有较高的电压上升率。 ?所有从主控板连接到不同驱动器接口的电缆的长度差异应当低于40cm,以确保附加延迟差异低于大约2ns。 ?所有驱动器都必须工作在直接模式。半桥模式(如果可用)不适合SCALE-2驱动器的并联应用。 ?发生故障时,必须等待所有并联的驱动器的故障反馈端全部复位之后再做进一步操作,以确保所有并联的驱动器的阻断时间全都结束。可使用图2中的相应电路满足此要求。 ?退饱和保护的阈值电平必须设置为只能检测到IGBT短路而检测不到过流的水平。推荐的值:Vth=10.2V (Rth=68k?)。此外,响应时间的值必须足够高(通常为6…9μs),以确保在最恶劣的条件下整个集电极电流范围内都不会产生误保护。 ?并联驱动器的状态输出SO1和SO2可进行单独检测以精确地诊断故障,也可以连接到一起。 正常工作时的系统行为 在正常开关过程中(无故障反馈),并联驱动器可按无并联电路的方式使用。所有并联IGBT模块会同步开通和关断。实验室测量显示,微小的信号延迟差异(<5ns)以及微小的负门极电压差异(<0.4V),可导致关断或开通时

伺服驱动器硬件设计方案

伺服驱动器硬件设计方案 伺服驱动器的硬件研发主要包括控制板和电源板的设计,控制板承担与上位机进行交互和实时生成精准的PWM信号。电源板的作用根据PWM信号,利用调制的原理产生特定频率,特定相位和特定幅值的三相电流以驱动电机以达到最优控制。 一控制板研发 1)控制板的架构主要的任务就是核心器件的选择。 安川、西门子等国际知名的公司都是采样ASIC的方式的芯片,这样就可以按照自己 的设计需要来制造专用于伺服控制的芯片,由于采样ASIC方式,所以芯片的运行速 度非常快,那么就比较容易实现电流环的快速响应,并且可以并行工作,那么也很 容易实现多轴的一体化设计。采样ASIC的方式有很多的好处,比如加密等。但是采 样ASIC的风险和前期的投入也是非常的巨大的,并且还要受该国的芯片设计和制造 工艺的限制。 根据我国的实际的国情和国际的因素等多种原因,核心芯片比较适宜采样通用的 DSP,ARM等处理器,比如Ti的C2000飞思卡尔的K60,英飞凌的XE164等。研究 台达的伺服驱动器发现其架构是采用Ti的DSP 2812+CPLD,这和我们公司GSK的方 案基本一样。我们也是采用DSP2812加CPLD(EPM570T144)来实现核心的控制功能。 2)核心器件的控制功能的分工。 DSP实现位置环、速度环、电流环的控制以及利用事件管理器PWM接口实现产生特 定的PWM信号。可以利用其灵活的编程特性快速的运算能力实现特定的控制算法等,还可以利用其自身的A/D完成对电机电流的转换,但是DSP自身的A/D精度普遍较 低,并且还受基准电压电源的纹波PCB的LAYOUT模数混合电路的处理技巧影响, 所以高档的伺服几乎都采用了外部A/D来完成电流采样的处理。比如路斯特安川等。 也有一些高档的伺服使用一些特殊的电流传感器,该传感器的输出已经是数字信 号,这样就可以节省了外部A/D芯片和增强抗干扰能力。如西门子的变频器采用 ACPL7860,发那克用于机器人的六驱一体的伺服也是采用了ACPL7860,西门子的伺 服S120采用了Ti的芯片AMC1203。 CPLD的作用是用来协助DSP以减少其自身的开销,比如完成速度的计算,位置的 计算,控制外部A/D对电机电流进行转换,因此当实现位置环速度环电流环所需要 的位置数据,速度数据,电流数据,那么DSP就可以直接从CPLD/FPGA处读取,不 需要耗费DSP的宝贵时间来计算这些数据。如果是增量式编码器采用M/T法测速效 果是最好的,但M/T法对DSP处理器的资源开销很大, 而CPLD/FPGA可以非常方便 使用M/T法进行测速。如果是绝对式编码器也可以非常方便采用CPLD/FPGA来解 析通信协议,并实现测速。一些高档的伺服也采用了CPLD/FPGA实现总线和以太网 功能。

IGBT和MOSFET驱动对比

2011—04—26 Mosfet和IGBT驱动对比的简介 编写:陈浩审阅:Norman Day hao.chen@https://www.360docs.net/doc/1c15578319.html, Norman.Dai@https://www.360docs.net/doc/1c15578319.html, 简述: 一般中低马力的电动汽车电源主要用较低压(低于72V)的电池组构成。 由于需求的输出电流较高,因此市场上专用型的Mosfet模块并不常见,所以部分设计者可能会存在没有合适的Mosfet模块使用,而考虑使用功率IGBT 模块。本文简单的探讨两种模块驱动设计时必须注意的问题供设计者参考。 常见应用条件划分: 选用IGBT或Mosfet 作为功率开关本来就是一个设计工程师最常遇到的问题。如果从系统的电压、电流和切换功率等因数来考虑,IGBT和Mosfet 的应用区域可简单的划分如下: 较合适IGBT应用的条件(硬开关切换): 1)切换频率低于25kHz; 2)电流变化较小的负载; 3)输入电压高于1000V; 4)高温环境; 5)较大输出功率的负载。 较合适 Mosfet应用的条件(硬开关切换): 1)切换频率大于100kHz ; 2)输入电压低于250V; 3)较小输出功率的负载。 根据上述描述,可以用图一来更清楚的看出两者使用的条件。图中的斜线部分表示IGBT和Mosfet在该区域的应用都存在着各自的优势和不足,所以该区域两者皆可选用。而“?”部分表示目前的工艺尚无法达到的水平。对于中低马力的电动汽车而言,其工作频率在20KHz以下,工作电压在72V以下,故IGBT和Mosfet都可以选择,所以也是探讨比较多的应用。

STARPOWER SEMICONDUCTOR LTD. 图 1 IGBT和Mosfet 常见应用区域图 特性对比: Mosfet和IGBT在结构上的主要差异来自于高压化的要求,因此也形成了 Mosfet模块与IGBT模块输入特性不同,以下就从结构的角度出发来作一简要说明。Mosfet和IGBT的内部结构如图 2 所示。 Mosfet基本结构IGBT基本结构 图 2 功率MOSFET 与IGBT 的构造比较

驱动霍尔元件US79说明书

Features and Benefits ? Built-in Reverse Voltage Protection ? Built-in RFI Filter ? Power Efficient CMOS and Power MOSFET Drivers allow 400mA without overheating ? Built-in Zener Diodes Protect Outputs ? Eliminate all Fan Components ? Eliminate PC Board ? 5V and 12V Operation ? High Sensitivity for switching symmetry ? Locked Rotor Shutdown Applications ? Fan sizes up to 90mm ? Current range up to 400mA Ordering Information Part No. Temperature Suffix Package Code US79 K (-40°C to 125°C) UA (TO-92 flat) 1. Functional Diagram 2. Description The US79KUA is the most advanced Smart Fan Control Hall IC. It is designed for 5V and 12V cooling commutation. The chip contains many features to allow survival in a harsh environment. The IC was designed to eliminate all discrete components such as capacitors, resistors, transistors, diodes, PC board and associated labor, replacing US$0.25 to US$0.35 in direct cost. The K rating guarantees proper operation up to an ambient temperature of 125°C. Hall IC circuitry and power FET output provide a low power dissipation cool chip. Locked Rotor conditions are detected by the IC when there is no motion for one second and will shut off the motor drive for five seconds. Then, the IC will turn on the drive current for one second. This sequence continues indefinitely until the locked rotor condition is fixed. This feature prevents overheating.

一种专为IGBT和MOSFET设计的驱动器讲课稿

一种专为I G B T和 M O S F E T设计的驱动器

一种专为IGBT和MOSFET设计的驱动器 电力电子器件的驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节,对整个装置的性能有很大的影响.采用性能良好的驱动电路可使电力电子器件工作在比较理想的开关状态,同时可缩短开关时间,减少开关损耗,这对装置的运行效率、可靠性和安全性都有重要的意义. 驱动电路的常用形式是由分立元件构成的驱动电路,但目前的趋势是采用专用的集成驱动电路.SCALE集成驱动器就是由瑞士CONCEPT公司生产的、专为IGBT和电力MOSFET提供驱动的电路.它具有多功能、低成本、易使用、可靠性好等特点.根据实际应用中对驱动性能、驱动输出通道数目、隔离等不同要求,SCALE集成驱动器具有相应的不同型号因而可满足不同的需求.

由于各种不同型号的SCALE集成驱动器在功能、结构和使用方法上大同小异,故本文不针对某种具体型号的SCALE器件作叙述,而是对整个系列的SC ALE器件的共性进行论述,以便使读者对SCALE器件有一个整体的认识,在应用时再根据具体的需要选择具体型号的SCALE芯片.本文首先介绍SCALE集成驱动器的性能特点和内部结构;然后介绍它在中频DBD型臭氧发生器电源中的应用,并给出了实验波形. 1 SCALE的性能特点及内部结构 1.1 SCALE驱动器的性能特点 SCALE器件提供的驱动电流可达18A,输出驱动信号的导通电平为+15V,关断电平为-15V;开关频率范围为0~100kHz;具有500V~10kV的电气隔离特性;占空比为0~100%.同时,这种器件内部还带有短路和过流保护电路、隔离的状态识别电路、电源检测电路和DC/DC开关电源. 1.2 SCALE驱动器的内部结构 SCALE器件的内部结构如图1所示(两通道). 由图可见驱动器由三个功能单元组成. 第一个功能单元是逻辑与驱动电路接口(LDI),用于驱动两个通道.当加在输入端InA和InB的PWM信号经过处理后,其驱动信息被分别送到每个驱动通道的脉冲变压器.由于变压器不易传输频率范围和占空比都比较宽的PWM信号,因此,LDI主要用来解决这个问题.LDI的主要功能如下:

concept的IGBT驱动板原理解读

板子的解读 a、有电气接口,即插即用,适用于17mm双管IGBT模块 b、基于SCALE-2芯片组双通道驱动器 命名规则: 工作框图

MOD(模式选择) MOD输入,可以选择工作模式 直接模式 如果MOD输入没有连接(悬空),或连接到VCC,选择直接模式,死区时间由控制器设定。该模式下,两个通道之间没有相互依赖关系。输入INA直接影响通道1,输入INB 直接影响通道2。在输入(INA或INB)的高电位,总是导致相应IGBT的导通。每个IGBT 接收各自的驱动信号。 半桥模式 如果MOD输入是低电位(连接到GND),就选择了半桥模式。死区时间由驱动器内部设定,该模式下死区时间Td为3us。输入INA和INB具有以下功能:当INB作为使能输入时,INA是驱动信号输入。 当输入INB是低电位,两个通道都闭锁。如果INB电位变高,两个通道都使能,而且跟随输入INA的信号。在INA由低变高时,通道2立即关断,1个死区时间后,通道1导通。 只有在控制电路产生死区时间的情况下,才能选择该模式,死区时间由电阻设定。 典型值和经验公式: Rm(kΩ)=33*Td(us)+56.4 范围:0.5us

它们安全的识别整个逻辑电位3.3V-15V范围内的信号。它们具有内置的4.7k下拉电阻,及施密特触发特性(见给定IGBT的专用参数表/3/)。INA或INB的输入信号任意处于临界值时,可以触发1个输入跃变。 跳变电平设置: SCALE-2输入信号的跳变电平比较低,可以在输入侧配置电阻分压网络,相当于提升了输入侧的跳变门槛,因此更难响应噪声。 SCALE-2驱动器的信号传输延迟极短,通常小于90ns。其中包括35ns的窄脉冲抑制时间。这样可以避免可能存在的EMI问题导致的门极误触发。不建议直接将RC网络应用于INA或INB,因为传输延迟的抖动会显著升高。建议使用施密特触发器以避免这种缺点。 注意,如果同时使用直接并联与窄脉冲抑制,建议在施密特触发器后将驱动器的输入INA/INB并联起来。建议在直接并联应用中不要为每个驱动核单独使用施密特触发器,因为施密特触发器的延迟时间的误差可能会较高,导致IGBT换流时动态均流不理想。 典型情况下,当INA/INB升高到大约2.6V的阈值电压时,所有SCALE-2驱动核将会开启相应的通道。而关断阈值电压大约为1.3V。因此,回差为1.3V。在有些噪声干扰很严重的应用中,升高输入阈值电压有助于避免错误的开关行为。为此,按照图13在尽可能靠近驱动核的位置放置分压电阻R2和R3。确保分压电阻R2和R3与驱动器之间的距离尽可能小对于避免在PCB上引起干扰至关重要。 在开通瞬间,假设R2=3.3k?,R3=1k?,INA=+15V。在没有R2和R3的情况下,INA 达到2.6V后驱动器立即导通。分压网络可将开通阈值电压升高至大约11.2V,关断阈值电压则提升至大约5.6V。在此例中,INA和INB信号的驱动器在IGBT导通状态下必须持续提供3.5mA(串联电路上为4.3K,15V时所消耗)的电流。 SO1,SO2(状态输出) 输出SOx是集电极开路三极管。没有检测到故障条件,输出是高阻。开路时,内部500uA 电流源提升SOx输出到大约4V的电压。在通道“x”检测到故障条件时,相应的状态输出SOx变低电位(连接到GND)。

linux电源驱动解析

1.电源 1.1. Linux电源类(Linux power supply class) 参考 power_supply.h (include\linux) 、 power_supply_core.c (drivers\power)、 power_supply_sysfs.c (drivers\power) 、 power_supply_class.txt (Documentation\power) 1.1.1.概述 电源类提供了电池、UPS、AD、DC等电源在用户空间的接口。 该类定义了一些核心属性,这些属性可以通过sysfs或者uenvt 接口访问。 每种属性都有特殊的含义和单位,由于这些属性普遍适用于各种电源,但是实际应用中有些电源可能无法提供某些属性,所以这些属性驱动可以不提供。 电源类是可扩展的,允许驱动程序定义其自身需要的属性,抛弃不需要的属性。 它还集成了LED框架,用来表示电池充电/完全充电状态和AC / USB电源线上状态。

1.1. 2.属性 定义于内核文件:power_supply_sysfs.c (drivers\power) 1.2. linux驱动 1.2.1.重要数据结构和函数 1.2.1.1. struct power_supply 定义于power_supply.h (include\linux) 对应着电源实例。 struct power_supply { const char *name;//名称,对应于/sys/class/power_supply/xxx文件夹 enum power_supply_type type;//电源类型,标示该电源为电池、主电源、USB电源等enum power_supply_property *properties;//提供的属性 size_t num_properties;// properties数组的大小 /*对应着当此电源变化时需要通知的电源模块的name*/ char **supplied_to; size_t num_supplicants;// supplied_to数组的大小 /*读取属性值*/ int (*get_property)(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val); /*写属性值*/ int (*set_property)(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val); /*设置属性为可写的属性*/ int (*property_is_writeable)(struct power_supply *psy, enum power_supply_property psp); /*外部电源变化时所作的工作*/ void (*external_power_changed)(struct power_supply *psy); void (*set_charged)(struct power_supply *psy); /* For APM emulation, think legacy userspace. */ int use_for_apm; /* private */

Concept驱动板在NPC三电平应用中的注意事项

Application of Gate Drivers for 3-Level NPC-2 Power Modules with Reverse Blocking IGBTs Christoph Dustert, CONCEPT Niederlassung der Power Integrations GmbH Hellweg Forum 1, 59469 Ense, Germany Andreas Volke, CONCEPT Niederlassung der Power Integrations GmbH, Hellweg Forum 1, 59494 Ense, Germany Abstract 3-level topologies have been widely used in various applications for several years. Such applications are typically based on the classical neutral-point-clamped (NPC1) topology with four power switches (IGBT) per half-bridge and two additional clamping diodes. A variant of this topology is known as the NPC2 topology which uses two IGBTs per half-bridge and two IGBTs connected as a common collector configuration in the clamping path. This topology is also available with two reverse blocking (RB) IGBTs instead of IGBTs in a common collector configuration to reduce the amount of conducting components. The gate driver requirements – especially concerning protection functions like desaturation monitoring and active clamping – are different for NPC1/NPC2 and NPC2 with RB-IGBT topology. This paper discusses these differences and provides proven solutions that enable standard gate drivers to be adapted for use in NPC2 topology designs with RB-IGBTs. 1 Introduction Conventional 2-level converter topologies (Fig. 1a) feature two switching states; the positive and negative rail of the DC-link voltage (DC+, DC-). To reduce total harmonic distortion in the output waveforms, further switching states are desired. The well-known 3-level NPC1 topology (Fig. 1b) provides such an additional switching state, the neutral state of 0V of junction N. Due to the lower voltage waveform distortions, filtering requirements can be reduced. This makes these topologies more and more attractive as the cost of filters has become a significant factor in the design of converter systems. A drawback of implementing 3-level topologies is the increased amount of switching devices (IGBTs and diodes), which add to the complexity and also partially to the cost of the entire system [1]. With the implementation of the NPC2 topology (Fig. 1c) the amount of power semiconductors can be further reduced, compared to the classical NPC1 setup. Fig. 1 Overview of 2-level and 3-level NPC1/NPC2 half-bridge topologies

SN4991喇叭驱动IC

1.2W Audio Power Amplifier with Active-low Standby Mode General Description The SN4991 has been designed for demanding audio applications such as mobile phones and permits the reduction of the number of external components. It is capable of delivering 1.2W of continuous RMS output power into an 8? load @ 5V . An externally-controlled standby mode reduces the supply current to much less than 1μA. It also includes internal thermal shutdown protection. The unity-gain stable amplifier can be configured by external gain setting resistors. Features ● Operating from V CC = 2.7V ~ 5.5V ● 1.2W output power @ V CC = 5V, THD+N= 1%, f = 1kHz, with 8? load ● Ultra-low consumption in standby mode (much less than 1μA) ● 65dB PSRR @217Hz in grounded mode ● Near-zero click-and-pop ● Ultra-low distortion (0.025%@0.5W, 1kHz) ● SOP-8 and MSOP-8 package Applications ● Mobile phones ● PDAs ● Portable electronic devices ● Notebook computer Typical Application Circuit R F 20k Figure 1 Typical Application Circuit (Single-ended Input)

Dell PowerEdge服务器RAID卡驱动下载

Dell PowerEdge服务器RAID卡驱动下载河南省荥阳市京城大街西口戴尔电脑成就专卖店“凌云神风”收集 Dell PowerEdge服务器RAID卡驱动下载 DELL新阵列卡驱动下载 型号支持系统驱动 H310/710 /710P/810Win2008 x32 Windows 2008 x64 Windows 2008 R2 Windows 2012 H700/H800Win 2003 x32 Windows 2003 x64 Windows 2008 x32 Windows 2008 x64 Windows 2008 R2 H200Win 2003 x32 Windows 2003 x64 Windows 2008 x32 Windows 2008 x64 Windows 2008 R2 s110Win 2008 x32 Windows 2008 x64 Windows 2008 R2 Windows 2012 s100/S300Win 2003 x32 Windows 2003 x64 Windows 2008 x32 Windows 2008 x64 Windows 2008 R2 DELL老阵列卡驱动下载 阵列卡Windows WIN2000WIN2003(I386)WIN2003(X64) ATA100-4ch ATA100-4ch 2k ATA100-4ch 2k3 Adaptec39160不用驱动不用驱动不用驱动Adaptec39320Adaptec39320不用驱动不用驱动Adaptec39320A(EMU)Adaptec39320A(EMU)Adaptec39320A(EMU)39320A(x64) scsi u320LSI U320_win2k不用驱动不用驱动PERC320/DC PERC320/DC win2k PERC320/DC PERC3/DI PERC3/DI_Win2k不用驱动不用驱动PERC3/DCL PERC3/4_WIN2K不用驱动不用驱动PERC3/SC PERC3/4_WIN2K不用驱动不用驱动PERC3/QC PERC3/4_WIN2K不用驱动不用驱动PERC3/DC PERC3/4_WIN2K不用驱动不用驱动PERC4/SC PERC3/4_WIN2K不用驱动不用驱动PERC4/DI PERC3/4_WIN2K不用驱动不用驱动PERC4/DC PERC3/4_WIN2K不用驱动不用驱动PERC4e/SI PERC3/4_WIN2K PERC4e/SI_WIN2K3PERC4e/SI(x64)

功率场效应晶体管(MOSFET)原理及其驱动

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

相关主题
相关文档
最新文档